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Abstract

Abstract of thesis entitled:

Numerical Methods

for

Inverse Eigenvalue Problems

Submitted by BAI Zheng Jian

for the degree of Doctor of Philosophy in Mathematics

at The Chinese University of Hong Kong in May 2004

An inverse eigenvalue problem is to determine a structured matrix from a given

spectral data. Inverse eigenvalue problems arise in many applications, including

control design, system identification, seismic tomography, principal component

analysis, exploration and remote sensing, antenna array processing, geophysics,

molecular spectroscopy, particle physics, structure analysis, circuit theory, Hop-

field neural networks, mechanical system simulation, and so on. There is a large

literature on the theoretic and the algorithmic aspects of inverse eigenvalue prob-

lems. In this thesis, we first note that Method III, originally proposed by Fried-

land, Nocedal, and Overton [SIAM J. Numer. Anal., 24 (1987), pp. 634–667]

for solving inverse eigenvalue problems, is a Newton-type method. When the

inverse problem is large, one can solve the Jacobian equation by iterative meth-

ods. However, iterative methods usually oversolve the problem in the sense that

they require far more (inner) iterations than is required for the convergence of

the Newton (outer) iterations. To overcome the shortcoming of Method III, we
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provide an inexact method, called inexact Cayley transform method, for solving

inverse eigenvalue problems. Our inexact Cayley transform method can mini-

mize the oversolving problem and improve the efficiency. Then we consider the

solvability of the inverse eigenproblems for two special classes of matrices. The

sufficient and necessary conditions are obtained. Also, we discuss the best ap-

proximation problems for the two special inverse eigenproblems. We show that

the best approximations are unique and provide explicit expressions for the op-

timal solution. Moreover, we respectively propose the algorithms for computing

the optimal solutions to the two best approximation problems.

The thesis is composed of the following papers, which will be referred to in

the text by the capital letters A–C.

[A] Z. Bai, R. Chan, and B. Morini, An Inexact Cayley Transform Method for

Inverse Eigenvalue Problems, submitted.

[B] Z.J. Bai, The Solvability Conditions for the Inverse Eigenvalue Problem of

Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approxima-

tion, Inverse Problems, 19 (2003), 1185–1194.

[C] Z.J. Bai and R.H. Chan, Inverse Eigenproblem for Centrosymmetric and

Centroskew Matrices and Their Approximation, Theoret. Comput. Sci.,

315 (2004), 309–318.
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Summary

1 Introduction

Let A0, A1, . . . , An be real symmetric n-by-n matrices. For any vector c =

(c1, c2, . . . , cn)T∈ Rn, we define the matrix A(c) by

A(c) ≡ A0 +
n∑

i=1

ciAi.

We denote the eigenvalues of A(c) by {λi(c)}n
i=1 with λ1(c) ≤ λ2(c) ≤ · · · ≤

λn(c). The inverse eigenvalue problem is defined as follows:

IEP: Given n real numbers λ∗1 ≤ · · · ≤ λ∗n, find a vector c∗ ∈ Rn such that

λi(c
∗) = λ∗i for i = 1, . . . , n.

In particular, there are two special cases of the IEP, i.e. the additive and mul-

tiplicative inverse eigenvalue problems. The IEP has been used successfully in a

variety of applications. The classical example is the solution of inverse Sturm-

Liouville problems, see for instance Borg [8], Gelfand and Levitan [30], Down-

ing and Householder [22], Osborne [47] and Hald [34]. The IEP also appears in

studying a vibrating string (see for instance Zhou and Dai [61]) and Downing and

1
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Householder [22]), nuclear spectroscopy (see for instance Brussard and Glaude-

mans [9]) and molecular spectroscopy (see for instance Pliva and Toman [48] and

Friedland [28]). In addition, there are some variations of the IEP arising in factor

analysis (see for instance Harman [35]) and the educational testing problem (see

for instance Chu and Wright [18], Friedland [26] and Fletcher [24]). There is a

rich literature on the theoretic and the numerical aspects of the IEP. By using the

techniques from algebraic curves, degree theory, or algebraic geometry, there are

some necessary and sufficient conditions on the solvability of the IEP. For some

conditions on the existence and uniqueness of solutions to additive inverse eigen-

value problems, see, for examples, [1, 27, 10, 4, 32, 40, 41, 45, 49, 52, 53, 58, 59].

For the solvability to the multiplicative inverse eigenvalue problems, see for in-

stance [21, 33, 46, 50, 54]. There are also many numerical algorithms developed

for computational purposes. A partial list for solving the additive inverse eigen-

value problems, includes, for examples, [5, 6, 7, 22, 29, 34, 43, 44, 56].

The attempt to collect the inverse eigenvalue problems, to identify and classify

their characteristics, and to summarize current developments in both the theoretic

and the algorithmic aspects was made by many authors such as Zhou and Dai

[61], Xu [58], Chu [14, 15] and Chu and Golub [16].

Four numerical methods for the IEP have been surveyed by Friedland, No-

cedal, and Overton [29] for solving the general IEP. We first note that one of

these methods, Method III, is a Newton-type method. When the inverse problem
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is large, iterative methods are used to solve the Jacobian equation. However,

iterative methods usually oversolve the problem in the sense that they require

far more (inner) iterations than is required for the convergence of the Newton

(outer) iterations. For minimizing the oversolving problem and improving the

efficiency, we have to look for new approaches to reduce or minimize the over-

solving problem and improve the efficiency. For solving the oversolving problem,

based on Method II in [29], Chan, Chung, and Xu [11] have proposed an inexact

Newton-like Method for the IEP when the problem is large. In this thesis, based

on Method III in [29], we consider using the inexact Cayley transform method for

solving the IEP when the problem is large. We give some practical experiments

which illustrate our results.

We also consider the following two related problems:

Problem I: Given

X = [x1,x2, . . . ,xm] ∈ Cn×m

and

Λ = diag(λ1, . . . , λm) ∈ Cm×m,

find a structured matrix A ∈ Cn×n such that

AX = XΛ,

where Cn×m denotes the set of all n-by-m complex matrices.
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Problem II: Let LS be the solution set of Problem I. Given a matrix Ã ∈ Cn×n,

find A∗ ∈ LS such that

‖Ã− A∗‖ = min
A∈LS

‖Ã− A‖,

where ‖ · ‖ is the Frobenius norm.

The first problem initially appeared in the design of Hopfield neural net-

works [17, 42]. It is also applied to the design of vibration in mechanical, civil

engineering and aviation [13]. The second problem occurs frequently in experi-

mental design, see for instance [38, p.123]. Here the matrix Ã may be a matrix

obtained from experiments, but it may not satisfy the structural requirement

and/or spectral requirement. The best estimate A∗ is the matrix that satisfies

both restrictions and is the best approximation of Ã in the Frobenius norm, see

for instance [2, 3, 36].

In this thesis, we discuss the two problems for two important special classes of

matrices: Hermitian and generalized skew-Hamilton matrices and centrosymmet-

ric matrices. For the two sets of structured matrices, we present the solvability

conditions and provide the general solution formula for Problem I. Also we show

the existence and uniqueness of the solution for Problem II, and then derive the

expression of the solution when the solution set LS is nonempty, and finally we

propose the algorithms to compute the solution to Problem II. We also give some

illustrative numerical examples.
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2 Summary of Papers A–C

In this section, we summarize the papers A–C and briefly review the main results.

