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Abstract. Sedimentaryδ15 N records in two IMAGES cores
(MD012404 and MD012403) retrieved from the Okinawa
Trough (OT) in the western North Pacific reveal deglacial in-
creases with two peaks occurring during the Bølling/Allerød
and the Preboreal/early Holocene periods. These peaks
are synchronous with previously reportedδ15 N peaks in
the Eastern Tropical North Pacific, although the amplitudes
(from 3.8 to 5.8‰) are much smaller in the OT. Similarδ15 N
values for the last glacial maximum and the late-Holocene
observed by us at a site far from the present-day zones of
water-column denitrification (WCD) indicate that the mean
15 N/14 N of nitrate in the upper ocean did not differ much
between the two climate states. The accumulation rate of or-
ganic carbon and total sulfur content are used as indices of
the local WCD potential. The results suggest that enhance-
ment of global WCD rather than local denitrification should
be responsible for the deglacial maxima of sedimentaryδ15 N
in the Okinawa Trough. Our data could provide additional
constraints to better understand changes in nitrogen budget
during the glacial to interglacial transition.

1 Introduction

As an essential nutrient, changes in the oceanic inventory of
biologically available N (or “fixed nitrogen”, which is dom-
inated by nitrate) would be expected to impact the biolog-
ical carbon pump over large regions of the ocean through
glacial-interglacial cycles (Falkowski, 1997; Broecker and
Henderson, 1998; Archer et al., 2000; Naqvi et al., 2008).
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Thus, there is a growing interest in the interaction between
climate and N biogeochemistry. Evidence for strong links
between climate and key N cycling processes – N2 fixation
and denitrification – has been accumulating (Altabet et al.,
1995; Ganeshram et al., 1995; Falkowski, 1997), and sev-
eral researchers have hypothesized indirect influences of the
marine fixed N inventory on paleo-climate (McElroy, 1983;
Ganeshram et al., 1995, 2000; Pedersen and Bertrand, 2000;
Suthhof et al., 2001; Altabet et al., 2002). However, consid-
erable uncertainty still remains regarding changes in global
ocean nitrate inventory, particularly during the last glacial
period (Deutsch et al., 2004; Altabet, 2007).

Sedimentary nitrogen isotope (δ15 N) records from olig-
otrophic regions distant from zones of vigorous water col-
umn denitrification (WCD) may help in assessing past
changes in the magnitude of global WCD, which along with
sedimentary denitrification is the main pathway of losses
of fixed N from the ocean (Brandes and Devol, 2002; Al-
tabet, 2007; Naqvi et al., 2008). One of the unsettled
issues is the intensity of WCD in the North Pacific dur-
ing the last deglaciation and its effect on global oceanic
N inventory. Evidence from the South China Sea (SCS),
a cul-de-sac(Fig. 1a) of North Pacific Intermediate Water
(NPIW) (You et al., 2005), believed to be well-suited to de-
termine the extent of basin-wide influence of WCD in the
Eastern Tropical North Pacific (ETNP), shows insignificant
responses in sedimentaryδ15 N during the last deglaciation
when WCD peaked in the ETNP (Kienast, 2000; Higginson
et al., 2003). However, in order to adequately assess the ef-
fect of intensified WCD on marine N inventory during the
last deglaciation more sedimentaryδ15 N records are needed
from oligotrophic regions of the ocean, particularly the west-
ern Pacific.
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 Fig. 1. (a) Geographic setting of the North Pacific. Circulation,
path of salinity minimum (Smin, see You et al., 2006) and two
sources (black circles) of intermediate water are indicated.(b)
Location map for IMAGES core MD012404 and MD012403, and
Cores 17940 and 1144 used in previous reports are also shown. The
land (deep gray), shelf of<−100 m (light gray) and−1000 m iso-
baths are also shown. The flow path of present Kuroshio and glacial
Kuroshio are shown in gray and red arrows.

