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Image Fusion Algorithm Based on Spatial
Frequency-Motivated Pulse Coupled Neural Networks in

Nonsubsampled Contourlet Transform Domain
QU Xiao-Bo1 YAN Jing-Wen2, 1 XIAO Hong-Zhi2 ZHU Zi-Qian3

Abstract Nonsubsampled contourlet transform (NSCT) provides flexible multiresolution, anisotropy and directional expansion
for images. Compared with the original contourlet transform, it is shift-invariant and can overcome the pseudo-Gibbs phenomena
around singularities. Pulse Coupled Neural Networks (PCNN) is a visual cortex-inspired neural network and characterized by the
global coupling and pulse synchronization of neurons. It has been proven suitable for image processing and successfully employed in
image fusion. In this paper, NSCT is associated with PCNN and employed in image fusion to make full use of the characteristics
of them. Spatial frequency in NSCT domain is input to motivate PCNN and coefficients in NSCT domain with large firing times
are selected as coefficients of the fused image. Experimental results demonstrate that the proposed algorithm outperforms typical
wavelet-based, contourlet-based, PCNN-based and contourlet-PCNN-based fusion algorithms in term of objective criteria and visual
appearance.
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Image fusion is the combination of two or more different
images to form a new image by using a certain algorithm
[1]. The combination of sensory data from multiple sen-
sors can provide more reliable and accurate information. It
forms a rapidly developing research area in remote sensing,
medical image processing, and computer vision [1,2]. Most
of these approaches are based on combining the multiscale
decompositions (MSD) of the source images. MSD-based
fusion schemes provide much better performance than the
simple methods studied previously [2]. These methods are
to decompose the source images into high-frequency and
low-frequency subbands. Detailed and coarse features re-
main in the two types of subbands, respectively. Two core
questions of MSD-based fusion algorithms are which MSD
method should be used and how to combine coefficients in
subbands.

For the first question, the discrete wavelet transform
(DWT) becomes the most popular MSD method in im-
age fusion because of joint information represented at
the spatial-spectral domain. However, wavelet has its
own limits. It is expensive for wavelet to represent
sharp image transitions such as edges[3]. Furthermore,
wavelet will not ”see” the smoothness along the contours
and separable wavelets can only capture limited direc-
tional information[4]. Thus, new MSD transforms are
introduced in image fusion (i.e. bandelet[5], curvelet[6],

contourlet[7]−[9], etc.) to overcome the limits of wavelet.
Contourlet was recently pioneered by Minh N. Do and Mar-
tin Vetterli[4].Compared with wavelet, it provides different
and flexible number of directions at each scale and can cap-
ture the intrinsic geometrical structure. However, the orig-
inal contourlet[4] lacks shift-invariance and causes pseudo-
Gibbs phenomena around singularities. Nonsubsampled
contourlet transform (NSCT)[10], as a fully shift-invariant
form of contourlet, leads to better frequency selectivity and
regularity. Thus, NSCT is utilized as the MSD method in
this paper.

For the second question, the typical fusion algorithms
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are based on the activity-level measurement. Coefficients
in MSD domain with high activity-level are selected to
compose the fused image[2].In this paper, we present a
bio-inspired activity-level measure based on Pulse Cou-
pled Neural Networks (PCNN). PCNN is a novel biolog-
ical neural network developed by Eckhorn et al in 1990
and based on the experimental observations of synchronous
pulse bursts in cat and monkey visual cortex[11,12]. It is
characterized by the global coupling and pulse synchroniza-
tion of neurons. These characteristics benefit image fusion
which makes use of local image information. PCNN has
been successfully employed in image fusion[9,13−17]. Pixels
in subbands images in MSD domain (named as coefficients
and simplified as coef in figures and tables in this paper)
or pixels in spatial domain with greater firing times are
considered in high activity-level. However, in these PCNN-
based algorithms, value of single pixel in spatial or MSD
domain is used to motivate one neuron. In fact, humans
are often sensitive to edges and directional features, etc.
So, a pure use of single pixels is not enough. In this pa-
per, spatial frequency, which stands for gradient energy in
NSCT domain, is used to motivate PCNN neurons for the
first time.