2.1 Paper A

When the given eigenvalues are distinct, the IEP can be formulated as a nonlinear

system of equations

f(c) = (λ1(c)− λ∗1, · · · , λn(c)− λ∗n)T = 0. (1)

Four Newton-type methods for solving (1) were given by Friedland, Nocedal, and

Overton [29]. When the IEP is large, Method III has an obvious disadvantage:

the inversions will be costly. The cost can be reduced by using iterative methods

(the inner iterations). Although an iterative method can reduce the complexity, it

may oversolve the approximate Jacobian equation in the sense that the last tens

or hundreds inner iterations before convergence may not improve the convergence

of the outer Newton iterations [23]. The inexact Newton method stops the inner

iterations before convergence. By choosing suitable stopping criteria, we can

reduce the total cost of the whole inner-outer iterations.

In this paper, we consider an inexact Cayley transform method for solving the

IEP. For general nonlinear equation h(c) = 0, the stopping criterion of inexact

Newton methods is usually given in terms of h(c), see for instance [23, 25]. By

(1), this will involve computing the exact eigenvalues λi(c
k) of A(ck) which are

costly to compute. Our idea is to replace them by the Rayleigh quotients. We
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show that our inexact method converges superlinearly in the root sense and a

good tradeoff between the required inner and outer iterations can be obtained.

We can also observe the facts from our numerical tests.

2.2 Paper B

Hamiltonian and skew-Hamiltonian matrices play an important role in engineer-

ing, such as in linear-quadratic optimal control [37, 51], H∞ optimization [60], and

the related problem of solving algebraic Riccati equations [39]. In this paper, we

study Problems I and II related to Hermitian and generalized skew-Hamiltonian

matrices.

2.3 Paper C

The centrosymmetric and centroskew matrices play an important role in many

areas [19, 55] such as signal processing [20, 31], the numerical solution of dif-

ferential equations [12], and Markov processes [57]. In this paper, we consider

Problems I and II related to centrosymmetric and centroskew matrices.
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An Inexact Cayley Transform Method For

Inverse Eigenvalue Problems

Abstract

The Cayley transform method is a Newton-like method for solving in-

verse eigenvalue problems. If the problem is large, one can solve the Ja-

cobian equation by iterative methods. However, iterative methods usually

oversolve the problem in the sense that they require far more (inner) it-

erations than is required for the convergence of the Newton (outer) itera-

tions. In this paper, we develop an inexact version of the Cayley transform

method. Our method can reduce the oversolving problem and improves the

efficiency with respect to the exact version. We show that the convergence

rate of our method is superlinear and that a good tradeoff between the

required inner and outer iterations can be obtained.

1 Introduction

Inverse eigenvalue problems arise in a variety of applications, see for instances

the pole assignment problem [3, 28], the inverse Toeplitz eigenvalue problem

[6, 27, 31], the inverse Sturm-Liouville problem [1, 18], and also problems in ap-

plied mechanics and structure design [15, 16, 19], applied geophysics [26], applied

physics [20], numerical analysis [23], and dynamics systems [11]. A good reference

14
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for these applications is the recent survey paper on structured inverse eigenvalue

problems by Chu and Golub [8]. In many of these applications, the problem size

n can be large. For example in the discrete inverse Sturm-Liouville problem, n is

the number of grid-points, see Chu and Golub [8, p. 10]. Our goal in this paper

is to derive an efficient algorithm for solving inverse eigenvalue problems when n

is large.

Let us first define the notations. Let {Ak}n
k=0 be n + 1 real symmetric n-by-n

matrices. For any c = (c1, . . . , cn)T ∈ Rn, let

A(c) ≡ A0 +
n∑

i=1

ciAi, (1)

and denote the eigenvalues of A(c) by {λi(c)}n
i=1, where λ1(c) ≤ λ2(c) ≤ · · · ≤

λn(c). An inverse eigenvalue problem (IEP) is defined as follows: Given n real

numbers λ∗1 ≤ · · · ≤ λ∗n, find c ∈ Rn such that λi(c) = λ∗i for i = 1, . . . , n.

We note that the IEP can be formulated as a system of nonlinear equations

f(c) ≡ (λ1(c)− λ∗1, . . . , λn(c)− λ∗n)T = 0. (2)

It is easy to see that a direct application of Newton method to (2) requires the

computation of λi(c) at each iteration. To overcome the drawback, different

Newton-like methods for solving (2) are given in [14]. One of these methods,

Method III, forms an approximate Jacobian equation by applying matrix ex-

ponentials and Cayley transforms. As noted in [5], the method is particularly

interesting and it has been used or cited in [6, 7, 21, 29] for instances.
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If (2) is solved by Newton-like methods, then in each Newton iteration (the

outer iteration), we need to solve the approximate Jacobian equation. When n

is large, solving such a linear system will be costly. The cost can be reduced by

using iterative methods (the inner iterations). Although iterative methods can

reduce the complexity, they may oversolve the approximate Jacobian equation

in the sense that the last tens or hundreds inner iterations before convergence

may not improve the convergence of the outer Newton iterations [10]. In order to

alleviate the oversolving problem, we propose in this paper an inexact Newton-like

method for solving the nonlinear system (2). The inexact Newton-like method is

a method that stops the inner iterations before convergence. By choosing suitable

stopping criteria, we can minimize the oversolving problem and therefore reduce

the total cost of the whole inner-outer iterations. In essence, one does not need

to solve the approximate Jacobian equation exactly in order that the Newton

method converges fast.

In this paper, we give an inexact version of Method III where the approximate

Jacobian equation is solved inexactly by stopping the inner iterations before con-

vergence. We propose a new criterion to stop the inner iterations at each Newton

step and provide theoretical and experimental results for the procedure. First,

we will show that the convergence rate of our method is superlinear. Then, we

illustrate by numerical examples that it can avoid the oversolving problem and

thereby reduce the total cost of the inner-outer iterations.

We remark that our proposed method is locally convergent. Thus, how to
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select the initial guess becomes a crucial problem. However, global continuous

methods such as the homotopy method can be used in conjunction with our

procedure. In these continuous methods, our inexact method can be used as

the corrector step where a valid starting point is provided by the globalization

strategy, see for examples [2] and [33, pp. 256–262].

This paper is organized as follows. In §2, we recall Method III for solving

the IEP. In §3, we introduce our inexact method. In §4, we give the convergence

analysis of our method. In §5, we present numerical tests to illustrate our results.

In §6, we give some remarks on the case when multiple eigenvalues are present.

2 The Cayley Transform Method

Method III in [14] is based on Cayley transforms. In this section, we briefly recall

this method. Let c∗ be a solution to the IEP. Then there exists an orthogonal

matrix Q∗ satisfying

QT
∗A(c∗)Q∗ = Λ∗, Λ∗ = diag(λ∗1, . . . , λ

∗
n). (3)

Suppose that ck and Qk are the current approximations of c∗ and Q∗ in (3)

respectively and that Qk is an orthogonal matrix. Define eZk ≡ QT
k Q∗. Then Zk

is a skew-symmetric matrix and (3) can be written as

QT
k A(c∗)Qk = eZkΛ∗e−Zk = (I + Zk +

1

2
(Zk)

2 + · · · )Λ∗(I − Zk +
1

2
(Zk)

2 + · · · ).

Thus QT
k A(c∗)Qk = Λ∗+ZkΛ∗−Λ∗Zk +O(‖Zk‖2), where ‖·‖ denotes the 2-norm.
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In Method III, ck is updated by neglecting the second order terms in Zk, i.e.

QT
k A(ck+1)Qk = Λ∗ + ZkΛ∗ − Λ∗Zk. (4)

We find ck+1 by equating the diagonal elements in (4), i.e. ck+1 is given by

(qk
i )

T A(ck+1)qk
i = λ∗i , i = 1, . . . , n, (5)

where {qk
i }n

i=1 are the column vectors of Qk. By (1), (5) can be rewritten as a

linear system

J (k)ck+1 = λ∗ − b(k), (6)

where λ∗ ≡ (λ∗1, . . . , λ
∗
n)T , and

[
J (k)

]
ij

= (qk
i )

T Ajq
k
i , i, j = 1, . . . , n, (7)

[b(k)]i = (qk
i )

T A0q
k
i , i = 1, . . . , n. (8)

Once we get ck+1 from (6), we obtain Zk by equating the off-diagonal elements

in (4), i.e.

