第24卷第4期增刊

学

报

小波分析用于核磁共振谱的动态相位校正

郑炳文¹ 朱小钦¹ 陈 忠^{1,2}

¹(厦门大学物理系 厦门 361005)

²(厦门大学化学系固体表面物理化学国家重点实验室 厦门 361005)

摘要 核磁共振实验中某些非平稳效应(如附加磁场的干扰)会引起的谱峰相位畸变,这类相位畸变不能由常规的一阶或二 阶线性相位校正来补偿。本文引入了一种"动态相位校正"方法,该方法利用连续小波变换直接从已知参考峰的连续时间—尺 度表示中提取瞬时相位等有用信息,然后对全谱进行动态相位校正。理论表述和仿真分析表明:该方法为获得高分辨NMR 谱提供一种新的有效的相位校正方式。

关键词 核磁共振 小波分析 动态相位校正

D ynam ic Phase Correction by Wavelet Analysis in Magnetic Resonance Spectroscopy

Zheng B inw en¹ Zhu X iaoqin¹ Chen Zhong^{1,2} ¹ (D ep arm ent of P hysics, X iam en U niversity, X iam en 361005, China) ² (S tate K ey L aboratory for P hysical Chen istry of Solid Surface, D ep arm ent of Chem istry, X iam en U niversity, X iam en 361005, China)

Abstract In NMR experiments, the peaks always have some phase distortions perturbed by some non-stationary effects, such as additional magnetic fields These phase distortions can not be removed by the routine first order or second order linear phase correction. In this paper, we introduce a new method called by dynamic phase correction. The distorted information is directly extracted from the known referenced peak at the time-scale plane of continue wavelet transform; then apply "dynamic phase correction "to the full spectrum. Theoretic representations and simulation results show that the method provides a new efficient way to reconstruct such phase-distorted NMR spectrum s to become high resolution ones

Key words NMR W avelet analysis Dynamic phase correction

1 引 言

小波分析是一种重要的时—频分析工具,能有效 描述频率特性随时间变化的非平稳过程。对分析含有 "时变频率成分 '的信号,小波分析比傅氏变换更有其 的独到之处^[1]。迄今为止,国内外将小波分析运用于核 磁共振(NMR)谱的去噪、基线校正、数据压缩^[2]等,已 显示了小波分析独特的信号处理能力。为获得高分辨 NM R 谱, 必须去除梯度场涡流、磁场非均匀及仪器的 某些不稳定因素产生的谱峰相位畸变。相位畸变的严 重后果有: NM R 谱或磁共振成像(M R I) 产生畸变、掩 盖谱中大量高分辨的细节信息、影响谱图解析、影响自 旋回波位置和幅度。由于这一类相位畸变不能由常规 的一阶或二阶线性相位校正来补偿, 为此, 本文探索一 种称为"动态相位校正"的方法。该方法能很好地校正 NM R 谱峰畸变, 优化线型, 弥补常规相位校正方法的 缺陷。

^{*} 国家自然科学基金重点项目(10234070)和福建省自然科学基金(A 0210003)资助项目。

^{© 1994-2007} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2 理论方法

2.1 动态相位校正的原理

NMR 中, 梯度场涡流, 磁场非均匀或仪器的某些 非平稳效应, 一般是由于在磁体中产生一个附加的磁 场 ΔB₀(t), 从而使总静磁场B₀(t) = ΔB₀(t) + B₀随时 间 t 慢慢漂移。磁场变化的结果会造成某一位置磁化 矢量进动频率和共振频率之间产生偏差, 表现为自由 感应衰减(FD)信号中的相位的偏差:

 $\Delta \varphi = 2\pi \Delta B_0(t) dt \tag{1}$

其中: $\Delta B_0(t)$ 为 t 时刻某一位置的附加磁场。

动态相位校正的原理是:从全谱中某一个参考峰 中提取相位变化的信息,利用它来消除B。的偏差,从 而校正全谱。

F D 信号可以写成许多谱峰的叠加^[3]:

$$\mathbf{S}(\mathbf{t}) = \sum_{j=1}^{n} \mathbf{S}_{j}(\mathbf{t}) \tag{2}$$

其中每一谱峰的基本表示式为:

 $S_{j}(t) = A_{j}(t) \exp(i(\omega t + \Phi))$ (3)

假设 F D 信号 S (t) 中某一个共振谱峰 S_i(t) 处于 化学位移 g 处, 将(3) 式简化表示为:

$$S_{j}(t) = \exp\{i[\partial B_{0}(1 - \sigma_{j})t - t/T_{2}]\}$$
(4)