For simplicity, we term the proposed algorithm as spa-
tial frequency-motivated PCNN in NSCT domain, NSCT-
SF-PCNN for short. In this algorithm, the flexible mul-
tiresolution, anisotropy and directional expansion for im-
ages of NSCT is associated with global coupling and pulse
synchronization characteristic of PCNN. We tend to take
PCNN for nonlinear filter to select coefficients in image fu-
sion. Experimental results demonstrate that the proposed
algorithm outperforms typical wavelet-based, contourlet-
based, NSCT-based, PCNN-based and contourlet-PCNN-
based fusion algorithms in term of objective criteria and
visual appearance.

1 Contourlet and PCNN in image fu-
sion

1.1 Contourlet in image fusion

Contourlet is proposed by Minh N. Do and Martin Vet-
terli to obtain a sparse expansion for smooth contours[4],
which overcome limitation of wavelet in representing the
contours by using square-shaped brush strokes and many
fine ”dots”. In the contourlet, the laplacian pyramid(LP)
is firstly used to capture the point discontinuities and then



2 ACTA AUTOMATICA SINICA Vol. XX

followed by a directional filter bank (DFB) to link point dis-
continuities into linear structures. The number of direction
decomposition at each level can be different, which is much
more flexible than the three directions in wavelet. Unfortu-
nately, in the original contourlet[4] downsamplers and up-
samplers are presented in both LP and DFB as shown in
Fig.1 (a). Thus, it is shift-invariant and causes pseudo-
Gibbs phenomena around singularities. NSCT is proposed
by Arthur L.da Cunha et al[10], which aims to overcome this
disadvantage. Fig.1 (b) shows the decomposition frame-
work of NSCT. Nonsubsampled pyramid structure (NPS)
and nonsubsampled DFB are employed in NSCT. The NPS
is achieved by using two-channel nonsubsampled 2-D filter
banks. The DFB is achieved by switching off the down-
samplers/upsamplers in each two-channel filter bank in the
DFB tree structure and upsampling the filters accordingly.
As a result, NSCT leads to better frequency selectivity,
regularity and shift-invariance.

(a) contourlet (b) NSCT

Fig. 1 Decomposition framework of contourlet and NSCT

In the contourlet-based image fusion algorithms [7−9],
contourlet or NSCT is utilized as the MSD method. As ab-
solute value measure in high-frequency and average rule in
low-frequency subbands are the typical activity level mea-
sure in other MSD-based fusion algorithms, activity-level
are measured on the coefficients of subbands in contourlet
domain. Coefficients with high activity-level are selected as
the coefficients of fused subbands and an inverse contourlet
is performed to reconstruct the fused image. The frame-
work of contourlet-based algorithms is shown in Fig.2.

Fig. 2 Schematic diagram of contourlet-based fusion
algorithm.

1.2 PCNN in image fusion

PCNN is a feedback network and each PCNN neuron
consists of three parts: the receptive field, the modula-
tion field, and the pulse generator[12].In image processing,
PCNN is a single layer pulse coupled neural cells with a
two-dimensional connection[13]as shown in Fig.3.

In the existed PCNN-based fusion algorithms [9], [14]-
[17], pixels in spatial or MSD domain are input to PCNN,
there exists a one-to-one correspondence between the pixels
and the neurons. Each neuron is connected with neighbor-
ing neurons in linking range. The output of each neuron
results in two states, namely firing and non-firing. Then
the sum of neuron firing times will generate a firing map
whose size is equal to the images in spatial or MSD domain
and value of each pixel in firing map is equal to neuron

firing times. We summarize these algorithms as Fig.4. It
can be seen that value of pixels in spatial or MSD domain
is considered as the original image information in the ex-
isted algorithms. However, a pure use of pixels is not ef-
fective enough because humans are often sensitive to edges
and directional features. We believe that it will be more
reasonable that features, rather than value of pixels, are
employed to motivate PCNN.

Fig. 3 Connection model of PCNN neuron.

Fig. 4 Schematic diagram of existed PCNN-based fusion
algorithms.