[Zk]ij =
(qk

i )
T A(ck+1)qk

j

λ∗j − λ∗i
, 1 ≤ i 6= j ≤ n. (9)

Finally we update Qk by setting Qk+1 = QkUk, where Uk is an orthogonal matrix

constructed by the Cayley transform for eZk , i.e.

Uk = (I +
1

2
Zk)(I − 1

2
Zk)

−1.

We summarize the algorithm here.

Algorithm I: Cayley Transform Method
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1. Given c0, compute the orthonormal eigenvectors {qi(c
0)}n

i=1 of A(c0). Let

Q0 = [q0
1, . . . ,q

0
n] = [q1(c

0), . . . ,qn(c0)].

2. For k = 0, 1, 2, . . ., until convergence, do:

(a) Form the approximate Jacobian matrix J (k) by (7) and b(k) by (8).

(b) Solve ck+1 from the approximate Jacobian equation (6).

(c) Form the skew-symmetric matrix Zk by (9).

(d) Compute Qk+1 = [qk+1
1 , . . . ,qk+1

n ] = [wk+1
1 , . . . ,wk+1

n ]T by solving

(I +
1

2
Zk)w

k+1
j = gk

j , j = 1, · · · , n, (10)

where gk
j is the jth column of Gk = (I − 1

2
Zk)Q

T
k .

This method was proved to converge quadratically in [14]. Note that in each

outer iteration (i.e. Step 2), we have to solve the linear systems (6) and (10).

When the systems are large, we may reduce the computational cost by solving

both systems iteratively. One could expect that it requires only a few iterations

to solve (10) iteratively. This is due to the fact that, as {ck} converges to c∗,

‖Zk‖ converges to zero, see [14, Equation (3.64)]. Consequently, the coefficient

matrix on the left hand side of (10) approaches the identity matrix in the limit,

and therefore (10) can be solved efficiently by iterative methods. On the other

hand, iterative methods may oversolve the approximate Jacobian equation (6), in

the sense that for each outer Newton iteration, the last few inner iterations may

not contribute much to the convergence of the outer iterations. How to stop the

inner iterations efficiently is the focus of our next section.
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3 The Inexact Cayley Transform Method

The main aim of this paper is to propose an efficient version of Algorithm I for

large problems. To reduce the computational cost, we solve both (6) and (10)

iteratively with (6) being solved inexactly. First, we derive a computable stopping

criterion for (6), then we establish the convergence rate of the resulting procedure.

For general nonlinear equation f(c) = 0, the stopping criterion of inexact

Newton methods is usually given in terms of f(c), see for instances [10, 12, 22].

By (2), this will involve computing λi(c
k) of A(ck) which are costly to compute.

Our idea is to replace them by the Rayleigh quotients, see (14) and (16) below.

We will prove in §4 that this replacement will retain superlinear convergence.

Algorithm II: Inexact Cayley Transform Method

1. Given c0, compute the orthonormal eigenvectors {qi(c
0)}n

i=1 and the eigen-

values {λi(c
0)}n

i=1 of A(c0). Let P0 = [p0
1, . . . ,p

0
n] = [q1(c

0), . . . ,qn(c0)],

and

ρ0 = (λ1(c
0), . . . , λn(c0))T .

2. For k = 0, 1, 2, . . ., until convergence, do:

(a) Form the approximate Jacobian matrix Jk and bk as follows:

[Jk]ij = (pk
i )

T Ajp
k
i , 1 ≤ i, j ≤ n, (11)

[bk]i = (pk
i )

T A0p
k
i , 1 ≤ i ≤ n. (12)

(b) Solve ck+1 inexactly from the approximate Jacobian equation:

Jkc
k+1 = λ∗ − bk + rk, (13)
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until the residual rk satisfies

‖rk‖ ≤ ‖ρk − λ∗‖β

‖λ∗‖β
, β ∈ (1, 2]. (14)

(c) Form the skew-symmetric matrix Yk:

[Yk]i j =
(pk

i )
T A(ck+1)pk

j

λ∗j − λ∗i
, 1 ≤ i 6= j ≤ n.

(d) Compute Pk+1 = [pk+1
1 , . . . ,pk+1

n ] = [vk+1
1 , . . . ,vk+1

n ]T by solving

(I +
1

2
Yk)v

k+1
j = hk

j , j = 1, · · · , n, (15)

where hk
j is the jth column of Hk = (I − 1

2
Yk)P

T
k .

(e) Compute ρk+1 = (ρk+1
1 , . . . , ρk+1

n )T by

ρk+1
i = (pk+1

i )T A(ck+1)pk+1
i , i = 1, . . . , n. (16)

Since P0 is an orthogonal matrix and Yk are skew-symmetric matrices, we see

that Pk so generated by the Cayley transform in (15) must be orthogonal, i.e.

P T
k Pk = I, k = 0, 1, . . . . (17)

To maintain the orthogonality of Pk, that would mean that (15) cannot be solved

inexactly. However, we will see in §4 that ‖Yk‖ converges to zero as ck converges

to c∗ (see (35) and (44)). Consequently, the matrix on the left hand side of (15)

approaches the identity matrix in the limit. Therefore we can expect to solve

(15) accurately by iterative methods using just a few iterations.

The expensive step in Algorithm II will be the solution of (13). The aim of our

next section is to show that with our stopping criterion in (14), the convergence

rate of Algorithm II is equal to β given in (14).
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4 Convergence Analysis

In the following, we let ck be the kth iterate produced by Algorithm II, and

{λi(c
k)}n

i=1 and {qi(c
k)}n

i=1 be the eigenvalues and normalized eigenvectors of

A(ck). We let Q∗ = [q1(c
∗), . . . ,qn(c∗)] be the orthogonal matrix of the eigen-

vectors of A(c∗). Moreover, we define

Ek ≡ Pk −Q∗, (18)

the error matrix at the kth outer iteration. As in [14], we assume that the given

eigenvalues {λ∗i }n
i=1 are distinct and that the Jacobian J(c∗) defined by

[
J(c∗)

]
ij
≡ qi(c

∗)T Ajqi(c
∗), 1 ≤ i, j ≤ n, (19)

is nonsingular.

4.1 Preliminary Lemmas

In this subsection, we prove some preliminary results which are necessary for the

convergence analysis of our method. First we list three lemmas that are already

proven in other papers.

Lemma 1 Let the given eigenvalues {λ∗i }n
i=1 be distinct and qi(c

∗) be the nor-

malized eigenvectors of A(c∗) corresponding to λ∗i for i = 1, . . . , n. Then there

exist positive numbers δ0 and τ0 such that, if ‖ck − c∗‖ ≤ δ0, we get

‖qi(c
k)− qi(c

∗)‖ ≤ τ0‖ck − c∗‖, 1 ≤ i ≤ n. (20)

Proof: It follows from the analyticity of eigenvectors corresponding to simple

eigenvalues, see for instances [33, p. 249, Equation (4.6.13)].
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Lemma 2 Let Jk, J(c∗) and Ek be defined as in (11), (19) and (18) respectively.

Then ‖Jk − J(c∗)‖ = O(‖Ek‖). Hence if J(c∗) is nonsingular, then there exist

positive numbers ε0 and τ1 such that if ‖Ek‖ ≤ ε0, then Jk is nonsingular and

‖J−1
k ‖ ≤ τ1. (21)

Proof: The first part follows easily from the formula of Jk and J(c∗), and the

second part follows from the continuity of matrix inverses, cf. [4] or [33, p. 249,

Equation (4.6.11)].

