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The Floquet spectra of a class of driven SU�2� systems have been shown to display butterfly patterns with
multifractal properties. The implication of such critical spectral behavior for the Floquet eigenstate statistics is
studied in this work. Following the methodologies for understanding the fractal behavior of energy eigenstates
of time-independent systems on the Anderson transition point, we analyze the distribution profile, the mean
value, and the variance of the logarithm of the inverse participation ratio of the Floquet eigenstates associated
with multifractal Floquet spectra. The results show that the Floquet eigenstates also display fractal behavior but
with features markedly different from those in time-independent Anderson-transition models. This motivated
us to propose random unitary matrix ensemble, called “power-law random banded unitary matrix” ensemble, to
illuminate the Floquet eigenstate statistics of critical driven systems. The results based on the proposed random
matrix model are consistent with those obtained from our dynamical examples with or without time-reversal
symmetry.
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I. INTRODUCTION

The critical behavior of time-independent systems, espe-
cially in terms of the spectral statistics and the eigenstate
statistics, has attracted great attention. On the spectrum side,
Hofstadter’s butterfly spectrum of the Harper model has been
a paradigm for critical spectral statistics, representing a mul-
tifractal spectrum �1,2� of a system exactly on the metal-
insulator transition point. On the eigenstate side, mainly
through studies in time-independent models, such as the
power-law random banded matrix �PRBM� model �3� and the
standard Anderson tight-binding model �TBM� �4�, it has
been well established that for a system on a metal-insulator
transition point or the Anderson transition point �5�, its
eigenstates show clear fractal features. This background of
understanding the critical behavior of time-independent sys-
tems motivated our interest in the critical behavior of peri-
odically driven systems. Below we first introduce recent re-
lated studies of critical Floquet spectra and then briefly
describe the motivation and the results of this work.

It is well known that the Floquet �quasienergy� spectrum
of a delta-kicked version of the Harper model also displays
Hofstadter’s butterfly patterns �6,7�. Interestingly, though the
kicked Harper model �KHM� can be classically chaotic, its
spectrum, due to its fractal nature, does not follow the
Bohigas-Giannoni-Schmit conjecture �8� at all. This makes
the KHM not only a fruitful model for gaining insights into
the issue of quantum-classical correspondence in classically
chaotic systems but also an intriguing model to study critical
spectral statistics. Indeed, for quite a long time, studies of
fractal Floquet spectra were largely restricted to the KHM
and its variants �9�. In a proposal to experimentally realize

Hofstadter’s butterfly Floquet spectrum in cold-atom labora-
tories, Wang and Gong �10,11� recently demonstrated that
Hofstadter’s butterfly Floquet spectrum can be synthesized
by use of a double-kicked cold-atom rotor system �12� under
a quantum resonance condition. Lawton et al. �13� then
showed that the butterfly Floquet spectrum of the cold-atom
system studied in Refs. �10,11� is equivalent to that of the
standard KHM if and only if one system parameter takes
irrational values. In addition to motivating a cold-atom real-
ization of critical Floquet spectra of periodically driven sys-
tems, Refs. �10,11� seem to have offered a general strategy
for synthesizing critical Floquet spectra in driven systems.

Using an approach extended from Refs. �10,11�, recently
Wang and Gong �14� showed that the Floquet spectra of a
class of driven SU�2� systems also display butterfly patterns
and multifractal properties that are characteristics of highly
critical spectra. This establishes a completely different class
of critical driven systems without a connection with the
KHM context. Interestingly, the driven SU�2� model in Ref.
�14� can be understood as a simple extension of the well-
known kicked top model �KTM� �15� in the quantum chaos
literature. Because the KTM has just been experimentally
realized in a cold 133Cs system �16�, it can be expected that a
critical driven SU�2� system may also be experimentally re-
alized using the collective spin of a 133Cs atomic ensemble.
An alternative experimental realization may be based on a
driven two-mode Bose-Einstein condensate �14,17,18�,
which represents a strongly self-interacting driven system.

Given the above-mentioned class of driven quantum sys-
tems with critical Floquet spectra, it becomes necessary to
study the behavior of the associated Floquet eigenstates.
Theoretically speaking, because driven SU�2� systems al-
ways have a finite number of Floquet eigenstates, the eigen-
state analysis becomes much easier than in the KHM, with
the latter necessarily involving an infinite number of eigen-*phygj@nus.edu.sg
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states for a fractal Floquet spectrum. A careful investigation
of the Floquet eigenstates over the entire spectrum will help
to better understand the critical behavior in time-dependent
systems in general. Experimentally speaking, information
about the eigenstate statistics may be more directly acces-
sible to measurements than a fractal spectrum.