2 Image fusion algorithm based on
NSCT-SF-PCNN

2.1 NSCT-SF-PCNN

For the first time, Fang Yong[10]successfully utilized
PCNN in contourlet domain for visible and infrared im-
age fusion. However, the contourlet employed in [10] is the
original form and lacks shift-invariance. In addition, single
coefficient is used to motivate PCNN directly. In fact, hu-
mans are often sensitive to feature, e.g. edges. So, a pure
use of value of single coefficient is not enough.

In this paper, NSCT is employed as the MSD method to
provide better representation of the contours than wavelet
and it overcomes pseudo-Gibbs phenomena around sin-
gularities of contourlet. What is more, rather than us-
ing PCNN in contourlet domain directly, spatial frequency
(SF)[18] in contourlet domain is considered as the gradient
features of images and we use SF to motivate PCNN in-
stead. For simplicity, we term the proposed algorithm as
NSCT-SF-PCNN.

Suppose Il,k
i,j denote the coefficients located at (i, j) in

the k-th subbands at the l-th decomposition level, the SF
in NSCT domain is defined in (1).SF is measured by using
slipping window of coefficients in subbands. It measures
the whole activity in the window-based coefficients via the
gradient energy in rows and columns. SF in each subbands
are input to PCNN to motivate the neurons and generate
pulse of neurons according to (2). Then firing times T l,k

i,j is

calculated as (3).

Sl,k
i,j =

∑
iεM,jεN

(Il,k
i,j − Il,k

i−1,j)
2 + (Il,k

i,j − Il,k
i,j−1)

2 (1)
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F l,k
ij (n) = Sl,k

ij

Ll,k
ij (n) = e−αLLl,k

ij (n− 1) + VL

∑
pq Wij,pqYij,pq(n− 1)

U l,k
ij (n) = F l,k

ij (n) ∗ (1 + βLl,k
ij (n))

θl,k
ij (n) = e−αθ θl,k

ij (n− 1) + VθYij(n− 1)

Y l,k
ij (n) =

{
1, if : U l,k

ij (n) > θl,l,k
ij (n)

0, otherwise
(2)

T l,k
i,j = T l,k

i,j (n− 1) + Y l,k
i,j (n) (3)

In the mathematical model of PCNN in (2), the feeding

input F l,k
ij is equal to the normalized SF Sl,k

i,j , The link-

ing input Ll,k
ij is equal to the sum of neurons firing times in

linking range. Wij,pq is the synaptic gain strength and sub-
scripts p, q are the size of linking rang in PCNN. αL is the
decay constants. VL and Vθ are the amplitude gain. β is the
linking strength. U l,k

ij is total internal activity. θl,k
ij is the

threshold. n denotes the iteration times. If U l,k
ij is larger

than θl,k
ij , then the neuron will generate a pulse Y l,k

ij = 1,

also called one firing times. In fact, sum of Y l,k
ij in n itera-

tion is often defined as (3), called firing times, to represent

image information. Rather than analyzing Y l,k
ij (n), one of-

ten analyze T l,k
ij (n) instead for neighboring coefficients with

similar features represent the similar firing times in a given
iteration times.

2.2 Image fusion algorithm based on NSCT-SF-
PCNN

The core reason that PCNN is used in image fusion lies
in its global coupling and pulse synchronization of neu-
rons. These biological characteristics make full of the local
information in images, not single coefficient information in
most popular MSD-based fusion algorithms. Although a
regional firing characteristic of PCNN[17]is investigated in
multi-focus image fusion, we still use the firing times as a
determination to select NSCT coefficients.

The schematic diagram of the proposed NSCT-SF-
PCNN algorithm is shown in Fig.5 and implemented as
follows:

1) Decompose the source images into subbands via NSCT.

2) Measure the SF as (1) in slipping window of coefficients
in subbands.

3) SF in each subbands are input to PCNN to motivate
the neurons and generate pulse of neurons according to
(2). Then firing times T l,k

ij (n) is calculated as (3).

4) Get the decision map Dl,k
ij based on (4) and select the

coefficients according to (5), which mean coefficients
with large firing times are selected as coefficients of the
fused image. That’s the fusion rule proposed in this
paper.