We present sedimentaryδ15 N records in the Okinawa
Trough (OT) showing changes that are synchronous with
global climate events during the last deglaciation. The syn-
chroneity and similarity ofδ15 N records from the western
and eastern North Pacific allow us to infer enhanced supply
of the isotopically heavy nitrogen to the upper ocean during
the last deglaciation when WCD had intensified in the ETNP.
The amplitude of the isotopic variation may shed new light
on the potential changes in the fixed N inventory in the entire
North Pacific.

2 Study area

The OT is located in the western Pacific (Fig. 1a). The
Kuroshio Current (KC) enters the OT through the Yona-
guni Depression (Fig. 1b) at its southern end. While the
OT is around 2000m deep, the depth of Yonaguni Depres-
sion ranges from 300 to 800 m, deep enough to allow the
Kuroshio Intermediate Water (KIW) to enter the OT.

Recent studies suggest that nitrate influx by the KC is
presently 1.5–3.4 times the river loading (Li, 1994; Chen
and Wang, 1999; Liu et al., 2000). Thus the KIW is the
main supplier of nutrients to the ECS (Chen, 1996), of which
the OT serves as a boundary and a sink for the shelf pro-
duction. It is conceivable that the primary nutrient source
for the ECS in the pre-Anthropocene period was dominated
by input through the shelf intrusion of the KIW (Liu et al.,
2000). In addition to the Yonaguni Depression, the Kerama
Gap in the middle Ryukyu Arc (Fig. 1b), although narrow,
is sufficiently deep (2000 m) to afford some intermediate and
deep water exchange between the OT and the northwestern
Pacific.

The NPIW spreads throughout the North Pacific (Fig. 1a)
with a subtropical salinity minimum (about 34.0–34.3)
within the depth range of 300–800 m, confined to the sub-
tropical North Pacific (see You et al. (2005) and references
therein). It has been demonstrated byδ15 N values of nitrate
that the KIW carries isotopically heavy nitrate originating
from the Eastern North Pacific, presumably transported by
the NPIW (Liu et al., 1996). Following Brandes et al. (2007),
we present distribution of N* (N* = [nitrate] – 16[phosphate]
+ 2.9) along the surface of constant density of 1026.6 kg m−3

(∼600 m depth) in Fig. 1a for reference. The N* distribu-
tion clearly illustrates that the denitrification signal (negative
N*) in ETNP intermediate water may be transmitted to the
western North Pacific. On the other hand, the N* distribu-
tion in the surface ocean (Brandes et al., 2007) suggest that
nitrogen input from N2-fixation (positive N*, not shown) is
higher in the western North Pacific, which is broadly consis-
tent with the biogeography ofTrichodesmiumobserved from
ships and satellites. Liu et al., (1996) also found isotopically
light nitrate within the 200–400 m depth range in the KC.
The isotopically light nitrate was attributed to the regener-
ation of regional N2-fixation since isotopically light (nega-
tive δ15 N) particulate nitrogen (PN) has been repeatedly ob-
served in the surface waters of the Philippine Sea off eastern
Taiwan (Wada and Hattori, 1976; Saino and Hattori, 1987).

Besides circulation and biological factors, sea-level
change in the past (see sea level curve in Fig. 2a) might also
significantly affect KC volumetric transport, surface and bot-
tom circulations in the OT. Hydrological changes and subse-
quent effects on the sedimentary sulfur, organic carbon bio-
geochemistry (Kao et al., 2005, 2006a) and water column
nutrient dynamics are discussed below.