Lemma 3 [14, Corollary 3.1] There exist two positive numbers ε1 and τ2 such

that, if ‖Ek‖ ≤ ε1, the skew-symmetric matrix Xk defined by eXk ≡ P T
k Q∗ satisfies

‖Xk‖ ≤ τ2‖Ek‖.

We now express our stopping criteria (14) in terms of ‖ck − c∗‖ and ‖Ek‖.

Lemma 4 Let the given eigenvalues {λ∗i }n
i=1 be distinct and ρk be given by (16).

Then for k ≥ 0,

‖ρk − λ∗‖ = O(‖ck − c∗‖+ ‖Ek‖). (22)

Proof: By (16), ρk
i = (pk

i )
T A(ck)pk

i . For 1 ≤ i ≤ n, we write

|ρk
i − λ∗i | ≤ |(pk

i )
T A(ck)pk

i − (pk
i )

T A(c∗)pk
i |+ |(pk

i )
T A(c∗)pk

i − λ∗i |. (23)

We claim that each term in the right hand side of (23) is bounded by O(‖ck −

c∗‖+ ‖Ek‖). For the first term, by (1) and (17), we have

|(pk
i )

T A(ck)pk
i − (pk

i )
T A(c∗)pk

i | = |(pk
i )

T

n∑
j=1

(ck
j −c∗j)Ajp

k
i | = O(‖ck−c∗‖). (24)
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For the second term, we have

|(pk
i )

T A(c∗)pk
i − λ∗i |

= |(pk
i )

T A(c∗)pk
i − (qi(c

∗))T A(c∗)qi(c
∗)|

≤ |(pk
i )

T A(c∗)pk
i − (qi(c

∗))T A(c∗)pk
i |

+|(qi(c
∗))T A(c∗)pk

i − (qi(c
∗))T A(c∗)qi(c

∗)|

≤ (‖pk
i ‖+ ‖qi(c

∗)‖)‖A(c∗)‖‖qi(c
∗)− pk

i ‖ ≤ O(‖pk
i − qi(c

∗)‖).

Since [pk
i − qi(c

∗)] is the ith column of Ek, ‖pk
i − qi(c

∗)‖ ≤ ‖Ek‖, and we have

|(pk
i )

T A(c∗)pk
i − λ∗i | = O(‖Ek‖), 1 ≤ i ≤ n. (25)

Putting (24) and (25) into (23), we have (22).

As remarked already, the main difference between Algorithm II and Algorithm

I is that we solve (13) approximately rather than exactly as in (6). Thus by

comparing with (4), we see that the matrix Yk and vector ck+1 of Algorithm II

are defined by

Λ∗ + YkΛ∗ − Λ∗Yk = P T
k A(ck+1)Pk −Rk, (26)

where Rk = diag([rk]1, . . . , [r
k]n) and [rk]i is the ith entry of the residual vector

rk given in (13). Using (26), we can estimate ‖ck+1− c∗‖ and ‖Ek+1‖ in terms of

‖ck − c∗‖ and ‖Ek‖.

Lemma 5 Let the given eigenvalues {λ∗i }n
i=1 be distinct and the Jacobian J(c∗)

defined in (19) be nonsingular. Then there exist two positive numbers δ1 and ε2
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such that the conditions ‖ck − c∗‖ ≤ δ1 and ‖Ek‖ ≤ ε2 imply

‖ck+1 − c∗‖ = O(‖ρk − λ∗‖β + ‖Ek‖2), (27)

‖Ek+1‖ = O(‖ck+1 − c∗‖+ ‖Ek‖2). (28)

Proof: Let Xk be defined by eXk ≡ P T
k Q∗. By Lemma 3, if ‖Ek‖ ≤ ε1, then

‖Xk‖ = O(‖Ek‖). (29)

By (3), eXkΛ∗e−Xk = P T
k A(c∗)Pk. Hence, if ‖Ek‖ is small enough, we have

Λ∗ + XkΛ∗ − Λ∗Xk = P T
k A(c∗)Pk + O(‖Ek‖2). (30)

Subtracting (26) from (30), we have

(Xk − Yk)Λ∗ − Λ∗(Xk − Yk) = P T
k (A(c∗)− A(ck+1))Pk + Rk + O(‖Ek‖2). (31)

Equating the diagonal elements yields

Jk(c
k+1 − c∗) = rk + O(‖Ek‖2),

where Jk is defined by (11). Thus if ‖Ek‖ is sufficiently small, then by (21) and

(14), we get (27).

To get (28), we note from (15) that

Ek+1 = Pk+1 −Q∗

= Pk

[
(I +

1

2
Yk) (I − 1

2
Yk)

−1 − eXk

]

= Pk

[
(I +

1

2
Yk)−

(
I + Xk + O(‖Xk‖2)

)
(I − 1

2
Yk)

]
(I − 1

2
Yk)

−1

= Pk

[
Yk −Xk + O(XkYk + ‖Xk‖2)

]
(I − 1

2
Yk)

−1.
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Therefore by (17) and (29), we have

‖Ek+1‖ ≤
[‖Yk −Xk‖+ O(‖Ek‖‖Yk‖+ ‖Ek‖2)

] ‖(I − 1

2
Yk)

−1‖. (32)

We now estimate the norms in the right hand side of (32) one by one. For

1 ≤ i 6= j ≤ n, the off-diagonal equations of (31) give

[Xk]ij − [Yk]ij =
1

λ∗j − λ∗i
(pk

i )
T (A(c∗)− A(ck+1))pk

j + O(‖Ek‖2).

It follows that

|[Xk]ij − [Yk]ij| = O(‖ck+1 − c∗‖+ ‖Ek‖2),

and hence

‖Xk − Yk‖ ≤ ‖Xk − Yk‖F = O(‖ck+1 − c∗‖+ ‖Ek‖2), (33)

where ‖ · ‖F denotes the Frobenius norm. By (29) and (33),

‖Yk‖ = O(‖ck+1 − c∗‖+ ‖Ek‖+ ‖Ek‖2). (34)

By (27) and (22), we have

‖Yk‖ = O(‖ρk − λ∗‖β + ‖Ek‖) = O((‖ck − c∗‖+ ‖Ek‖)β + ‖Ek‖). (35)

Thus if ‖ck−c∗‖ and ‖Ek‖ are sufficiently small, we have ‖Yk‖ ≤ 1, and therefore

‖(I − 1

2
Yk)

−1‖ ≤ 1

1− 1
2
‖Yk‖

≤ 2. (36)

Finally, by putting (33), (34) and (36) into (32), we have (28).
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4.2 Convergence Rate of Algorithm II

In the following, we show that the root-convergence rate of our method is at least

β. Here, we recall the definition of root-convergence, see [25, Chap. 9].

Definition 1 Let {xk} be a sequence with limit x∗. Then the numbers

Rp{xk} =





lim supk→∞ ‖xk − x∗‖1/k, if p = 1,

lim supk→∞ ‖xk − x∗‖1/pk
, if p > 1,

(37)

are the root-convergence factors of {xk}. The quantity

OR(x∗) =




∞, if Rp{xk} = 0,∀p ∈ [1,∞),

inf{p ∈ [1,∞)|Rp{xk} = 1}, otherwise,
(38)

is called the root-convergence rate of {xk}.

We begin by proving that our method is locally convergent.

Theorem 1 Let the given eigenvalues {λ∗i }n
i=1 be distinct and J(c∗) defined in

(19) be nonsingular. Then there exists δ > 0 such that if ‖c0 − c∗‖ ≤ δ, the

sequence {ck} generated by Algorithm II converges to c∗.