Dl,k
F,ij =

{
1, if : T l,k

1,ij(n) > T l,k
2,ij(n)

0, if : T l,k
1,ij(n) > T l,k

2,ij(n)
(4)

xl,k
F,ij =

{
xl,k

1,ij , if : Dl,k
ij (n) = 1

xl,k
2,ij , if : Dl,k

ij (n) = 0
(5)

where xl,k
F,ij , xl,k

1,ij and xl,k
2,ij denote the coefficients of

the fused image and two source images, respectively.

5) Use the selected-out coefficients in (5) to reconstruct the
fused image via inverse NSCT.

Fig. 5 Schematic diagram of NSCT-SF-PCNN fusion
algorithm.

3 Experimental results

In this section, we use NSCT-SF-PCNN to fuse the
multi-focus images, infrared and visible images, and remote
sensing images. Parameters of PCNN is set the same as fol-
lows: p × q, αL = 0.06931, αθ = 0.2, β = 0.2, VL = 1.0,

Vθ = 20, W =




0.707 1 0.707
1 0 1

0.707 1 0.707


, and the maximal iter-

ative number is n = 200.
In order to show the advantages of the new algo-

rithm, we establish three steps to demonstrate that the
proposed NSCT-SF-PCNN outperforms other fusion algo-
rithms. First, db2 wavelet, atrous wavelet, contourlet and
NSCT are compared. Secondly, typical activity-level mea-
surements in NSCT domain are compared. Thirdly, typi-
cal PCNN-based fusion methods in wavelet, contourlet and
NSCT domain are compared. In the comparisons, besides
visual observation, mutual information [19] and QAB/F [20]

are employed as information-based objective criteria. The
reason is that image fusion aims at combining informa-
tion and these criteria dont require the information of ideal
fused image. Mutual information essentially computes how
much information from source images is transferred to the
fused image, while QAB/F computes measures the amount
of edge information transferred from the source images to
the fused images using a Sobel edge detector.

3.1 Comparisons on MSD methods

In this section, discrete wavelet transform (DWT) with
basis ’db2’ and contourlet, which are shift-variant trans-
forms, atrous wavelet transform and NSCT ,which are shift-
invariant transforms, are compared. In these MSD meth-
ods, average and maximum rules are adopted in the low-
frequency and high-frequency domain, respectively.

Fig.6 and Fig.7 show the multifocus image fusion results,
visible and infrared image fusion results of these methods.
Focusing on the labeled region in Fig.6, one can obviously
find that the fused images of two shift-invariant methods,
atrous wavelet and NSCT, are clearer and more natural
than the DWT and contourlet fused results. It is proven
that shift-invariant methods can overcome the pseudo-
Gibbs phenomena successfully and improve the quality of
the fused image around edges. In Fig.7, human is better
extracted using contourlet and NSCT than that of DWT
and atrous wavelet. Focusing on labeled region in Fig.7,
the house roof of the NSCT is clearer than that of other
methods.

Further more, objective criteria on mutual information
and QAB/F in Table 1 indicate that NSCT method trans-
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ferred more information to fused image than that of atrous
wavelet, which outperforms DWT and contourlet. So, it
can be concluded that NSCT is the best MSD method.
That’s why NSCT is utilized as the MSD method in this
paper.

(a) (b) (c)

(d) (e) (f)

Fig. 6 Multifocus image fusion results of MSD-based algo-
rithms. (a) clockA.tif : focus on right, (b) clockB.tif : focus on
left, (c)-(f) fused image using DWT, atrous wavelet, Contourlet,
NSCT

(a) (b) (c)

(d) (e) (f)

Fig. 7 Infrared and visible image fusion results of MSD-based
algorithms. (a)visible image: treesA.tif , (b) infrared image:
treesB.tif , (c)-(f) fused image using DWT, atrous wavelet, Con-
tourlet, NSCT

Table 1 Comparison on objective criteria of different MSD
methods.