Biogeosciences, 5, 1641–1650, 2008 www.biogeosciences.net/5/1641/2008/



S. J. Kao et al.: North Pacific-wide denitrification 1643

3 Materials and methods

Data are being reported for two giant piston core (Fig. 1b),
MD012404 (125.81◦ E, 26.65◦ N, water depth 1397, core
length 43 m) and MD012403 (123.28◦ E, 25.07◦ N, water
depth 1420, core length 20 m), that were recovered by R/V
Marion Dufresne during the cruise IMAGES VII, WEPAMA
(Bassinot et al., 2002). The coring site of MD012404 is lo-
cated in a small topographic low near the western edge of the
OT, which is ideal for trapping downward settling biogenic
particles in the water column, as well as suspended sediments
transported from the shelf of the East China Sea (ECS, see
Fig. 1b). Sediments in MD012404 are mainly composed
of nearly homogenous nanno-fossil ooze or diatom-bearing
nanno-fossil ooze and no visible turbidite or tephra layer
was found in the core (Chang et al., 2005). Compared to
MD012404 located in the middle trough, MD012403 came
from the southern OT that receives significant terrestrial in-
puts from Taiwan resulting in 4× higher mean sedimentation
rate in the past 30 000 years (Kao et al., 2008). Compari-
son of the data between MD012404 and MD012403 allows
us to examine the influence of terrestrial input on carbon and
nitrogen isotopes.

Sediment cores were sliced into 1-cm-thick segments dur-
ing the cruise and preserved in freezer. A preliminary age
model of core MD012404 based on 5 AMS14C dates over the
last 30 ka has been published previously (Chang et al., 2005).
Chang et al. (2008a, b) recently published a new fine-tuned
age model for this core with 14 additional14C ages over the
last 40 000 years (blue triangles in Fig. 2b). The AMS14C
measurements were made using∼20 mg of the planktonic
foraminifersG. ruberandG. sacculifer(>250µm) at the Mi-
cro Analysis Laboratory, Tandem Accelerator (MALT), Uni-
versity of Tokyo. All AMS 14C ages were adjusted for a
mean Pacific reservoir age of 400 years, and then calibrated
according to Fairbanks et al. (2005). No age reversal was ob-
served between any adjacent14C dating horizons. We also
found a layer of low carbonate and high magnetic suscepti-
bility (measured on board ship) (Bassinot et al., 2002) that
coincides with the timing (∼7.3 kyr BP, see Fig. 2a) of the
eruption of the Japanese volcano Kikai-Ah (Machida, 2002).
More information on the age model including the AMS data
can be found in Chang et al. (2008b). Details of age model
and related information for MD012403 have been reported
in Kao et al. (2005).

For theδ13CTOC andδ15 N analyses, samples were treated
with 1 N HCl for 16 h to remove carbonate; the residue was
centrifuged and freeze-dried (Kao and Liu, 2003). Details
of the sample preservation and pretreatments have been re-
ported in Kao et al. (2006a). Carbon and nitrogen isotope
analyses were carried out using a Carlo-Erba EA 2100 ele-
mental analyzer connected to a Thermo Finnigan Deltaplus

Advantage isotope ratio mass spectrometer (IRMS). Carbon
and nitrogen isotopic compositions are presented in the stan-
dardδ notation with respect to PDB carbon and atmospheric
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Fig. 2. (a) Accumulation rate for sediment (MAR).(b) Sea level
curve. Blue dotted-line and black curve represent data digitized,
respectively, from Saito et al. (1998) and Liu et al. (2006). Dates
(
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Figure 3. (a) Temporal trends of sedimentary δ15N for MD012404 (○), MD012403 (●), 646 

) and MD012403 (◦). Blue
circles representδ15N values for selected non-acidified samples in
MD012404. Upper and lower horizontal dashed lines are for mean
δ15N values of Kuroshio Intermediate Water (KIW) and the upper
400 m of Kuroshio, respectively. YD, H1 and H2 mark the periods
of Younger-Dryas, Heinrich 1 and Heinrich 2, respectively.

nitrogen. USGS 40, which has certifiedδ13C of −26.24‰
andδ15 N of −4.52‰ and acetanilide (Merck) withδ13C of
−29.76‰ andδ15 N of −1.52‰ were used as working stan-
dards. The reproducibility of carbon and nitrogen isotopic
measurements is better than 0.15‰İn order to check if de-
carbonation process affected theδ15 N results we randomly
selected 11 samples for measuringδ15 N in untreated sedi-
ment. The results show similar values ofδ15 N for acidified
and non-acidified samples (blue circles in Fig. 2e).
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Total organic carbon content (TOC) and total sulfur con-
tent (TS, in lower time resolution) for both cores have been
reported previously (Kao et al., 2005, 2006b). Following
their method for TS, we obtained a higher resolution TS
record in this study. By using porosity, wet bulk density
(Bassinot et al., 2002) and linear sedimentation rate derived
from 14C dates we computed the mass accumulation rate
(MAR, in mg cm−2 yr−1).