To analyze the critical behavior of the Floquet eigenstates
in driven SU�2� systems, we adopt the same approach as in
previous studies of time-independent systems. That is, we
shall numerically examine the fluctuations of the eigenstates
�19�. The eigenstate fluctuations can be characterized by a set
of inverse participation ratios �IPRs�:

Pq
��� = �

n

��n�����2q, �1�

where � is the index of the eigenstates, ���� represents one
eigenstate under investigation, and 	�n�
 are the basis states.
For convenience we focus on the IPR P2 �i.e., q=2�. By
analogy to critical eigenstate behavior in time-independent
systems, we expect that P2 scales anomalously with the
Hilbert-space dimension N as

P2
��� � N−D2

���
, �2�

where D2
��� is a fractal dimension of a particular eigenstate

����. But is there also a unique fractal dimension D2 for the
average behavior of all the Floquet eigenstates, for example,
via the slope of the averaged ln�P2�, denoted �ln�P2��, versus
ln�N�? To that end, we shall examine if, as the system gets
closer to the thermodynamic limit �N→+��, the distribution
of ln�P2� shows signs of a scale-invariant form �20�. In other
words, whether the distribution function of ln�P2�, denoted
��ln�P2��, only shifts as N varies.

Certainly, the system under our study has only a finite size
N. In time-independent Anderson-transition studies using the
PRBM or the TBM, it was conjectured that the variance of
ln�P2�, denoted �2�N�, scales with N as

�2�N� = �2��� −
A

N� , �3�

with �2���, A, and � being three adjustable parameters �21�.
For a d-dimensional system on the Anderson transition point,
it was shown that � is related to D2 by

� =
D2

2�d
, �4�

where � equals 1 or 2 depending upon whether or not the
system has time-reversal symmetry �22�. As one main task of
this work, we shall examine if these results for time-
independent systems still hold for critical Floquet eigen-
states. Furthermore, we hope to see how the criticality of the
eigenstates of unitary operators differs from the criticality of
the eigenstates of self-adjoint operators. Results along this
direction will also be relevant to recent investigations on the
“unitary Anderson model” �23�, the Thue-Morse sequence
generating multifractal eigenstates of the quantum baker’s
map �24�, the one-parameter model of quantum maps show-
ing multifractal eigenstates �25�, as well as recent experi-

mental and theoretical studies of Anderson transition in
kicked-rotor systems �26,27�.

We now briefly summarize the main findings of this work.
For the driven SU�2� systems studied here, we consider two
different parameter regimes: in one regime the Floquet spec-
tra display clear butterfly patterns, and in the other regime,
the butterfly patterns of the Floquet spectra have dissolved
due to increased strength of the driving fields. For both re-
gimes, we find that ��ln�P2�� is not as smooth as observed in
the TBM or PRBM, indicating some nonuniversal features in
dynamical systems. The ��ln�P2�� for cases with dissolved
butterfly patterns is however smoother. For either regime, it
is found that the ensemble average �ln�P2�� does scale lin-
early with ln�N�, with the slope of the �ln�P2�� vs ln�N� curve
clearly defining the fractal dimension D2 for all the eigen-
states. We also find it possible to fit the variance of ln�P2� by
Eq. �3� but with the exponent � given by

� =
D2

�d
�5�

instead �with d=1�; i.e., a factor of two is missing from the
denominator as compared with Eq. �4� for time-independent
critical systems. To further understand this difference, we
propose a random matrix model, which we call “power-law
random banded unitary matrix” �PRBUM� model. By tuning
the parameters of the PRBUM, the D2 value associated with
the PRBUM can be varied. More interestingly, we observe
that the variance �2�N� of the PRBUM also follows Eq. �3�,
with the exponent � again given by Eq. �5�. This suggests
that our findings about the Floquet eigenstate statistics based
on driven SU�2� systems do reflect some general aspects of
critical Floquet eigenstates.

This paper is organized as follows. In Sec. II, we present
detailed results of the eigenstates statistics in our driven
SU�2� models, with or without time-reversal symmetry. In
Sec. III, we introduce the PRBUM to represent a class of
critical Floquet operators, discuss the statistics of the eigen-
states of PRBUM, and then compare the associated results
with those found in actual dynamical systems. In Sec. IV, we
study the eigenstate statistics of the standard kicked top
model �15�, which represents a classically chaotic but non-
critical driven system. Section V concludes this work.

II. FRACTAL STATISTICS OF THE FLOQUET
EIGENSTATES IN DRIVEN SU(2) MODELS

The focus in Ref. �14� is on the fractal spectral statistics.
Here, using the same model we study the statistics of the
Floquet eigenstates. The first Floquet operator under study is
given by

F = exp�i
	Jz

2

2J

exp�− i
Jx�exp�− i

	Jz
2

2J

exp�− i
Jx� , �6�

where Jx ,Jy ,Jz are angular momentum operators satisfying
the SU�2� algebra and J is the conserved total angular mo-
mentum quantum number that defines a �2J+1�-dimensional
Hilbert space. Readers can refer to Ref. �14� for detailed
descriptions and motivations of this model. This model is
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also called as a “double-kicked top model” �DKTM� in Ref.
�14�.