Images Criteria DWT atrous wavelet contourlet NSCT

clock MI 6.3320 6.6208 6.0073 6.6761

QAB/F 0.6099 0.6657 0.6122 0.6683

tree MI 1.4719 1.5294 1.4822 1.5732

QAB/F 0.4342 0.4674 0.4070 0.4828

3.2 Comparisons on activity-level measurement

In this section, all the comparisons are based on NSCT
decomposition method. We compare the activity-level mea-
surement of NSCT-SF-PCNN with other typical activity-
level measurements in NSCT domain. In coefficients-max
algorithms absolute value of coefficients is used to mea-
sure the activity level directly. In SF-max algorithm coeffi-
cients with greater SF in slipping window are considered in

higher activity-level. While in coefficient-PCNN and SF-
PCNN algorithms, coefficients corresponding to greater fir-
ing times are considered in higher activity-level. All the
coefficients with high activity-level are selected to compose
the fused image[2].

Fig.8(c)-(f) show the high-frequency subimages and their
SF in NSCT domain. Fig.8 (g)-(k) show the decision maps
in which the white color indicates coefficients are selected
from clockA.tif , otherwise selected from clockB.tif . Since
the zoomed out part of clockA.tif shown in Fig.8(a) is clear
than Fig.8(b), the optimal decision map would be in white
color shown in Fig.8(k), which means all coefficients should
be selected from clockA.tif . In Fig.9 (e) (f), it can be
seen that SF extracts the edges of subimages well. Fig.8
(g) and (h) indicate that SF considered as activity-level
measurement is more reasonable than pure use of abso-
lute value. Fig.8 (i) shows that when values of coefficients
are input to motivate PCNN neurons, the global coupling
and pulse synchronization of neurons benefits for selecting
coefficients, which considers the neighboring coefficients a
lot. Thus when SF is input to motivate PCNN neurons,
one can imagine NSCT-SF-PCNN could successfully ac-
complish the selection. The decision maps in Fig.8 show
that the NSCT-SF-PCNN is the best one in the tested four
activity-level measurements.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 8 SF of High-frequency subimages and the decision maps of
typical activity-level measurements in NSCT domain. (a)source
image: zoomed out clockA.tif, (b) source image: zoomed out
clockB.tif, (c) and (d) are high-frequency subimages of (a) and
(b) in NSCT domain,(e) and (f) are SF of (c) and (d), (g)-(k)
are the decision maps of coefficients-max rule, SF-max rule and
maximum rule on contourlet-PCNN respectively, (k) optimal de-
cision map

In Table 2, comparison on objective criteria of different
activity-level measurements is shown.The word coefficient
is named as coef for short and coef-max means the
coefficients-max fusion rule. The greatest mutual informa-
tion and QAB/F demonstrate that the best activity-level
measurement is successfully adopted in NSCT-SF-PCNN.
However, although in Fig.10 the decision map of SF-max
is better than PCNN, which is not consistent with Table
2 in which mutual information and QAB/F of SF-max are
smaller than that of PCNN. That’s because we use PCNN
in low-frequency subimage in coefficient-PCNN methods,
but average rule in SF-max methods.
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Table 2 Comparison on objective criteria of different activity
level measure in NSCT domain

Images Criteria Coef-max SF-max Coef-PCNN SF-PCNN

clock MI 6.6761 6.8113 6.9559 7.4598

QAB/F 0.6683 0.6735 0.6869 0.6880

tree MI 1.5732 1.5843 1.9670 2.1636

QAB/F 0.4828 0.4896 0.5001 0.4972

3.3 Comparisons on Typical PCNN-based algo-
rithms

In this section, typical PCNN-based algorithms, which
are shift-invariant wavelet-PCNN (SIDWT-PCNN)[15],

contourlet-PCNN [9], are compared with NSCT-SF-PCNN
algorithms. The parameters of PCNN are set the same in
the experiments.

Fig.9 shows the multifocus image fusion results. NSCT-
SF-PCNN and SIDWT-PCNN outperforms contourlet-
PCNN in visual appearance because contourlet is shift-
variant. Fig.9 (a) and (c) show the difference between fused
images, which are fused results using SIDWT-PCNN and
NSCT-SF-PCNN, and source image in Fig.6 (a). It indi-
cates that NSCT-SF-PCNN extracts almost all the good-
focalized part in source images and preserves the detailed
information better than the SIDWT-PCNN.