Organic carbon accumulation rate (CAR, in mgC cm−2

yr−1) was obtained by multiplying MAR by the TOC con-
tent. We also calculated the accumulation rate of re-
mineralized organic carbon. The metabolized organic car-
bon corresponding to sulfur deposition was estimated with
reasonable assumptions. Due to sufficient reactive iron for
iron sulfide formation in seas surrounding Taiwan (Kao et al.,
2004a, b, 2005, 2006b), it is assumed that all reduced sulfur
has been fixed as sulfide minerals. Based on this assump-
tion, we back calculated the amount of organic carbon me-
tabolized via sulfate reduction by using molar stoichiometric
ratio following Morse and Berner (1995). Multiplying this
value by MAR, we compute the extent of the organic carbon
metabolization (EOCM).

This paper largely focuses on the central trough, using
some published supporting data from previous studies (Kao
et al., 2006a, 2008) for discussion.

4 Results

Results for the two cores are presented in Figs. 2 and 3 along
with relevant ancillary data. The plotted parameters include
MAR, sea level curve, TS, TOC,δ13CTOC andδ15 N for Core
MD012404. Also plotted are TOC,δ13CTOC andδ15 N from
Core MD 012403.

The MAR ranges from ∼40 to 150 mg cm−2 yr−1

(black curve in Fig. 2a). The MAR peaked to about
100 mg cm−2 yr−1 during the Heinrich 2 cold period, the
early stage of sea level rise (see sea level curve in
Fig. 2b), and the Bølling/Allerød warm period; during
other periods it remained near the background level, around
45 mg cm−2 y−1, except the late Holocene, when it gradually
rose to 150 mg cm−2 yr−1 around 2 cal. ka BP.

The TS and TOC contents show different temporal pat-
terns. TS was high (>0.2%, red curve in Fig. 2b) with peak
values reaching 0.6% when the sea level was low. Since
17 cal. ka BP, the TS content decreased continually in associ-
ation with increasing sea level, without corresponding fluctu-
ations in the TOC content (Fig. 2c, black dot-curve), which
varied from 0.48% to 0.80% peaking around 10 cal. ka BP.
Note that dilution by carbonate had little effect on the TOC
pattern, as carbonate-free TOC content shows the same vari-
ation pattern as does the original curve (see blue curve in
Fig. 2c).

Theδ13CTOC values range from−21.8 to−20.6‰(red cir-
cles in Fig. 2d) in MD012404. Core MD012403 in the south-
ern trough shows a similar trend (open circles in Fig. 2d)
but with consistently lowerδ13CTOC (by ∼1‰, ranging from
−23.2 to−21.8‰), apparently caused by inputs of terres-
trial organics due to the proximity of the site to Taiwan.
More information about sedimentary organic carbon supply
to MD012403 can be found in Kao et al. (2008).

As for the N isotopes, theδ15 N in core MD012404 ranges
from 4.4 to 5.8‰with a temporal pattern resembling that
of MD012403 but with consistently higher values (Fig. 2e).
This offset is similar to that found inδ13CTOC records. The
lower bound ofδ15 N is very close to that (3–4‰) of the ter-
restrial end-member of particulate matter in the Taiwanese
rivers (Kao and Liu, 2000). This is consistent with the notion
that sediments at the MD012403 site received significant ter-
restrial inputs. Because of the probable terrestrial influence
at this site, we focus the discussion on records from Core
MD012404, which should be more representative of the ma-
rine environment in the western North Pacific Ocean.