式中: 𝒴为旋磁比, B₀为静磁场强度, T₂为核的自 旋—自旋弛豫时间。

当产生一个附加磁场 $\Delta B_0(t)$,则(4)式重写为: $S_{pj}(t) = \exp\{i[Y(B_0 + \Delta B_0(t))(1 - \sigma_j)t - t/T_2]\}$ (5)

 $= S_{j}(t) \exp(i[\theta_{j}(t) - \theta_{j}(t)])$

式中: $\theta_{1}(t) = \lambda \Delta B_{0}(t); \theta_{1}(t) = \lambda B_{0}(t)$, 一般情况 下 g 比较小, 满足 $\theta_{1}(t) > > \theta_{1}(t)$ 的条件。这样上式可 近似等于:

$$S_{pj}(t) \quad S_{j}(t) \exp\left[i\theta_{j}(t)\right]$$
(6)

从(6)式可看出 θ(t)反映了 $\Delta B_0(t)$ 的变化。 对于同一组实验和相同实验条件下. 我们假设所

有 NM R 共振谱峰的相位均变化 $\theta(t)$ 。这样就可以从 某一个参考谱峰得到 $\theta(t)$ 的信息,然后根据 $\theta(t)$ 来消除非平稳效应。

假设第 k 个共振峰, 化学位移为 α, 当相位畸变后 信号 S_{pk}(t)表示为:

$$\mathbf{S}_{pk}(t) = \mathbf{S}_{k}(t) \exp\left[\mathbf{i}\boldsymbol{\theta}_{p}(t)\right]$$
(7)

将提取的 θ(t) 用于校正第 k 个峰, 则校正后的无 畸变谱峰 S_k(t) 为:

$$\mathbf{S}_{k}(t) \quad \mathbf{S}_{pk}(t) * \exp\left[-i\mathbf{\Theta}(t)\right] \tag{8}$$

一般选取全谱中窄而强的单峰(如NMR 中的已

知化学位移的内标峰)作为校正参考信号。

2 2 小波变换提取相位校正因子

对于 F D 中任一个校正参考谱峰 S_j, 其连续小波 变换^[4] (CW T) 可写为:

$$S_{j}(b, a) = \frac{1}{2\pi} \hat{\Psi}(a\omega) \hat{A}_{j}(\omega \ \omega) e^{i\omega b} d\omega$$

$$= \frac{1}{2\pi} e^{i\omega b} \hat{\Psi}(a(\omega + \omega)) \hat{A}_{j}(\omega) e^{i\omega b} d\omega$$
(9)

上式方程表明此变换为一种时间—频率(或称时间—尺度)变换, b 是平移因子, a 是尺度因子(a 的倒数相当于频率)。

(9) 式中将
$$\Psi(a(\omega + \omega))$$
 泰勒展开为:
 $\hat{\Psi}(a(\omega + \omega)) = \hat{\Psi}(a\omega) + \frac{(a\omega)^{k}}{k!} \times \frac{\frac{d^{k}\hat{\Psi}(a\omega)}{d\omega^{k}}}{(a\omega)}$
(10)

代入(9)式并取泰勒展开的一阶近似:

$$S_{j}(b, a) \quad \Psi(a\omega) \quad \cdot \frac{1}{2\pi} A_{j}(\omega) e^{i(\omega + \omega)^{2}} d\omega$$
$$= \Psi(a\omega) \quad \cdot \frac{1}{2\pi} A_{j}(\omega - \omega) e^{i\omega b} d\omega \qquad (11)$$
$$= \Psi(a\omega) \quad \cdot S_{i}(b)$$

从该式可以看出,只要选取合适的尺度因子 a, 沿 着小波脊^[5]作小波变换, 就可以从变换系数中得到校 正参考谱峰 S_j(b)以及瞬时相位 Q(b)= arg(S_j(b))。

3 仿真数据分析

3.1 参考峰提取

仿真的 FD 信号含两个频率分量(170Hz 和 200Hz),两分量具有相同的衰减率、归一化幅度和相 位,信号采样率为1.02kHz,采样点数为1024 个点,并 叠加一定水平的高斯白噪声。