(a) (b) (c)

(d) (e) (f)

Fig. 9 Multifocus image fusion results. (a)-(c) are fused images
using SIDWT-PCNN, contourlet-PCNN and NSCT-SF-PCNN
respectively, (d) difference image between Fig.9(a) and Fig.6(a),
(e) difference image between Fig.9(b) and Fig.6(a), (f) difference
image between Fig.9(c) and Fig.6(a).

Fig.10 shows the infrared and visible image fusion re-
sults. NSCT-SF-PCNN and contourlet-PCNN outperform
SIDWT-PCNN in visual appearance. The result is con-
sistent with [9], especially for infrared and visible image
fusion, in which PCNN is utilized in contourlet domain.
Fig.10 (d) and (f) show the difference between fused im-
ages, which are fused results using contourlet-PCNN and
NSCT-SF-PCNN, and source image in Fig.7 (a). It indi-
cates that NSCT-SF-PCNN extracts the trees better than
contourlet-PCNN in visible image and human that labeled
with white color in infrared image.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Infrared and visible image fusion results. (a)-(c)
are fused images using SIDWT-PCNN, contourlet-PCNN and
NSCT-SF-PCNN respectively, (d) difference image between
Fig.10(a) and Fig.7(a), (e) difference image between Fig.10(b)
and Fig.7(a), (f) difference image between Fig.10(c) and Fig.7(a)

In Table 3, all the objective criteria prove that fused
image of the NSCT-SF-PCNN is strongly correlated with
the source images and more image features, i.e. edges, are
preserved in the fusion process, which means the proposed
NSCT-SF-PCNN is the best one in the three algorithms.
Although in infrared and visible image fusion, mutual infor-
mation of SIDWT is larger than that of NSCT-SF-PCNN,
the visual appearance of SIDWT-PCNN fused image is
not obviously good, because the fused image of SIDWT-
PCNN retains little information of visible image in Fig.7
(a). When all is said and done, our proposed algorithm out-
performs other typical PCNN-based algorithms, no matter
in visual observation and objective evaluation criterion.

Table 3 Comparison on objective criteria of PCNN-based
algorithms

Images Criteria SIDWT-PCNN Contourlet-PCNN NSCT-SF-PCNN

clock MI 6.9105 6.0527 7.4598

QAB/F 0.6834 0.6363 0.6880

tree MI 2.5714 1.4840 2.1636

QAB/F 0.4732 0.3893 0.4972

3.4 Numerical Experimental Results

In order to demonstrate our NSCT-SF-PCNN is promis-
ing for the two applications, six group images in Fig.11
are fused using methods of DWT[2], SIDWT-PCNN[15] and
Contourlet-PCNN[9],CT-PCNN for short in Table 4. Due
to the limited length of paper, only comparisons on objec-
tive criteria are given in Table 4. It shows that NSCT-
SF-PCNN is the best fusion algorithm with the greatest
mutual information and QAB/F in multifocus image fu-
sion. On the other hand, though the mutual information
of NSCT-SF-PCNN is lower than that of SIDWT-PCNN
when Figs.11 (d) and (f) are fused, the QAB/F of NSCT-SF-
PCNN is larger than that of SIDWT-PCNN, and NSCT-
SF-PCNN preserves visible feature better than SIDWT-
PCNN as shown in Fig.12.
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Test images. (a)-(c) multifocus images, (d)-(f) visible
and infrared images.

(a) (b) (c) (d)

Fig. 12 Fused results of infrared and visible images. (a) and (b)
are the fused results of Fig.11(d) while (c) and (d) are the fused
results of Fig.11(f) using SIDWT-PCNN and NSCT-SF-PCNN,
respectively.