5 Discussion

5.1 Sediment-upper water column coupling

The sedimentaryδ15 N records may be affected by the ori-
gin of nitrogen and diagenetic alteration. In a dominantly
marine environment, biogenic particulate organic nitrogen
(PON) is the main source of sedimentary nitrogen. The iso-
topic composition of biogenic PON is, in turn, controlled by
the nitrogen source and the degree of utilization. In the olig-
otrophic Kuroshio water, the nutrient-rich subsurface water
(e.g., Gong et al., 1996; Liu et al., 2000) and the surface
dwelling nitrogen fixers (Minagawa and Wada, 1986; Liu et
al., 1996) are the two major sources of fixed nitrogen.

According to Liu et al. (1996), the weighted meanδ15 N
value of nitrate for the upper 400 m of the Kuroshio wa-
ter is 3.3–4.7‰. The upper limit of this range is very close
to theδ15 N values (4.4–4.6‰) for the surface sediment of
MD012404 and previous reported values in the southern Ok-
inawa Trough (Kao and Liu, 2003). Since the Kuroshio
surface water (the upper 100 m) is nutrient-depleted with
nanomolar nitrate concentrations (Chiang et al., 1997), the
upwelled nitrate gets completely utilized. Consequently, the
sinking PON should have isotopic composition very close to
that of the subsurface nitrate without significant fractionation
occurring during phytoplankton uptake (Altabet et al., 2001).
The closeness of the nitrogen isotopic composition of the sur-
face sediments with that of the subsurface nitrate reservoir
suggests that the diagenetic alteration of the nitrogen isotopic
composition during sediment deposition was not significant.
Thus, it is reasonable to assume that the sedimentaryδ15 N
record of MD012404 tracked nitrogen isotopic changes in
the overlying upper water column in the past as well.

Biogeosciences, 5, 1641–1650, 2008 www.biogeosciences.net/5/1641/2008/
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It is noted that the nitrogen isotopic composition of nitrate
in the subsurface Kuroshio water is significantly lighter than
that in the KIW below 500 m. The KIW has a meanδ15 NNO3

value of 5.6‰, which is close to the global mean (Sigman et
al., 1999). As the KIW upwells towards the surface, nitrate
uptake in the euphotic zone is expected to remove isotopi-
cally light nitrate leaving behind the15 N-enriched nitrate in
the upper water column (Altabet et al., 2001). The trend ob-
served in the upper water column in the KC contradicts this
expected pattern, indicating that other processes dictate the
nitrogen isotopic variation. It has been suggested that low-
ering of theδ15 NNO3 value in the Kuroshio subsurface wa-
ter may be due to remineralization of isotopically light PON
from N2-fixers (Liu et al., 1996).

5.2 Local environmental variation or signal from ETNP?

The temporal variation of sedimentaryδ15 N records reflects
the variation ofδ15 NNO3 in the upper water column, which
may be controlled by remote as well as local processes.
We compare the MD012404 record with the sedimentary
δ15 N records (Fig. 3a) from the Eastern North Pacific (ENP)
during last deglaciation (JPC-56 from the Gluf of Califor-
nia,Pride et al., 1999; and ODP-893A from the Santa Barbara
Basin, Emmer and Thunell, 2000). Record ofδ18O in GISP
2 ice core is also plotted (Fig. 3b) for comparison (Grootes et
al., 1993). Despite the much reduced amplitude, fluctuations
of the sedimentaryδ15 N in OT follow those in the Gulf of
California quite closely. Theδ15 N fluctuations also corre-
spond to fluctuations inδ18 O in the GISP 2 ice core during
the pre-Holocene period, suggesting close relationship with
climate events. The two majorδ15 N peaks occurred dur-
ing two warm periods: Bølling/Allerød and the period after
Younger Dryas during transgression (Fig. 3b) resembling the
trends observed not only in the ENP but also in the Arabian
Sea (Ganeshram et al., 1995, 2000; Deutsch et al., 2004 and
references therein).