Eigenstates of the Jz operator are denoted as �m�, with
Jz�m�=m�m�. States 	�m�
 will be chosen as our representa-
tion for eigenstate analysis. To analyze the Floquet eigen-
states, it is necessary to express the Floquet operator in sym-
metric basis states, a procedure that block-diagonalizes the
Floquet matrix. On the one hand, this will simplify our
analysis; on the other hand, this is necessary for the sake of
comparison between an actual dynamical system and the
PRBUM model proposed below.

The DKTM Floquet operator F in Eq. �6� has a parity
unitary symmetry R†FR=F where R=exp�−i�Jx�. This sym-
metry can be used to block diagonalize the F matrix into two
disconnected submatrices associated with either odd-parity
or even-parity subspaces. Without loss of generality we only
present below results for the J-dimensional odd-parity sub-
space. Besides the parity symmetry, F also has a time-
reversal antiunitary symmetry TFT=F†, with

T = exp�i
Jx�K , �7�

where K is the complex conjugation operator. To explore the
implication of this time-reversal symmetry for the eigenstate
statistics, we shall also consider a variant of F, i.e.,

F� = exp�i
	Jz

2

2J

exp�− i
Jx�exp�− i

	Jz
2

2J

exp�− i
Jy� .

�8�

Evidently, F� differs from F only in the last factor, i.e.,
exp�−i
Jx� in F is replaced by exp�−i
Jy�. Because of this
difference, we call F in Eq. �6� the Jx−Jx model and call F�
the Jx−Jy model. It is easy to check that the latter does not
have the parity symmetry or the time-reversal symmetry. For
the Jx−Jy model, which cannot be reduced to any block-
diagonal form, we examine the eigenstates of the full Floquet
matrix.

For both cases we define a dimensionless system param-
eter,

�	 �
	

J
=

1

2
��5 − 1�� . �9�

This choice of �	 being � times the golden mean is to ensure
that the resulting Floquet eigenstate statistics is indeed rep-
resentative of driven systems with fractal Floquet spectra. As
detailed below, we consider two different regimes for the
product 
J. In the first regime defined by 0.95

J
1.05,
the Floquet spectra show clear butterfly patterns; in the sec-
ond regime defined by 9.95

J
10.05, the butterfly spec-
tra have dissolved, with fractal dimensions of the spectra
increased �14�.

A. Jx−Jx model

This is a time-reversal symmetric system. Because Dys-
on’s circular ensemble of random unitary matrices �15� with
time-reversal symmetry is called “circular-orthogonal-
ensemble” �COE�, we regard the Jx−Jx model as an example
of critical COE statistics.

1. 0.95
�J
1.05

Figure 1�a� shows the distributions of the logarithm of the
IPR P2, denoted ��ln�P2��, for different J. It is seen that the
distribution function ��ln�P2�� is not as smooth as that ob-
served in early Anderson-transition studies �20–22�. Never-
theless, it is clear that as J increases, the left tail of ��ln�P2��
systematically shifts to the left direction associated with
more negative ln�P2�. The profile of ��ln�P2��, though
somewhat changes as J increases, does maintain its main
features as J increases. Due to these features that are similar
to early findings for the critical eigenstates in time-
independent systems, it can be expected that the average of
ln�P2� will show a scaling behavior with ln�J�. As shown in
Fig. 1�b�, this is indeed the case. Therein, �ln�P2��, obtained
by averaging ln�P2� over all eigenstates �in the odd-parity
subspace�, displays an excellent linear behavior with ln�J�.
From the slope of the fitting line in Fig. 1�b�, we are able to
obtain the fractal dimension D2�0.274.

The distribution profile ��ln�P2�� in Fig. 1�a� is seen to
display rich features, with significant fluctuations and mul-
tiple notable peaks. Qualitatively, this reflects that our system
is an actual dynamical system and hence the underlying rich
dynamics will manifest itself through some nonuniversal sta-
tistical features. Related to this observation we also note that
in our calculations, all the Floquet eigenstates are treated
equally and all of them are used for averaging. This is in
contrast to the common procedure in analyzing time-
independent critical systems, where only those energy eigen-
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FIG. 1. �Color online� �a� Distribution of ln�P2� for the Jx−Jx

model, with J=200,400,800,1600, and 3200, in the representation
of odd-parity basis states defined in the text. The size of the Floquet
matrix ensemble is important for numerical simulation. In order to
construct the necessary ensemble, we consider a range of 
, i.e.,
0.95