Table 4 Comparison on objective criteria of PCNN-based
algorithms

Images Criteria DWT-max SIDWT-PCNN CT-PCNN NSCT-SF-PCNN

Fig.11(a) MI 5.3948 5.9439 5.2640 6.2315

QAB/F 0.6429 0.6839 0.6103 0.6885

Fig.11(b) MI 6.5199 7.3359 6.5603 7.5447

QAB/F 0.6861 0.7216 0.6650 0.7232

Fig.11(c) MI 5.7479 6.6863 6.2849 7.2704

QAB/F 0.5681 0.6259 0.5652 0.6273

Fig.11(d) MI 2.4257 4.0846 2.7957 3.6596

QAB/F 0.5150 0.5736 0.5317 0.5859

Fig.11(e) MI 2.0367 2.5157 1.5856 3.0161

QAB/F 0.6366 0.5817 0.5145 0.6666

Fig.11(f) MI 2.3481 5.6876 4.7955 5.6014

QAB/F 0.6854 0.7998 0.7918 0.8141

4 Conclusion

In this paper, a spatial frequency motivated PCNN in
NSCT domain, NSCT-SF-PCNN, is proposed. The flexi-
ble multiresolution, anisotropy and directional expansion
for images of NSCT is associated with global coupling
and pulse synchronization characteristic of PCNN. Further-
more, a spatial frequency motivated PCNN, rather than
pure use of coefficients value in traditional PCNN in image
processing, is presented. Experiments on MSD methods,
activity-level measurements and typical PCNN-based algo-
rithms demonstrate the proposed NSCT-SF-PCNN is suc-
cessful in multifocus image fusion and visible and infrared
image fusion.

Acknowledgement

The authors would like to thank Mr. David Dwyer of
Octec Ltd, Dr. Lex Toet of TNO Human Factors and Dr.
Oliver Rockinger for providing the images used in this work
and also thank HU Chang-Wei for his help in the prepa-
ration of the manuscript. Some of the images are avail-

able from http://www.imagefusion.org or you can contact
qxb xmu@yahoo.com.cn for the images.

References

1 D L Hall, J Llinas. An introduction to multi-sensor data
fusion. Proceedings of the IEEE, 1997, 85(1): 6-23.

2 Zhang Z, Blum R S. A categorization of multiscale-
decomposition-based image fusion schemes with a perfor-
mance study for a digital camera application. Proceedings
of the IEEE, 1999, 87(8): 1315-1326.

3 Pennec E, Mallat S. Sparse geometric image representa-
tion with bandelets. IEEE Transaction on Image Processing,
2005, 14(4): 423-438.

4 MN Do, M Vetterli. The contourlet transform: an effi-
cient directional multiresolution image representation. IEEE
Transaction on Image Processing, 2005, 14(12): 2091-2106.

5 Xiaobo Qu, Jingwen Yan, Guofu Xie, Ziqian Zhu, Bengang
Chen. A novel image fusion algorithm based on bandelet
transform. Chinese Optics Letters, 2007, 5(10): 569-572.

6 Myungjin Choi, Rae Young Kim, Myeong-Ryong Nam, Hong
Oh Kim. Fusion of multispectral and panchromatic satellite
images using the curvelet transform. IEEE Geoscience and
Remote Sensing Letters, 2005, 2(2): 136-140.

7 Xiao-Bo Qu, Guo-Fu Xie, Jing-Wen Yan, Zi-Qian Zhu,
Ben-Gang Chen. Image Fusion Algorithm Based on Neigh-
bors and cousins information in Nonsubsampled Contourlet
Transform Domain. In: Proceddings of International Confer-
ence on Wavelet Analysis and Pattern Recognition, Beijing,
China: IEEE, 2007, 1797-1802.

8 Zheng Yong-An, Song Jian-She, Zhou Wen-Ming, Wang Rui-
Hua. False Color Fusion for Multi-band SAR Images Based
on Contourlet Transform. Acta Automatica Sinica, 2007,
33(4): 337-341 9.

9 Fang Yong, Liu Sheng-Peng. Infared image fusion algorithm
based on contourlet transform and improved pulse coupled
neural networks. China Patent 1873693A, December 2006.

10 da Cunha Arthur, Zhou Jianping, Do Minh N. The non-
subsampled contourlet transform: Theory, design, and ap-
plications. IEEE Transactions on Image Processing, 2006,
15(10):3089-3101.