现选用Morlet 小波作为分析小波, 其基本形式为 $\Psi(t) = e^{i\alpha t} e^{-i^2 z^2}$, 其中参数 $\sigma(x + 2 + \alpha + \alpha + \alpha + \alpha)$ 选择应合适, 选择过大或过小都会影响分析效果。我们 选择相应的尺度因子, 对 F D 信号进行 CW T, 可分离 两个频率分量(图 1(b)和图 1(c)), 再分别进行傅氏变 换, 得到图 2(b)和图 2(c) 谱峰。若将分离后两个分量 的信号重构变换后的傅氏谱(图 2(d))与原始谱(图 2 (a))比较发现, 谱峰的位置相对强度无偏差, 变换结果 具有对噪声的不敏感性。

本文的仿真结果表明:只要尺度因子选择适当,通过 CWT 就可以分离频率十分接近的信号,可以准确提取全谱中某一内标参考峰(NMR 内标参考峰往往

© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(a)

(b)

(c)

(d)

(a)

(b)

200

500

400

图 1 (a) 仿真的含两个 频率分量的 FD; (b) 使 用CWT 方法从图(a)中 单独提取单频为170Hz 的分量; (c) 使用 CW T 方法从图 (a) 中单独提 取单频为 200Hz 的分量。

图2 (a), (b)和(c)分别 为图1(a)、图1(b)、图1(c) 进行傅氏变换后的谱图: (d) 为对图1(b)和图1(c)中的两 分量进行重构后得到的傅 氏谱。

200 300

類素 Hz

具有已知频率、峰形窄而强的特点),用它来衡量 $\theta(t)$ 变化情况。实际使用时,如果内标峰的化学位移与其它 其振峰相距较远,分析效果会更好。

50

100

150

频率 Hz

谱, 谱出现较大的拖尾畸变; (b)

3.2 动态相位校正的仿真分析

(1) 仿真 F D 相位受 线性磁场 ΔB₀(t) 调制的 情况,通过CWT方法提 取相位受线性调制的信 息,动态相位校正,从而获 得无畸变的单峰。所用仿 真信号模型为:

 $S = A \exp(-dt) \exp[i$ $(\omega t + bt^2)$], 其中 $\omega = 2\pi$ 图 3 (a) 对相位受到线性调制 * 0, 1, b= 3 × 10⁻⁴, 未迭 的 FD 进行傅氏变换后的原始 加任何的高斯白噪声.采 样点数 1024 个点。

数据尾端产生边界效应,通

通过 CW T 方法得到相位校正信 息后,动态相位校正,获得无畸 校正过程中, 为避免在 变的单峰。

过在负时间轴加一个镜相的FD.使信号关于时间原点 对称(数据点数变为 2048 个点),待变换完再恢复成 1024 个数据点。比较原始谱峰(图3(a))和校正后的谱峰 (图 3(b)), 可以看出校正后的谱峰具有好的线型。

(2) 仿真随机瞬态变化的附加磁场 $\Delta B_0(t)$ 所引起 相位畸变。信号模型为:X(t)= S_i(t)+n(t),n(t)为 迭加的高斯白噪声; $S_i = A \exp(-dt) \times \exp[i(\omega t + \Phi)]$ (t))], $\Phi(t)$ 的变化类似于附加的磁场 $\Delta B_0(t)$ 的影响, 采样点数是 1024 个点。图 5(a) 为原始谱: 图 5(b) 为经

传统一阶线性校正后的谱 图。可以看出,此类效应无 法用线性相位校正得到好 的线形。通过选取其中一 分量(图4)作为参考峰. 将调制信息用于校正全谱 后,所有谱峰均具有较好 的线形(图 5(c)),并日噪 声有所降低。

4 讨 论

本文仿真由附加磁场 后的单峰。 $\Delta B_0(t)$ 引起的谱图相位畸 变,利用CWT直接从已 知的内标参考峰的连续时 间—尺度表示中直接提取 瞬时相位等有用信息,并 动态相位校正。结果表明: 这是一种较为有效的 NMR 谱相位畸变校正方 法。

从本文的理论推导和 仿真研究可知: (1)选用中 心频率较高的Morlet 小 波更容易抑制干扰: (2)小 波变换参数选择很重要。 对同一分析信号,用同一。 小波、相同尺度下分析时,

若小波采样率及伸缩因子 图 5 (a) 相位畸变的原始谱图; 成变换结果较大的误差。

本文的方法基于一个基本假设,即参考峰与其它 共振峰受到附加磁场的影响程度是相同的。该方法潜 在的应用在干: 消除B。匀场不好、梯度场涡流, 仪器某 些不稳定性因素为 FD 的影响, 使谱的这类不完善特 性得到补偿,成为较理想的谱。本文采用M atlab 6.0 进行数据处理。进一步的理论与实验的比较及定量研 究正在进行中。