J
1.05, yielding respectively 4000, 2000, 1000, 500, and
250 matrices for the different values J. �b� �ln�P2��, the mean value
of ln�P2� averaged over all Floquet eigenstates, as a function of
ln�J�. The slope of the fitting line gives D2�0.274. �c� Logarithm
of ��2���−�2�J�� as a function of ln�J�, where J is the dimension of
the odd-parity Hilbert subspace. Filled circles are our numerical
results for the Jx−Jx model, and the solid line is the fitting of the
numerical results using the empirical formula given in Eq. �3� with
�2���=0.68, A=1.40, and �=D2. The plotted variables here and in
all other figures are dimensionless.
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states in a certain small energy window around zero eigen-
value are included to examine the distribution of ln�P2�
�20–22�. The justification for including all Floquet states in
our analysis is as follows: the quasienergy spectra lie on a
unit circle and hence all states with different eigenphases on
the unit circle should be treated on equal footing. To double
check this understanding, we have also taken windows of
different widths centered around zero value of the eigen-
phase and then calculate the distribution of ln�P2�. No im-
provement in the smoothness of ��ln P2� is found. Rather,
we obtained similar distribution of ln�P2� with clear fluctua-
tions. It is also tempting to connect the nonuniversal features
of ��ln P2� with the phase space structures of the underlying
classical limit. However, such a perspective, which calls for
a good understanding of quantum-classical correspondence
in critical systems, is unlikely to succeed because the classi-
cal limit of our dynamical model is completely chaotic �14�.

In Fig. 1�c�, we plot ln��2���−�2�J�� vs ln�J� �filled
circles�, where �2�J� is the variance of ln�P2� and �2��� is a
fitting parameter, whose value is found by fitting our data
points with the empirical formula given in Eq. �3�. As seen in
Fig. 1�c�, the fitting is reasonably good, yielding that
��2���−�2�J�� scales as J−�, with �=D2 �D2 is already de-
termined by the fitting in Fig. 1�b��, �2����0.68, and A
�1.40. Despite obvious fluctuations around the fitting curve,
the result in Fig. 1�c� suggests that the tool borrowed from
traditional Anderson-transition studies for time-independent
systems can be still useful here. Furthermore �probably more
interestingly�, the fitting in Fig. 1�c� also unexpectedly re-
veals a big difference from what can be expected from Eq.
�4� with d=1 and �=1: here �=D2 instead of D2 /2. There-
fore, an intriguing difference between time-independent criti-
cal systems and periodically driven critical systems is ob-
served here.

2. 9.95
�J
10.05

As mentioned above, for this parameter regime the butter-
fly patterns in the Floquet spectra have dissolved almost
completely. We present the associated eigenstate statistics in
Fig. 2. In Fig. 2�a�, we show the distribution profile of ln�P2�
for different J. In contrast to the previous case shown in Fig.
1�a�, ��ln�P2�� is now much smoother �essentially only one
peak is left�. From the same panel, we also see a systematic
left-shift of the distribution function as J increases. This sys-
tematic left-shift leads to an evident linear behavior of the
average value of ln�P2� as a function of ln�J�, as shown in
Fig. 2�b�. The slope of the fitting line in Fig. 2�b� gives the
fractal dimension D2�0.256. Comparing this result with that
in Fig. 1�b�, one sees that though the fractal dimension of the
Floquet spectra increases due to increasing 
J �14�, the frac-
tal dimension of the associated eigenstates may decrease.

In Fig. 2�c�, we examine the variance of ln�P2� as a func-
tion of ln�J� �again, for the odd-parity subspace�. Same as in
Fig. 1�c�, we fit our results with the empirical formula given
in Eq. �3�. The fitting in Fig. 2�c� is better than that in Fig.
1�c�, consistent with the fact that the distribution of ln�P2� is
quite smooth here. The fitting in Fig. 2�c� gives �2���
�0.77, A�1.59, and �=D2, where the value of D2 is found

in Fig. 2�b�. The finding that � is not equal to D2 /2 but D2
again strengthens our early observation from Fig. 1.

B. Jx−Jy model

To verify if our findings above are general, we now turn
to the Jx−Jy model �Eq. �8��. Due to the lack of time-reversal
symmetry here, this case can be regarded as an example of
critical “circular-unitary-ensemble” �CUE� statistics. All the
eigenstates of the Floquet operator F� will be considered.