Proof: Suppose that ‖ck − c∗‖ ≤ δ1, and ‖Ek‖ ≤ ε = min{1, ε2}, where δ1 and

ε2 are given in Lemma 5. By Lemmas 4 and 5, there exists a constant µ > 1 such

that for any k ≥ 0,

‖ρk − λ∗‖ ≤ µ(‖ck − c∗‖+ ‖Ek‖), (39)

‖ck+1 − c∗‖ ≤ µ(‖ρk − λ∗‖β + ‖Ek‖2), (40)

‖Ek+1‖ ≤ µ(‖ck+1 − c∗‖+ ‖Ek‖2). (41)
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Putting (39) into (40), we have

‖ck+1 − c∗‖ ≤ µ[µβ(‖ck − c∗‖+ ‖Ek‖)β + ‖Ek‖2]

≤ µ[(2µ)β + 1] max
{‖ck − c‖β, ‖Ek‖β

}
. (42)

Putting (42) into (41), and using the fact that µ > 1, we have

‖Ek+1‖ ≤ 2µ max
{‖ck+1 − c‖, ‖Ek‖2

}

≤ 2µ2[(2µ)β + 1] max
{‖ck − c‖β, ‖Ek‖β

}
. (43)

Let ϕ ≡ max{τ0

√
n, 2µ2[(2µ)β + 1]} > 1. Then by (42) and (43), we have

max
{‖ck+1 − c‖, ‖Ek+1‖

} ≤ ϕ max
{‖ck − c‖β, ‖Ek‖β

}
, k = 0, 1, . . . . (44)

We now prove the theorem by using the mathematical induction. In particular,

we show that if ‖c0 − c∗‖ ≤ δ where

δ ≡ min

{
1, δ0, δ1,

ε

ϕ
,

1

ϕβ2/(β−1)2

}
< ε, (45)

then for each k ≥ 1, the following inequalities hold:

max{‖ck − c∗‖, ‖Ek‖} ≤ δ, (46)

max{‖ck − c∗‖, ‖Ek‖} ≤ ϕ1+β+···+βk‖c0 − c∗‖βk

. (47)

We first note that from (20), we have

‖E0‖ ≤
√

n max
i
‖qi(c

0)− qi(c
∗)‖ ≤ τ0

√
n‖c0 − c∗‖ ≤ ϕ‖c0 − c∗‖. (48)

Hence by using (45), ‖E0‖ ≤ ϕ‖c0 − c∗‖ ≤ ϕδ ≤ ε.



Inexact Cayley Transform Method 29

We now verify (47) for k = 1. By (44) and (48),

max{‖c1 − c∗‖, ‖E1‖} ≤ ϕ max
{‖c0 − c‖β, ‖E0‖β

}

≤ ϕ‖c0 − c‖β max
{
1, ϕβ

} ≤ ϕ1+β‖c0 − c‖β. (49)

Moreover, if we define ζ ≡ ϕ
β

β−1 δ, then by (45),

ζβ ≤ δ. (50)

Hence by (49),

max{‖c1 − c∗‖, ‖E1‖} ≤ ϕ1+βδβ = (ϕ
1+β

β δ)β ≤ (ϕ
β

β−1 δ)β = ζβ ≤ δ.

Thus (46) holds for k = 1.

Next we assume that at the kth iteration, (46) and (47) hold. We first prove

that (47) holds for k + 1. In fact, by (44) and (47) for k, we have

max{‖ck+1 − c∗‖, ‖Ek+1‖} ≤ ϕ ·
(
ϕ1+β+···+βk‖c0 − c∗‖βk

)β

= ϕ1+β+···+βk+1‖c0 − c∗‖βk+1

. (51)

To prove that (46) holds for k + 1, we use (51):

max{‖ck+1 − c∗‖, ‖Ek+1‖} ≤
(

ϕ
1+β+···+βk+βk+1

βk+1 ‖c0 − c∗‖
)βk+1

=

(
ϕ

(
1

βk+1 + 1

βk +···+1
)
‖c0 − c∗‖

)βk+1

≤ (ϕ
β

β−1‖c0 − c∗‖)βk+1 ≤ ζβk+1

. (52)

By (50), we have ζ ≤ δ1/β ≤ 1. Hence

max{‖ck+1 − c∗‖, ‖Ek+1‖} ≤ ζβk+1 ≤ ζβ ≤ δ.



Inexact Cayley Transform Method 30

Thus we have proved that (46) and (47) hold for any k ≥ 1. Moreover, from (52),

we see that {ck} converges to c∗.

We end this section by establishing the root convergence of our method.

Theorem 2 Under the same conditions as in Theorem 1, the iterates {ck} con-

verges to c∗ with root-convergence rate at least equal to β.

Proof: By Theorem 1, we know that {ck} converges to c∗. From (52), we have for

any k ≥ 1, ‖ck − c∗‖ ≤ ζβk
, where ζ < 1. We now estimate the root-convergence

factors of {ck} defined in (37) for different values of p:

1. If p = 1, then

R1{ck} = lim sup
k→∞

‖ck − c∗‖1/k ≤ lim sup
k→∞

ζβk/k = 0.

2. If 1 < p < β, then

Rp{ck} = lim sup
k→∞

‖ck − c∗‖1/pk ≤ lim sup
k→∞

ζ(β/p)k

= 0.

3. If p = β, then

Rβ{ck} = lim sup
k→∞

‖ck − c∗‖1/βk ≤ ζ < 1.

4. If p > β, then

Rp{ck} = lim sup
k→∞

‖ck − c∗‖1/pk ≤ lim sup
k→∞

ζ(β/p)k

= 1.

Therefore, Rp{ck} = 0 for any p ∈ [1, β) and Rp{ck} ≤ 1 for any p ∈ [β,∞).

Thus according to (38), OR(c∗) ≥ β.
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5 Numerical Experiments

In this section, we compare the numerical performance of Algorithm I with that

of Algorithm II on two problems. The first one is the inverse Toeplitz eigenvalue

problem, see [6, 27, 31], and the second one is the inverse Sturm-Liouville problem,

see [14] and [8, p. 10]. Our aim is to illustrate the advantage of our method

over Algorithm I in terms of minimizing the oversolving problem and the overall

computational complexity.

Example 1. In this example, we use Toeplitz matrices as our Ai in (1):

A0 = O, A1 = I, A2 =




0 1 0 · · · 0

1 0 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . 0 1

0 · · · 0 1 0




, · · · , An =




0 0 · · · 0 1

0
. . . . . . · · · 0

...
. . . . . . . . .

...

0 · · · . . . . . . 0

1 0 · · · 0 0




.

Thus A(c) is a symmetric Toeplitz matrix with first column equal to c. We

consider three problem sizes: n = 100, 200, and 300. For each value of n, we

constructed ten n-by-n test problems where the exact solutions c∗ are chosen

randomly. Then we computed the eigenvalues {λ∗i }n
i=1 of A(c∗) as the prescribed

eigenvalues. Since both algorithms are locally convergent, c0 was formed by

chopping the components of c∗ to four decimal places for n = 100 and to five

decimal places for n = 200 and 300.

The linear systems (6), (10), (13), and (15) are solved iteratively by the QMR

method [13] using the Matlab-provided QMR function. To guarantee the orthog-

onality of Qk in (10) and Pk in (15), both systems are solved up to machine
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precision eps (which is ≈ 2.2× 10−16). We use the right-hand side vector as the

initial guess for these two systems.

For the Jacobian systems (6) and (13), we use ck, the iterant at the kth iter-

ation, as the initial guess for the iterative method at the (k + 1)th iteration. We

note that both systems are difficult to solve and one can use preconditioning to

speed up the convergence. Here we have used the Matlab-provided Modified ILU

(MILU) preconditioner: LUINC(A,[drop-tolerance,1,1,1]) since the MILU

preconditioner is one of the most versatile preconditioners for unstructured ma-

trices [9, 17]. The drop tolerance we used is 0.05 for all the three problem sizes.