参考文献

1 S M allat A W avelet Tour of Signal Processing A ca-(下转第155页)

图 4 (a) 为图 5 中最左边谱峰 被单独提取后,为校正全谱提供 校正因子; (b) 经动态相位校正

ADGO= 0; //清A/D 转换标志}

3.2 传感器特性线性化处理

在实际工程中,大多数传感器的输出信号与被测 参数之间呈现非线性,这是造成测量精度低、误差大的 主要原因。热电阻的输出电压与被测温度之间就是一 个非线性,温度与A/D转换值之间的关系(非线性)如 图 6 所示。对其进行非线性补偿时,主要采用把查表法 和计算法结合在一起的插值法。

首先通过精密电阻箱模拟铂电阻的分度表,每隔 5 获取其 10 位 A /D 转换结果显示在LCD 上,得到 关于被测温度与A /D 转换数值对应表,如表 1 所示为 温度 0~300 时,16F877 内部 10 位 A /D 转换器对应 的数值。然后通过该表可以建立起被测温度与A /D 转 换数值之间的对应曲线,用平滑的曲线连接各点,可以 得到如图 6 所示的特性曲线,可以看出它是一个非线 性函数。

图 6 TN (温度/数值)特性

图中温度 T 被分成 30 个均匀的区间, 每个区间 的端点A /D 转换值N k 都对应一个T ko 当A /D 转换值 为 N i 时, 实际测量温度值 T i 一定会落在某个区间 (T k, T k+ 1), 采用线性插值法进行插值, 用通过(N k, T k) 和(N k+ 1, T k+ 1)两点的直线近似代替原特性。通过两点 B K 和 B K+ 1 的直线方程为:

 $T_{i} = T_{k} + \frac{(T_{k+1} - T_{k}) \cdot (N_{i} - N_{k})}{N_{k+1} - N_{k}}$

从中可以看出线性化的精度由哲线的段数决定, 分段越多,精度与准确度越好。有时为了提高精度,也

表1 温度—A/D 转换对照表

温度	A∕D值	温度	A ∕D 值	温度	A ∕D 值
0	0	105	360	210	718
15	37	120	413	225	767
30	91	135	464	240	816
45	147	150	516	255	864
60	201	165	767	270	928
75	254	180	618	285	977
90	307	195	668	300	1023

可以采用抛物线插值。分段是可以采用等分也可以采 用非等分,这里我们采用等分的方法。

3 3 线性化软件的C语言实现

根据上述公式其线性化处理程序如下:

unsigned long Count _ Tem (unsigned int ad _ counter)

- { unsigned long js1, js2; unsigned char js= 0; while(1)
 - { jsl= counter[js]; js2= counter[js+ 1]; if(ad_counter> = js1 && ad_counter< = js2) //判断N;是否在(N_k,N_{k+1})内
 - { temp1= tempture[js]; temp2= tempture[js+ 1]; temp= temp1+ (ad_counter_js1) * 500/(js2- js1);
 - //代入公式计算结果
 - return temp; //返回温度值
 - } $j_{s=j_{s+1}; if(j_{s>61}) \{b_{reak}; \}$

}}

4 结 论

本文介绍了基于热电阻的智能式二线制温度变送器,经过单片机数据处理之后,精度可以保证在0.1% FS,具有现场显示变送一体化功能,同时采用数字电 位器实现零点和满度的调整,操作简单、直观,准确度 高。该变送器体积小,成本低、精度高、可靠性好,已产 品化批量生产,并得到广泛的应用。

参考文献

- 赵新民 智能仪器设计基础[M] 哈尔滨: 哈尔滨工业大 学出版社, 1999.
- 2 刘和平. 单片机原理及应用[M] 重庆: 重庆大学出版社,
 2002

(上接第 142 页)

dem ic Press, 1998

- X. G. Shao, et al. Resolution of the NMR Spectrum using W avelet Transform. Applied Spectroscopy, 2000, 54 (5): 731~ 738
- 3 毛希安 核磁共振基础简论 北京:北京科学出版社, 1996
- 4 S. Ding, C. A. M dDow ell High Resolution, High Sensi-

tivity Proton NMR Spectra of Solids obtained using Continuous Wavelet Transform Analysis Chem. Phys Letts, 2000, (322): 341~350

 P. Guillem ain, et al. Characterization of A coustic Signal through ContinuousL inear T in e-Frequency Representations IEEE Trans, 1992, 84(4): 561~664