1. 0.95
�J
1.05

For this regime where the butterfly patterns of the Floquet
spectra can be clearly seen, Fig. 3�a� displays the distribution
of ln�P2� for different Hilbert-space dimension N=2J+1.
Analogous to the previous case with time-reversal symmetry,
��ln�P2�� displays interesting fluctuations. As N increases,
��ln�P2�� undergoes changes in its profile, shifts its left tail,
but also maintains many features. In Fig. 3�b� we obtain
again a nice linear scaling behavior of �ln�P2�� with ln�N�.
From the slope of the linear scaling, we obtain the fractal
dimension D2�0.259. This D2 value is different from that
for the Jx−Jx model with the same values of 
J. �Note that
the spectral statistics for the Jx−Jy model also differs from
that for the Jx−Jx model �14�.�

Same as in Fig. 1�c�, in Fig. 3�c� we study the variance of
ln�P2� �now denoted �2�N�� as a function of ln�N�, using the
fitting formula given in Eq. �3�. The fitting, though with clear
fluctuations, yields that ��2���−�2�N�� scales as N−�, with
�2����0.92, A�1.04, and �=D2 /2 �D2 value obtained
from Fig. 3�b��. Remarkably, though Eq. �4� with d=1 and
�=2 �because of the lack of time-reversal symmetry� pre-
dicts �=D2 /4, here we have �=D2 /2 instead. The important
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FIG. 2. �Color online� �a� Distribution of ln�P2� for the Jx−Jx

model with 9.95

J
10.05 is presented for the odd-parity sub-
space. Other parameters are the same as in Fig. 1. �b� �ln�P2�� is
plotted as a function of ln�J�. The slope of the fitting line gives
D2�0.239. �c� Logarithm of ��2���−�2�J�� as a function of ln�J�,
where J is the dimension of the odd-parity Hilbert subspace. Filled
circles are our numerical results for the Jx−Jx model, and the solid
line is the fitting of the numerical results using the empirical for-
mula given in Eq. �3�, with �2����0.77, A=1.59, and �=D2.
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common feature shared by the Jx−Jy model and the Jx−Jx
model is thus the missing of a factor of two in the numeri-
cally obtained � value as compared with the empirical for-
mula for time-independent critical systems. This interesting
finding also supports the use of Eq. �3� as a tool for under-
standing Floquet eigenstate statistics. Our numerical obser-
vations here will be further strengthened by a random matrix
model.

2. 9.95
�J
10.05

Just like the Jx−Jx model, in this regime the butterfly
patterns of the Floquet spectra have dissolved. The statistical
properties of the Floquet eigenstates are shown in Fig. 4. In
Fig. 4�a�, the distributions of ln�P2� is seen to be much
smoother than those seen in Fig. 3�a�. This is somewhat ex-
pected from our early findings in the Jx−Jx model. Figure
4�b� shows a linear scaling of �ln�P2�� vs ln�N�, with its
slope giving D2�0.177. In Fig. 4�c�, we study the variance
of ln�P2� as a function of ln�N�, as compared with the em-
pirical formula given in Eq. �3�: the fitting with the empirical
formula is excellent, yielding �2����1.11, A�1.17, and �
=D2 /2, where the value of D2 is determined in Fig. 4�b�.
Once again, here we find �=D2 /2 instead of �=D2 /4 �as
suggested by Eq. �4� with �=2�.

III. EIGENSTATE STATISTICS OF PRBUM

In studies of time-independent critical systems, the PRBM
model at criticality �3� has proved to be fruitful. The PRBM
is an ensemble of random Hermitian matrices whose matrix
elements 	Hij
 are independently distributed Gaussian ran-
dom numbers with mean �Hij�=0 and the variance satisfying

�2�Hij� = �1 + � �i − j�
b


2g�−1

. �10�

The case g=1 represents the critical point and 0�b�� is a
parameter characterizing the ensemble. A straightforward in-
terpretation of this model is that it describes a one-
dimensional sample with random long-range hopping, with
the hopping amplitude decaying as �i− j�−1. Motivated by our
results above for critical Floquet states, we aim to propose a
class of random unitary matrices, whose Floquet eigenstate
statistics can show some general aspects of critical statistics
and can be used to shed some light on actual dynamical
systems. Our natural starting point for generating such ran-
dom unitary matrices are the Hermitian PRBM.

A. Algorithm

To generate a random unitary matrix from a Hermitian
matrix in the PRBM ensemble, we employ the algorithm by
Mezzadri, whose original motivation is to generate CUE ran-
dom matrices �28� from general Gaussian random matrices.
For the sake of completeness, we have presented a descrip-
tion of Mezzadri’s algorithm in the Appendix. For our pur-
pose, that is, to generate a critical random unitary matrix, we
first set the starting point of Mezzadri’s algorithm as a
PRBM ensemble at the critical point �g=1.0�. We then gen-
erate an ensemble of random unitary matrices �denoted U� of
the CUE class. Significantly, because of the use of PRBM as
the input for Mezzadri’s algorithm, we find that the variance
of the matrix elements 	Uij
 thus obtained also satisfies a
power law, i.e.,