We emphasize that, we are not attempting to find the best preconditioners for

these systems, but trying to illustrate that preconditioning can be incorporated

into both systems easily.

The inner loop stopping tolerance for (13) is given by (14). For (6) in Algo-

rithm I, we are supposed to solve it up to machine precision eps. Here however,

we first try to solve (6) with a larger stopping tolerance of 10−13 and compare the

two algorithms. Later we will vary this and see how it affects the performance of

Algorithm I. The outer iterations of Algorithms I and II are stopped when

‖QT
k A(ck)Qk − Λ∗‖F ≤ 10−10, and ‖P T

k A(ck)Pk − Λ∗‖F ≤ 10−10. (53)

In Table 1, we give the total numbers of outer iterations No averaged over the

ten tests and the average total numbers of inner iterations Ni required for solving

the approximate Jacobian equations. In the table, “I” and “P” respectively mean
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no preconditioner or the MILU preconditioner is used. We can see from Table 1

that No is small for Algorithm I and also for Algorithm II when β ≥ 1.5. This

confirms the theoretical convergence rate of the two algorithms. In terms of Ni,

Algorithm II is more effective than Algorithm I for β ≈ 1.5. We also note that

the MILU preconditioner is quite effective for the Jacobian equations.

β in Alg. II
n Alg. I

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

No 3.2 12 5.2 4 3.3 3.2 3.2 3.2 3.2 3.2 3.2
100 I

Ni 397 755 445 379 327 323 325 329 336 339 349

No 3.2 7.7 5.3 4.2 3.7 3.2 3.2 3.2 3.2 3.2 3.2
P

Ni 37.7 15.3 15.7 15.6 19 17.9 20.8 24 27.4 28.1 30.9

No 3 10.9 6 4 3 3 3 3 3 3 3
200 I

Ni 818 1444 1144 855 684 719 725 732 738 747 763

No 3 7.4 5.1 4 3 3 3 3 3 3 3
P

Ni 49.8 22.5 24.4 27.6 24.5 29.6 35.8 41 42.2 44 48.7

No 3 11 6 4 3 3 3 3 3 3 3
300 I

Ni 1329 2086 1729 1348 1106 1171 1207 1241 1257 1259 1286

No 3 7.8 5.2 4 3 3 3 3 3 3 3
P

Ni 74.2 35 35.7 37.3 32.9 40.2 48.4 56.1 62.3 65.4 67.5

Table 1: Averaged total numbers of outer and inner iterations.

To further illustrate the oversolving problem, we give the convergence history

of Algorithms I and II for one of the test matrices with n = 100 in Figure 1. The

figure depicts the logarithm of the error versus the number of inner iterations for

solving the Jacobian systems (6) and (13) by the preconditioned QMR method.

We have labeled the error at the outer iterations with special symbols. We can

see that for Algorithm I, the oversolving problem is very significant (see the

horizontal lines between iteration numbers 5 to 15, and 20 to 28), whereas there

are virtually no oversolving for Algorithm II with β = 1.5.
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Figure 1: Convergence history of one of the test matrices.

In Table 1, (6) is solved with stopping tolerance η = 10−13. One may expect

that by increasing this stopping tolerance η, i.e. by solving (6) more inexactly,

one can obtain an inexact method that may be better than our Algorithm II.

To illustrate that it is not the case, we tried solving (6) with different η for ten

matrices with n = 100 and 200, and compare their results with our Algorithm

II with β = 1.5. We also repeated the experiments with four different iterative

methods: the BiCG [32] and the CGS [30] methods together with their MILU-

preconditioned versions. From Table 2, we see that our method is better than

just solving (6) with increasing η. In fact, if η is big, the outer iteration does not

converge within 20 iterations; and if η is small, the number of inner iterations will

be bigger than that of our method. We also see that when n is larger, η should

be smaller in order that the outer iteration converges.
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Also from Table 2, we see that CGS performs better than the other two

iterative solvers if preconditioning is used, but is worse if not. Since in general,

we do not have any information regarding the structure of the Jacobian matrix

in (6) and (13), choosing a good iterative solver for these systems will not be an

easy problem, not to mention the choice of an effective preconditioner for them.

However, the results in Table 2 show that the oversolving problem is independent

of the solvers we choose. Our method is always better than Algorithm I if the

same iterative solver is used. Again MILU is an efficient preconditioner in all

cases.

n = 100 n = 200

Alg. II Alg. I Alg. II Alg. I

β = 1.5 Stopping tolerance η for (6) β = 1.5 Stopping tolerance η for (6)

10−13 10−12 10−11 10−10 10−13 10−12 10−11

No 3.2 3.2 3.2 3.2 > 20 3 3 3 > 20

QMR Ni 323 397 356 344 * 719 818 738 *

BiCG Ni 322 371 359 347 * 715 783 745 *

CGS Ni 372 446 425 392 * 825 943 874 *

PQMR Ni 17.9 37.7 32.7 28.2 * 29.6 49.8 41.8 *

PBiCG Ni 18.3 37.7 33.1 28.5 * 30.5 49.5 42 *

PCGS Ni 10.6 21.3 19 15.1 * 18.2 28.4 24.4 *

Table 2: Averaged total numbers of inner iterations.

As mentioned in §§2–3, solving the linear systems (10) and (15) iteratively

will require only a few iterations since the coefficient matrices of these systems

converge to the identity matrix as ck converges to c∗. We report in Table 3 the

numbers of iterations required for convergence for these systems, averaged over

the ten test problems with n = 100 and 200. From the table, we see that the
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number of inner iterations required is small and decreases as the outer itera-

tion progresses. Thus it is reasonable to solve these systems by iterative solvers

without any preconditioning.

n = 100 n = 200

Outer iteration 1st 2nd 3rd 1st 2nd 3rd

Alg. I 9.7 5.4 2.6 8.6 4.8 2.0

Alg. II with β = 2.0 9.8 5.3 2.6 8.6 4.8 2.0

Alg. II with β = 1.5 9.9 5.3 2.6 8.5 4.7 2.0

Table 3: Averaged numbers of inner iterations required by Step (d) of Algorithms

I and II.

Example 2. Consider the Sturm-Liouville problem:

−u′′ + q(x)u = λu, u(0) = u(π) = 0. (54)

The inverse Sturm-Liouville problem is to determine q(x) from λ. By the central

difference scheme with uniform mesh h = π/(n+1), the differential equation (54)

is reduced to the matrix eigenvalue problem with tridiagonal structure:

(
A0 + h2X

)
u = h2λu, (55)

where A0 is the Laplacian matrix with zero boundary condition and X is a diag-

onal matrix representing the discretization of q(x).

The discrete analogue of the inverse Sturm-Liouville problem is an inverse

eigenvalue problem. It is to determine the diagonal matrix X so that the matrix

on the left hand side of (55) possesses a prescribed spectrum. Let Aj = h2eje
T
j ,
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for j = 1, · · · , n, where ej is the jth unit n-vector. Thus we have the form (1)

with X = diag(c). For demonstration purposes, we consider n = 100 here. Given

the exact solution c∗ with entries [c∗]i = e3ih, 1 ≤ i ≤ n, i.e. q(x) = e3x, we use

the eigenvalues {h2λ∗i }n
i=1 of A(c∗) as the prescribed spectrum. We perturb each

entry of c∗ by a random number uniformly distributed between −1 and 1, and

then use the perturbed vector as the initial guess c0 for both Algorithms I and

II.