11 R Eckhorn, H J Reitboeck, M Arndt, P Dicke. Feature link-
ing via synchronization among distributed assemblies: Sim-
ulations of results from cat visual cortex. Neural Computa-
tion, 1990, 2(3): 293-307.

12 Johnson J L, Padgett M L. PCNN models and applications.
IEEE Transatcion on Neural Networks, 1999, 10(3): 480-
498.

13 Randy P Broussard, Steven K Rogers, Mark E Oxley, Gre-
gory L Tarr. Physiologically motivated image fusion for ob-
ject detection using a pulse coupled neural network. IEEE
Transaction on Neural Networks, 1999, 10(3): 554-563.

14 Min Li, Wei Cai, Zheng Tan. Pulse coupled neural network
based image fusion. Lecture Notes in Computer Science,
2005, 3497(I): 741-746.

15 Li Wei, Zhu Xue-Feng. A new algorithm of multi-modality
medical image fusion based on pulse-coupled neural net-
works. Lecture Notes in Computer Science, 2005, 3610(I):
995-1001.

16 Xu Baochang, Chen Zhe. A multisensor image fusion al-
gorithm based on PCNN. In: Proceeding of Fifth World
Congress on Intelligent Control and Automation, Hangzhou,
China: IEEE, 2004. 3679-3682.

17 Qu Xiaobo, Yan Jingwen, Zhu Ziqian, Chen Bengang.
Multi-focus image fusion algorithm based on regional fir-
ing characteristic of Pulse Coupled Neural Networks. In:
Pre-proceedings of International Conference on Bio-Inspired
Computing: Theories and Applications, Zhenzhou, China:
Publishing House of Electronics Industry, 2007. 563-565.

18 Eskicioglu A M, Fisher P S. Image quality measures and
their performance. IEEE Transaction on Communications,
1995, 43(2): 2959-2965.

19 Qu Guihong, Zhang Dali, Yan Pingfan. Information measure
for performance of image fusion. Electronics Letters, 2002,
38(7): 313-15.



No. X QU Xiao-Bo et al.: Image Fusion Algorithm Based on Spatial Frequency . . . 7

20 V. Petrovic, C. Xydeas. On the effects of sensor noise in
pixel-level image fusion performance, in: Proceedings of
the Third International Conference on Image Fusion, Paris,
France: IEEE, 2000, 2: 14-19.

QU Xiao-Bo Master student at De-
partment of Communication Engineering
in Xiamen University. He received his B. S.
degree from Xiamen University in 2006.
His research interest includes image fusion,
Pulse Coupled Neural Networks, wavelet
and its applications, new multiscale decom-
position methods on images, e.g. bandelet,
contourlet, surfacelet, etc.
E-mail: qxb xmu@yahoo.com.cn

YAN Jing-Wen Professor at Depart-
ment of Electronic Engineering at Shan-
tou University. He received Ph.D in the
State Key Laboratory of Applied optics,
Changchun Institute of Fine Mechanics
Optics in Academia Sinica in 1997. He
was approved as professor in Xiamen Uni-
versity in 2003. Currently, he is the
associated director at Key laboratory of
Digital Signal and Image Processing of

Guangdong Province. His research inter-
est covers image compression, wavelet transform theory and
its applications, new multiscale decomposition methods on im-
ages.Corresponding author of this paper.
E-mail: jwyan@stu.edu.cn

XIAO Hong-Zhi Master student at
Department of Electronic Engineering in
Shantou University. He received his B. S.
degree from Shantou University in 2006.
His research interest includes still image
and video compression, wavelet and i new
multiscale decomposition methods on im-
ages.
E-mail: s hzxiao@stu.edu.cn

ZHU Zhi-Qian Researcher and Re-
search director at Research Institute of
Chinese Radar Electronic Equipment. He
received his M. S. degree from Northwest-
ern Polytechnical University in 1989. His
research interest covers multi-sensor data
fusion, multi-object detection and tracking
in radar system.
E-mail: zhuziqian@raa.org.cn