�2�Uij� = a0�1 + � �i − j�
b0


2g0�−1

. �11�

Here the parameter a0 is a common prefactor of the matrix
elements, which can be determined by the unitary condition.
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The parameters g0 and b0 in Eq. �11� depend on the param-
eters g and b of the PRBM used. As three computational
examples, panels �d�–�f� of Fig. 5 present the dependence of
ln�a0 /�2�Uij�−1� upon ln�i− j�, for three ensembles of ran-
dom unitary matrices we generated, with sizes N
=500,1000, and 2000. If the scaling of �2�Uij� with �i− j� is
indeed a power law as described by Eq. �11�, then one should
see a linear dependence of ln�a0 /�2�Uij�−1� in ln�i− j�. This
is indeed the case in Figs. 5�d�–5�f�. Note that the deviations
in Figs. 5�d�–5�f� from the fitting straight lines at very large
values of ln�i− j� are due to two trivial reasons. First, for very
large �i− j�, the value of �2�Uij� is vanishingly small and
hence ln�1 /�2�Uij�−1� becomes extremely large, thus yield-
ing large fluctuations. Second and more importantly, for a
fixed matrix size, if �i− j� is very large, then the available
number of matrix elements become insufficient for good sta-
tistics. Indeed, as the matrix size increases from N=500 to
N=2000, it is seen from Figs. 5�d�–5�f� that the validity win-
dow of the linear fitting gradually extends to larger values of
ln�i− j�.

The random unitary matrices generated in the above man-
ner, with their matrix elements satisfying the power-law scal-
ing of Eq. �11�, are defined as “power-law random banded
unitary matrix” of the CUE type �PRBUM-CUE�. As de-
tailed in the Appendix, one can then generate PRBUM of the
COE type �PRBUM-COE� via V=UUT. As shown in panels
�a�–�c� of Fig. 5, the variance of the matrix elements of
PRBUM-COE also obeys Eq. �11�, with different values of
g0 and b0.

To check whether the PRBUM-COE and PRBUM-CUE
ensembles show critical statistics, we analyzed their eigen-

states, especially in terms of the distribution and the scaling
of ln�P2�. It is found that as we tune the parameter b of the
PRBM used in the algorithm, the resulting fractal dimensions
D2 can be also tuned continuously. For example, the D2
value of PRBUM can be made close to that of our driven
SU�2� models. In particular, at b=0.1, we obtain g0�0.92
for PRBUM-COE and g0�0.88 for PRBUM-CUE, yielding
D2�0.279 and D2�0.251, respectively. These two D2 val-
ues are quite close to the D2 values of the Jx−Jx and Jx−Jy
models found in Figs. 1 and 3. Below we describe these
findings in detail.

B. PRBUM-COE

This random unitary matrix ensemble is intended to
model a critical Floquet operator with time-reversal symme-
try. The results for PRBUM-COE generated from PRBM
with b=0.1 are shown in Fig. 6. In Fig. 6�a�, we show the
distributions of ln�P2� for different values of the matrix di-
mension N �which is the counterpart of J in the Jx−Jx
model�, with all the eigenstates of the PRBUM-COE en-
semble considered. In contrast to the Jx−Jx dynamical model
with a small 
J �see Fig. 1�a��, ��ln�P2�� here displays very
smooth behavior. Figure 6�b� depicts a nice linear relation
between �ln P2� and ln�N�. The slope of the straight line in
Fig. 6�b� gives the fractal dimension D2�0.279, a value
close to that in the Jx−Jx model with 0.95

J
1.05. As in
Fig. 1�c�, Fig. 6�c� shows the fitting of the variance of ln�P2�
with N, using Eq. �3�. Interestingly, the values of the fitting
parameters are found to be �2����0.60, A=1.33, both are
similar to those determined in Fig. 1�c�. More interestingly,
this fitting shows that ��2���−�2�N�� scales as N−�, with �
=D2. This supports our finding in Figs. 1�c� and 2�c�. We
have also studied other cases of PRBUM-COE using other
PRBM as the input of Mezzadri’s algorithm. For example,
we find that if the parameter b is set at �0.08, then the D2 of
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PRBUM-CUE, with the dimension N=500,1000, and 2000, respec-
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the PRBUM-COE ensemble is around 0.24, which is close to
the D2 value previously found in the Jx−Jx model with
9.95

J
10.05. These results clearly support our use of
PRBUM-COE to illuminate the critical eigenstate statistics
in the Jx−Jx model.