The systems (6), (10), (13), and (15) are solved by the MILU-preconditioned

QMR method as in Example 1. Table 4 gives the total numbers of outer and

inner iterations N0 and Ni averaged over ten different initial guesses. From the

table, we can see again that our method with β ≈ 1.5 is better than Algorithm

I.

Alg. I β in Alg. II

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

No 3 7.8 5.3 4.4 4 3 3 3 3 3 3

Ni 71.6 65.1 60.3 60 62.8 48.6 56.6 60.4 65.7 68.1 73.2

Table 4: Averaged total numbers of outer and inner iterations for Example 2.

6 Remarks On Multiple Eigenvalues

In this section, we suppose that {λ∗i }n
i=1 includes multiple eigenvalues and that

there exists a solution c∗ to IEP. For convenience, we assume that only the sth
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eigenvalue is multiple, with multiplicity t , i.e.,

λ∗1 < λ∗2 < · · · < λ∗s = λ∗s+1 = · · · = λ∗s+t < λ∗s+t+1 < · · · < λ∗n.

Then it is easy to generalize our remarks to an arbitrary set of multiple eigenval-

ues.

Let us now consider Algorithm II. Equation (13) still holds, regardless of the

eigenvalue multiplicities. The off-diagonal equations in Substep (c) of Step 2 is

not true for s ≤ i 6= j ≤ s + t as before. A reasonable course is to set

[Yk]ij = 0, s ≤ i 6= j ≤ s + t.

With this choice, following the proof of Theorems 1 and 2, we can show that the

iterates {ck} converge to c∗ with root-convergence rate at least β.

Acknowledgment: We would like to thank the referees for their insightful and

valuable comments.
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The Solvability Conditions for the Inverse

Eigenvalue Problem of Hermitian and

Generalized Skew-Hamiltonian Matrices and Its

Approximation

Abstract

In this paper, we first consider the inverse eigenvalue problem as fol-

lows: Find a matrix A with specified eigen-pairs, where A is a Hermitian

and generalized skew-Hamiltonian matrix. The sufficient and necessary

conditions are obtained, and a general representation of such a matrix is

presented. We denote the set of such matrices by LS . Then the best ap-

proximation problem for the inverse eigenproblem is discussed. That is:

Given an arbitrary Ã, find a matrix A∗ ∈ LS which is nearest to Ã in

the Frobenius norm. We show that the best approximation is unique and

provide an expression for this nearest matrix.

1 Introduction

Let J ∈ Rn×n be an orthogonal skew-symmetric matrix, i.e. J ∈ Rn×n satisfies

that JT J = JJT = In, JT = −J . Then we have J2 = −In and n = 2k, k ∈ N .

In the following, we give the definitions of generalized Hamiltonian and general-

43
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ized skew-Hamiltonian matrices. Here, we denote the set of all n-by-m complex

matrices by Cn×m.

Definition 1 Given an orthogonal skew-symmetric matrix J.

(1) A matrix H ∈ Cn×n is called generalized Hamiltonian if (HJ)H = HJ . The

set of all n-by-n generalized Hamiltonian matrices is denoted by GHn×n.

(2) A matrix H ∈ Cn×n is called generalized skew-Hamiltonian if (HJ)H =

−HJ . The set of all n-by-n generalized skew-Hamiltonian matrices is de-

noted by GSHn×n.

We observe that the sets GHn×n and GSHn×n depend on the choice of the

matrix J . If J =




0 Ik

−Ik 0


, then the sets GHn×n and GSHn×n are the well-

known sets of Hamiltonian and skew-Hamiltonian matrices.

Definition 2 Given an orthogonal skew-symmetric matrix J.

(1) A matrix A ∈ Cn×n is said to be a Hermitian and generalized Hamiltonian

matrix if AH = A and (AJ)H = AJ . The set of all n-by-n Hermitian and

generalized Hamiltonian matrices is denoted by HHn×n.

(2) A matrix A ∈ Cn×n is said to be a Hermitian and generalized skew-Hamiltonian

matrix if AH = A and (AJ)H = −AJ . The set of all n-by-n Hermitian and

generalized skew-Hamiltonian matrices is denoted by HSHn×n.

Hamiltonian and skew-Hamiltonian matrices play an important role in engi-

neering, such as in linear-quadratic optimal control [13, 17], H∞ optimization

[24], and the related problem of solving algebraic Riccati equations [11].

In this paper, we will study two problems related to Hermitian and generalized

skew-Hamiltonian matrices. The first problem is a kind of inverse eigenvalue
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problems. For decades, structured inverse eigenvalue problems have been of great

value for many applications, see for instance the expository papers [7, 22]. There

are also different types of inverse eigenproblem, for instances multiplicative type

and additive type [22, Chapter 4]. In what follows, we consider the following type

of inverse eigenproblem which appeared in the design of Hopfield neural networks

[6, 12].

Problem I. Given X = [x1,x2, . . . ,xm] ∈ Cn×m and Λ = diag(λ1, . . . , λm) ∈

Cm×m, find a Hermitian and generalized skew-Hamiltonian matrix A in HSHn×n

such that AX = XΛ.

We note from the above definition that the eigenvalues of a Hermitian and

generalized skew-Hamiltonian matrix are real numbers. Hence we have Λ =

diag(λ1, . . . , λm) ∈ Rm×m.

The second problem we consider in this paper is the problem of best approx-

imation:

Problem II. Let LS be the solution set of Problem I. Given a matrix Ã ∈ Cn×n,

find A∗ ∈ LS such that

‖Ã− A∗‖ = min
A∈LS

‖Ã− A‖,

where ‖ · ‖ is the Frobenius norm.

The best approximation problem occurs frequently in experimental design,

see for instance [14, p.123]. Here the matrix Ã may be a matrix obtained from
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experiments, but it may not satisfy the structural requirement (Hermitian and

generalized skew-Hamiltonian) and/or spectral requirement (having eigenpairs X

and Λ). The best estimate A∗ is the matrix that satisfies both restrictions and is

the best approximation of Ã in the Frobenius norm, see for instance [2, 3, 10].

Problems I and II have been solved for different classes of structured matrices,

see for instance [21, 23]. In this paper, we extend the results in [23] to the class of

Hermitian and generalized skew-Hamiltonian matrices. We first give a solvability

condition for Problem I and also the form of its general solution. Then in the

case when Problem I is solvable, we show that Problem II has a unique solution

and give a formula for the minimizer A∗.

In this paper, the notations are as follows. Let U(n) be the set of all n-by-n

unitary matrices, and Hn×n denote the set of all n-by-n Hermitian matrices. We

denote the transpose, conjugate transpose and the Moore-Penrose generalized

inverse of a matrix A by AT , AH and A+ respectively, and the identity matrix of

order n by In. We define the inner product in space Cn×m by

(A,B) = tr(AHB), ∀A,B ∈ Cn×m.

Then Cn×m is a Hilbert inner product space. The norm of a matrix generated by

the inner product space is the Frobenius norm.

This paper is outlined as follows. In §2 we first discuss the structure of the

set HSHn×n, and then present the solvability conditions and provide the general

solution formula for Problem I. In §3 we first show the existence and uniqueness
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of the solution for Problem II, and then derive an expression of the solution when

the solution set LS is nonempty, and finally propose an algorithm to compute the

solution to Problem II. In §4 we give some illustrative numerical examples.

2 Solvability Conditions of Problem I

We first discuss the structure of HSHn×n. In what follows, we always assume that

n = 2k, k ∈ N . By the definition of HSHn×n, we have the following statement.

Lemma 1 Let A ∈ Cn×n, then A ∈ HSHn×n if and only if AH = A, AJ−JA = 0.

Since J is orthogonal skew-symmetric, J is normal and skew-symmetric and

then has only two multiple eigenvalues i and −i with multiplicity k respectively,

where i denotes the the imaginary unit, i.e. i2 = −1. Thus we can easily show

the following lemma.