A decreasing trend inδ15 N since the beginning of the
Holocene has been reported previously (Higginson et al.,
2003; Meckler et al., 2007; Altabet, 2007; and references
therein). It is attributed to decreasing WCD and increasing
N2-fixation. Synchronous changes inδ15 N (though of much
smaller amplitude) in the OT and their close correlation with
the warm and cold events and with the temporal patterns ob-
served in ETNP and Arabian Sea suggest that these brief
events found in the OT were global in nature and climate-
related.

However, changes in local environmental conditions,
which have been quite large, might also contribute toδ15 N
variation in the past 25 kyr (e.g., Kao et al., 2005, 2006a).
The past environmental variation can be constructed from
geochemical properties of the sediment core. It has been
proposed that local WCD could be an important process in
providing 15 N-enriched nitrate to the upper water column
(e.g., Meckler et al., 2007). However, conditions conducive
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for occurrence of WCD –complete oxygen consumption –
develop only in selected areas of the oceans, mostly along
the oceans’ eastern boundaries, where subsurface water re-
newal is sluggish and oxygen demand is high due to high
surface productivity. It is debatable whether such conditions
could have occurred in OT in the past. For the sake of ar-
gument, we will discuss at what time the local environment
might favor the occurrences of such conditions, if they had
ever occurred.

Higher TOC burial in sediments generally reflects higher
productivity (e.g., Calvert et al., 1995) and/or lower oxygen
content of the overlying water column. However, organic
carbon supply and the redox condition in the water column
are closely related, because high organic carbon supply from
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the surface may result in rapid consumption of dissolved oxy-
gen in the underlying water column and thus create condition
conducive for WCD, such as in ETNP. It is, however, hard to
determine the relative importance of the two factors. Since
WCD is mainly affected by organic carbon supply and the re-
dox condition in the water column, past record ofδ15 N may
also be regarded as index of WCD potential in the OT.

In fact, the TOC in sediments represents only the fraction
of organic matter that escaped degradation during transporta-
tion and burial processes. It has been shown that the OT is not
a steady depositional environment, where the sedimentation
rate has fluctuated substantially in the past. The TOC content
may be diluted (see the Holocene period in Fig. 2c) to differ-
ent extents by the lithogenic materials. Consequently, the
CAR (green curve in Fig. 3c) is a better indicator that is not
compromised by mineral dilution during sedimentation. On
the other hand, a significant fraction of organic matter gets
oxidized during burial and a major fraction of the oxidation
is attributed to sulfate reduction (Berner, 1984). Therefore,
CAR together with the EOCM should provide a good indi-
cation of the organic supply down the water column and the
potential of WCD as well.

Here we apply CAR together with the EOCM (Fig. 3c)
to evaluate the magnitudes of organic supply and its rem-
ineralization. Except the late Holocene, the temporal pattern
of EOCM resembled that of the CAR, which showed three
peaks occurring, respectively, during the Heinrich 2 (H2) pe-
riod, the very early stage of sea rise prior to Heinrich 1 (H1)
(Hemming, 2004), and the Bølling/Allerød period. Based on
high CAR and EOCM, high WCD potential is inferred for
the three periods. For the late Holocene since 7 ka, faster
mass accumulation (comprising mainly lithogenic materials)
resulted in a dilution of TOC content, yet high CAR values.

Had the local water column denitrification been respon-
sible for producing the15 N-enriched nitrate, the two peaks
of sedimentaryδ15 N in MD012404 (Fig. 3b), it should have
happened during the three periods of high WCD potential.
However, only oneδ15 N peak (around 14 kyr cal. B.P.) was
associated with a maximum in CAR. During the two other
periods of higher WCD potential, no elevation of sedimen-
tary δ15 N was detected. One of theδ15 N peaks occurred
around 10 kyr cal. B.P. corresponding to a peak in the TOC
record, which deserves attention. The MAR values around
this time were lower thus resulting in a modest CAR. Usu-
ally fresh marine organics are the best quality organic mat-
ter and discernible by their carbon isotopic composition. A
close examination of theδ13CTOC record of MD012404 (red
circles in Fig. 2d) shows relatively higher values during the
sea level lowstand, whereas, slightly lowerδ13CTOC values
appear during transgression and the Holocene. However, the
variability of δ13CTOC in entire MD 012404 is small (−20.6
to −21.8‰) with a mean value of−21.2+0.3‰reflecting
mainly the marine source of the organics (Goericke and Fry,
1994; Meyers, 1997). The consistently marine-likeδ13CTOC
and such a small variability ofδ13CTOC during the entire