C. PRBUM-CUE

This ensemble aims to model a critical Floquet operator
without time-reversal symmetry. All eigenstates of an en-
semble of PRBUM-CUE matrices are used for our statistical
analysis. For b=0.1, Fig. 7�a� displays ��ln�P2�� versus
ln�P2�, showing again a smooth dependence. Figure 7�b�
shows the corresponding �ln�P2�� versus ln�N�, which yields
the fractal dimension D2�0.251. In Fig. 7�c�, we fit the de-
pendence of ln��2���−�2�N�� in ln�N�, yielding ��2���
−�2�N���N−�, with �=D2 /2 �instead of D2 /4 predicted by
Eq. �4��. This also confirms our early observations in the Jx
−Jy model. The values of the fitting parameters are found to
be �2����0.85 and A�1.05, which are close to what we
found in Fig. 3�c�. We have also checked that if we perform
analogous calculations for b�0.07, then the D2 value for the
PRBUM-CUE ensemble will be close to that found in Fig.
4�b�. Given these results, we are led to the conclusion that
PRBUM as proposed above do share some general aspects
with periodically driven systems having critical eigenstate
statistics.

IV. FLOQUET EIGENSTATE STATISTICS
OF THE KICKED TOP MODEL

Finally, as a numerical “control” experiment, we study the
Floquet eigenstate statistics of the standard kicked top
model. This will help appreciate the difference between a
normal driven system and a critical driven system, both of
which can have a chaotic classical limit. Consider then the

following Floquet operator for the standard kicked top model
�15�,

FKTM = exp�− i
	Jz

2

2J

exp�− i
Jx� , �12�

which is just the last two factors of Eq. �6�, with the same
parity symmetry and time-reversal symmetry as the Jx−Jx
model. In addition, we set the parameter 	 /J=�	 at the same
value as given in Eq. �9�. We construct a statistical ensemble
by considering a range of 
, i.e., 0.95


1.05 �with cha-
otic classical limits�. We carry out the Floquet eigenstate
statistics in the odd-parity subspace, whose dimension is J.
Because the classical limit is found to be chaotic, we com-
pare the statistics with that associated with Dyson’s COE
matrices in random matrix theory �RMT�.

Figures 8�a� and 8�b� compare ��ln�P2�� associated with
FKTM with that obtained from COE matrices for different J.
The difference between the actual dynamical system and the
COE can hardly be seen. Figure 8�c� depicts �ln�P2�� as a
function of ln�J�, with the results of the kicked top �open
circles� almost on top of those of COE matrices �crosses�.
The solid line in Fig. 8�c� represents the theoretical curve for
�ln�P2�� obtained from RMT, i.e., �ln�P2��� ln 3−ln�J�. The
agreement between numerical COE results, analytical RMT
result, and the kicked top system as a classically chaotic
dynamical system is almost perfect. From the curve shown in
Fig. 8�c�, it is clear that D2 here is unity and as such the

-4 -3 -2 -1 0

ln(P
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Π
[
l
n
(
P
2
)
] N=201

N=401
N=801
N=1601
N=3201

4 5 6 7 8

ln(N)

-1.6

-1.2

-0.8

<
l
n
(
P
2
)
>

4 5 6 7 8

ln(N)

-1

-0.8

-0.6

-0.4

l
n
[

σ2 (∞
)−

σ2 (
N
)
]

Slope=D
2
=0.251

(a)

(b) (c)

FIG. 7. �Color online� �a� Distribution of ln�P2� obtained for
PRBUM-CUE, with the matrix dimension N=201 �4000�,
401 �2000�, 801 �1000� ,1601 �500� and 3201 �250�. The numbers
in the brackets give the size of the ensemble. �b� Same as in Figs.
3�b� and 4�b�, yielding D2�0.251. �c� Same as in Figs. 3�c� and
4�c�, the fitting gives �2����0.85, A�1.05, and �=D2 /2.

-6 -5 -4 -3

ln(P
2
)

0

2

4

6

8

10

Π
[
l
n
(
P
2
)
]

J=100
J=200
J=400
J=800
J=1600

5 6 7

ln(J)

-6

-5

-4

-3

<
l
n
(
P
2
)
>

Kicked Top

COE Matrices
RMT Prediction

-6 -5 -4 -3

ln(P
2
)

J=100
J=200
J=400
J=800
J=1600

(a) (b)

(c)

FIG. 8. �Color online� �a� Distributions of ln�P2� for the stan-
dard classically chaotic kicked top model, for J=100 �4000�,
200 �2000� , 400 �1000� , 800 �500�, and 1600 �250�. The num-
bers in the brackets are the size of the Floquet matrix ensemble. In
constructing the ensembles we have considered a range of 
, i.e.,
0.95
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matrix theory. The scaling shows that D2=1 in the standard kicked
top model, which is dramatically different from our observations
made from the double-kicked top model.
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system does not show critical behavior. This noncritical be-
havior indicates that the Floquet states of the kicked top
model are essentially random states, a feature fundamentally
different from our double-kicked top system that has a but-
terfly spectrum and critical statistics in the Floquet eigen-
states. It is also interesting to note that in Figs. 8�a� and 8�b�,
as J increases, ��ln�P2�� becomes narrower and develops
higher peaks. This is an indication that, unlike the critical
cases studied above, ��ln P2� for the standard kicked top
model approaches a Dirac-delta-type singular function with
zero width �i.e., �2���→0� as J increases.