30 ka period indicate an unimportant effect of terrestrial in-
puts to the central OT. Based onδ13CTOC data, we suggest
that the high TOC during the Holocene is due to lower min-
eral dilution and higher portion of reworked marine organics
that previously resided on the shelf.

It is noted that high organic supply alone does not neces-
sarily lead to the suboxic condition necessary for WCD to
occur. Sluggish water exchange is also required for the sub-
oxic condition to develop. If the suboxic condition was to
develop in the lower water column in the OT in the past, the
bottom sediments would experience greater anoxia, enhanc-
ing sulfur deposition through sulfate reduction.

The TS content was considerably higher during the glacial
period and early deglaciation stage, suggesting existence of
more intense reducing condition in the sediments of the OT
then, which has been attributed to weaker ventilation (Kao
et al., 2006a, b). The relationship between sea level and
deep water ventilation was investigated using a 3-D model
by Kao et al. (2006b). The model revealed a reduction of KC
throughflow due to the bifurcation of the flow before enter-
ing the Suao-Yonaguni Pass (with∼30% of the flow getting
diverted away from OT; see Fig. 1b) during the glacial pe-
riod. This would lead to weaker ventilation in deepwater;
at the same time, KC outlet switched from Tokara Strait to
Kerama Gap (see Fig. 1b). A similar trend in TS content (in
terms of age) was found in core MD012403 in the southern
OT (not shown) despite a∼4 times higher sedimentation rate
(Kao et al., 2005). This indicates that bottom water circula-
tion change was a trough-wide phenomenon. There is also
evidence for a transformation from foliation to anomalous
sedimentary magnetic fabric (dynamic depositional environ-
ment) in the southern OT when sea level reached−40 m dur-
ing the early Holocene (Kao et al., 2005). Thus, it appears
that sea level change affected the KC throughflow resulting
in changes in deepwater circulation, and consequently oxy-
gen supply to the deepwater, depositional environment and
sedimentary biogeochemistry. Down-core diagenetic sulfate
reduction might have contributed to the TS profile to some
degree; however, the main temporal pattern was probably
caused by circulation changes (Kao et al., 2006b). In ad-
dition, fossil records from the sediment core show that rel-
atively high abundance of benthic fauna (unpublished data)
before 17 cal. ka BP during low sea level stand. This implies
higher food (organic detritus) supply to seafloor when the sea
level was low, again supporting higher WCD potential.

From the above discussion, it follows that, if at all, condi-
tions suitable for WCD to occur could have developed only
when the sea level was lower, especially during the three pe-
riods of high supply rate of organic carbon. Yet, only one
of the two sedimentaryδ15 N peaks occurred during the pe-
riod of relatively high TS, when the bottom water ventilation
in the OT was limited and deepwater oxygen levels are ex-
pected to have been lower. Significantly, no increase inδ15 N
occurred prior to the Bølling/Allerød warm period, when the
TS was in its maximum. In contrast, the other sedimentary
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δ15 N peak occurred when both the CAR and the TS were
much lower. We therefore consider it very unlikely that lo-
cal WCD was responsible for the elevated sedimentaryδ15 N
values. Similarly decoupled nitrogen isotopic compositions
of nitrate in the upper water column and in the bottom wa-
ter have also been observed in the sea off southern California
(Liu and Kaplan, 1989).

It may thus be concluded that the most likely origin of the
heavyδ15 N signals during the deglaciation was in the ETNP,
and if local WCD ever occurred in the OT in the past, its
effect on the sedimentaryδ15 N records is not detectable.

5.3 δ15 N records in the South China Sea

The range ofδ15 N values in the two cores examined by us
is similar to those observed in 17940-2 (Kienast, 2000) and
1144 (Higginson et al., 2003) from the northern SCS (see
Fig. 1b for locations). Unlike theδ15 N records from the OT,
those from the SCS did not show any recognizable pattern
despite the coring sites being close to each other.

It has been reported that N2-fixation could be important
in the SCS (Wong et al., 2002). Moreover, basin-wide deep
ventilation down to 2000 m occurs in the SCS (Chao et al.,
1996). Both processes might have contributed to attenuation
of the ETNP denitrification signal in the SCS. Variations in
surface and subsurface circulations and exchanges, such as
Kuroshio intrusion, are known to occur due to climate fluctu-
ations (Qu et al., 2004). Similar or more pronounced changes
very likely occurred in the past due to climate and sea level
changes. Consequently, the inflows of water masses at differ-
ent density levels, which probably had nitrate with different
δ15 N values, probably varied considerably in the past. These
complicated processes that may have led to the unrecogniz-
able patterns of temporal variations ofδ15 N during the last
deglaciation have been described previously (Higginson et
al., 2003). On the other hand, the terrestrial input from dif-
ferent sources might also affect theδ15 N record in the SCS
(Kienast et al., 2005). By comparison, the relatively simple
circulation in the open North Pacific Ocean allows the trans-
mission of the signal across the entire basin from the eastern
tropical Pacific (Fig. 1a) without losing its integrity, resulting
in a clear pattern of theδ15 N variability in the OT.

5.4 Implications

There is now sufficient evidence to show that the oxygen
minimum zone (OMZ) in northern and eastern Pacific was
more intense than it is today during the deglaciation, inter-
rupted by the Younger Dryas event (Behl and Kennett, 1996;
Cannariato and Kennett, 1999; Zheng et al., 2000; Ivanochko
and Pederson, 2004; Mckay et al., 2005). Whether these
events were caused by increased export production or sup-
pressed ventilation remains debatable, though. Recently,
Galbraith et al. (2004) proposed that O2 supply from high
latitudes to the tropical intermediate waters might exert a key

control on denitrification and the coupled nitrogen fixation,
with both processes intensifying (weakening) during inter-
glacial (glacial) periods. The conceptual model explains well
most temporal variations ofδ15 N in various oceanic settings.

In our study area in the western North Pacific, synchronous
increases inδ15 N during the two warm periods indicate that
the signal of enriched15 N due to enhanced denitrification
in ETNP might have been transmitted to the western North
Pacific during the last deglaciation. The small amplitude of
sedimentaryδ15 N changes in the OT was likely caused by
reservoir dilution (Deutsch et al., 2004) or by counteraction
of regional N2-fixation (Deutsch et al., 2007). The upper
bound ofδ15 N value in MD012404 is close to that in the
North Pacific Deep Water (Fig. 2e) and the lower bound is
close to the integrated meanδ15 N of nitrate in the upper
400 m of KC (3.3–4.7‰). Except the transgression, no dis-
tinctive shift in sedimentaryδ15 N has been found between
glacial and interglacial periods. Thus, it would be reason-
able to conclude that the isotopic composition of nitrate in
the upper ocean was the same during the two climate states
as suggested by Kienast (2000). On the other hand, it is con-
ceivable that the nitrate reservoir in the upper water column
had an elevated meanδ15 N value during these warm peri-
ods reflecting a decrease in the nitrogen inventory during the
transgression period.

The low frequency variation ofδ15 N follows the changing
trend of mean oceanδ15 N in nitrate (yellow zone in Fig. 3b)
as suggested by Duetsch et al. (2004). We conclude that such
substantialδ15 N changes in a region very distant from the
intensive denitrifying zones in the ETNP lend support to the
notion of significant changes in N inventory in the North Pa-
cific during deglaciation. Our results can provide valuable
constraints for model simulations of the nitrogen cycle dur-
ing the last glacial-deglacial cycle.
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