V. CONCLUDING REMARKS

In this numerical study we have examined the statistics of
the Floquet eigenstates of a recently proposed double-kicked
top model with multifractal Floquet spectra. Following the
methodologies used in studies of Anderson transition in
time-independent systems, we have shown that the Floquet
eigenstates associated with multifractal Floquet spectra also
display critical behavior. In particular, we focus on the dis-
tribution of ln�P2� and examine how the quantity �ln�P2��
averaged over all states scales with the dimension of the
Hilbert space N. It is shown that �ln�P2�� scales linearly with
ln�N�, with the slope of this linear scaling giving the fractal
dimension D2 of the Floquet eigenstates. The values of D2
are found to be far from unity �as a comparison, we showed
that similar analysis for a standard kicked top with a chaotic
classical limit yields D2=1�, constituting strong evidence
that the Floquet eigenstates are fractal and hence lying be-
tween localized and delocalized states. Though we have
worked on P2 only, we note that similar analysis can be done
for Pq defined in Eq. �1�. One may then define a generalized
fractal dimension Dq and further establish the multifractal
nature of the Floquet eigenstates.

The variance of ln�P2�, denoted �2�N� for a Hilbert space
of dimension N, is also examined. In Anderson-transition
studies with PRBM, �2�N� is known to scale as N−� with �
=D2 / �2�� for one-dimensional systems, where �=1�2� for a
system with �without� time-reversal symmetry. By contrast,
in our critical driven system, �2�N� is seen to scale similarly,
but with �=D2 /�. This reflects an interesting difference be-
tween time-dependent systems and time-independent sys-
tems. Indeed, eigenstates of PRBM are to model those of
critical Hermitian operators, whereas Floquet eigenstates of a
critical driven system should be understood in terms of criti-
cal unitary operators. To justify this understanding, we have
introduced a random unitary matrix ensemble called
PRBUM, with the variance of the matrix elements of the
unitary matrices following a power-law distribution. We
show that the eigenstates of PRBUM share many critical
statistical features with the double-kicked top model. Most
important, the variance of ln�P2� of PRBUM does scale as
N−�D2/��, which is the same as in the double-kicked top model
as a critical driven system. We hence anticipate that this scal-
ing property of the variance of ln�P2� may be general in
critical driven systems. These results complement the spec-

tral results in Ref. �14� and should motivate further math-
ematical and theoretical studies in critical driven systems.
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APPENDIX: MEZZADRI’S ALGORITHM

This is a simple and numerically stable algorithm to gen-
erate the CUE matrices from an ensemble of complex ran-
dom matrices 	Zi
, whose elements are Gaussian distributed
random numbers with mean zero and variance unity. In par-
ticular, applying the Gram-Schmmidt orthonormalization
method to the columns of an arbitrary complex matrix Zi,
one can factorize Zi as

Zi = QiRi, �A1�

where Qi is a unitary matrix and Ri is an invertible upper-
triangular matrix. One can easily prove that the above fac-
torization is not unique. Because of this nonuniqueness, the
random unitary matrices 	Qi
 are not distributed with Haar
measure �28�, i.e., the 	Qi
 matrices are not uniformly dis-
tributed over the space of random unitary matrices. Fortu-
nately, this factorization can still be made unique by impos-
ing a constraint on the Ri matrices. By some group
theoretical arguments, it was shown �28� that if one finds a
factorization such that the elements of main diagonal of Ri
become real and strictly positive, then 	Qi
 matrices would
be distributed with Haar measure and hence form CUE. Fol-
lowing these results, the major steps of Mezzadri’s algorithm
are the following. First, we start with an N�N complex
Gaussian random matrix Zi. Second, we factorize Zi by any
standard QR− decomposition routine such that Zi=QiRi.
Third, we create a diagonal matrix

� = diag� r11

�r11�
, . . . ,

rNN

�rNN�
 ,

where 	rll
 are the diagonal elements of Ri. As a final step,
we define Ri���−1Ri and Qi��Qi�. By construction, the
diagonal elements of Ri� are always real and strictly positive,
and as such 	Qi�
 would be distributed with Haar measure
and can be used to form the desired CUE. The symmetric
COE matrices can be constructed from the CUE matrices in
a very simple manner. In particular, let U be a member of the
CUE generated above, then it can be shown that V=UUT will
be a member of COE. For the generation of PRBUM advo-
cated in this work, we propose to replace Zi in the first step
by a member in the PRBM ensemble that models Anderson
transition. Though there is no mathematical theory for our
procedure, the uniformly distributed eigenphases �not shown
here� of our PRBUM ensemble thus generated suggest its
uniform distribution.
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