Lemma 2 Let J ∈ Rn×n be orthogonal skew-symmetric, then there exists a ma-

trix U ∈ U(n) such that

J = U


 i · Ik 0

0 −i · Ik


 UH . (1)

By the above two lemmas, we have the following result for the structure of

HSHn×n.

Theorem 1 Let A ∈ Cn×n and the spectral decomposition of J be given as (1).

Then A ∈ HSHn×n if and only if

A = U


 A11 0

0 A22


 UH , A11, A22 ∈ Hk×k. (2)
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Proof: If A ∈ HSHn×n, then by Lemma 1 and (1), we obtain

UHAU




i · Ik 0

0 −i · In−k


 +




i · Ik 0

0 −i · In−k


 UHAU = 0. (3)

Since AH = A, then UHAU ∈ Hn×n. Let

A = U




A11 A12

AH
12 A22


 UH , A11 ∈ Hk×k, A22 ∈ Hk×k.

Substituting it into (3) yields (2).

On the other hand, if A can be expressed as (2), then, obviously, AH = A,

AJ − JA = 0. By Lemma 1, A ∈ HSHn×n.

We now investigate the solvability of Problem I. We need the following lemma,

see for instance [19].

Lemma 3 [19, Lemma 1.4] Let B, C ∈ Cn×m be given. Then HB = C has a

solution in Hn×n if and only if

C = CB+B and (BB+CB+)H = BB+CB+.

In this case the general solution can be expressed by

Y = CB+ + (B+)HCH − (B+)HCHBB+ + (I −BB+)Z(I −BB+),

where Z ∈ Hn×n is arbitrary.

Then we can establish the solvability of Problem I as follows.

Theorem 2 Given X ∈ Cn×m, Λ = diag(λ1, . . . , λm) ∈ Rm×m. Let

UHX =


 X̃1

X̃2


 , X̃1, X̃2 ∈ Ck×m. (4)
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Then there exists A ∈ HSHn×n such that AX = XΛ if and only if

X̃1ΛX̃+
1 X̃1 = X̃1Λ, (X̃+

1 )HΛ(X̃+
1 )H = X̃1ΛX̃+

1 , (5)

and

X̃2ΛX̃+
2 X̃2 = X̃2Λ, (X̃+

2 )HΛ(X̃+
2 )H = X̃2ΛX̃+

2 . (6)

In this case the general solution is given by

A = A0 + U


 (Ik − X̃1X̃

+
1 )Z1(Ik − X̃1X̃

+
1 ) 0

0 (Ik − X̃2X̃
+
2 )Z2(Ik − X̃2X̃

+
2 )


 UH , (7)

where Z1 and Z2 ∈ Hk×k are arbitrary and

A0 = U


 X̃1ΛX̃+

1 0

0 X̃2ΛX̃+
2


 UH . (8)

Proof: We assume that A is a solution to Problem I. By Theorem 1, there is a

solution to Problem I if and only if there exist A11, A22 ∈ Hk×k such that

A = U




A11 0

0 A22


 UH , AX = XΛ,

i.e.

U




A11 0

0 A22


 UHX = XΛ. (9)

(9) is equivalent to

A11X̃1 = X̃1Λ and A22X̃2 = X̃2Λ. (10)

By Lemma 3, (10) have solutions in Hn×n if and only if

X̃1ΛX̃+
1 X̃1 = X̃1Λ, (X̃1X̃

+
1 X̃1ΛX̃+

1 )H = X̃1X̃
+
1 X̃1ΛX̃+

1 , (11)

and

X̃2ΛX̃+
2 X̃2 = X̃2Λ, (X̃2X̃

+
2 X̃2ΛX̃+

2 )H = X̃2X̃
+
2 X̃2ΛX̃+

2 . (12)
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Since X̃1X̃
+
1 X̃1 = X̃1 and X̃2X̃

+
2 X̃2 = X̃2, (11) and (12) are equivalent to (5) and

(6) respectively. Moreover in this case, the general solutions to (10) is given by

A11 = X̃1ΛX̃+
1 + (X̃+

1 )HΛX̃H
1 − (X̃+

1 )HΛX̃H
1 X̃1X̃

+
1 (13)

+(Ik − X̃1X̃
+
1 )Z1(Ik − X̃1X̃

+
1 )

= X̃1ΛX̃+
1 + (Ik − X̃1X̃

+
1 )Z1(Ik − X̃1X̃

+
1 ), (14)

A22 = X̃2ΛX̃+
2 + (X̃+

2 )HΛX̃H
2 − (X̃+

2 )HΛX̃H
2 X̃2X̃

+
2 (15)

+(Ik − X̃2X̃
+
2 )Z2(Ik − X̃2X̃

+
2 )

= X̃2ΛX̃+
2 + (Ik − X̃2X̃

+
2 )Z2(Ik − X̃2X̃

+
2 ), (16)

where Z1, Z2 ∈ Hk×k is arbitrary. Let

A0 = U




X̃1ΛX̃+
1 0

0 X̃2ΛX̃+
2


 UH .

Substituting (13) into (2) gives rise to (7).

3 The Solution to Problem II

In this section, we solve Problem II over LS when LS is nonempty. We first recall

the following statement.

Lemma 4 [8, Theorem 2] Let E, H ∈ Cn×n. If H ∈ Hn×n, then

‖E − E + EH

2
‖ ≤ ‖E −H‖.

Then we have the following theorem for the solution to Problem II over LS.
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Theorem 3 Given Ã ∈ Cn×n, X ∈ Cn×m, and the notation of X, Λ and condi-

tions are the same as in Theorem 2. Let

UHÃU =


 Ã11 Ã12

Ã21 Ã22


 , Ã11, Ã22 ∈ Ck×k. (17)

If LS is nonempty, then Problem II has a unique solution A∗ and A∗ can be

represented as

A∗ = A0 + U


 P (

Ã11+ÃH
11

2
)P 0

0 Q(
Ã22+ÃH

22

2
)Q


 UH , (18)

where A0 is given by (8) and

P = Ik − X̃1X̃
+
1 , Q = Ik − X̃2X̃

+
2 . (19)

Proof: When LS is nonempty, it is easy to verify from (7) that LS is a closed

convex set. Since Cn×n is a uniformly convex Banach space under the Frobenius

norm, there exists a unique solution for Problem II [5, p. 22]. Because the

Frobenius norm is unitary invariant, Problem II is equivalent to

min
A∈LS

‖UHÃU − UHAU‖2. (20)

By Theorem 2, we have

‖UHÃU − UHAU‖2 =

∥∥∥∥∥∥


 Ã11 − X̃1ΛX̃+

1 Ã12

Ã21 Ã22 − X̃2ΛX̃+
2


−


 PZ1P 0

0 QZ2Q




∥∥∥∥∥∥

2

Thus (20) is equivalent to

min
Z1∈Hk×k

‖Ã11 − X̃1ΛX̃+
1 − PZ1P‖2 + min

Z2∈Hk×k
‖Ã22 − X̃2ΛX̃+

2 −QZ2Q‖2.

By Lemma 4, the solution is given by Z∗
1 and Z∗

2 such that

PZ∗
1P =

Ã11 + ÃH
11

2
− X̃1ΛX̃+

1 ,

QZ∗
2Q =

Ã22 + ÃH
22

2
− X̃2ΛX̃+

2 .
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Notice from (19) that P and Q are projection matrices, i.e. P 2 = P and Q2 = Q.

Therefore PZ∗
1P = P (

Ã11+ÃH
11

2
−X̃1ΛX̃+

1 )P and QZ∗
2Q = Q(

Ã22+ÃH
22

2
−X̃2ΛX̃+

2 )Q.

Let G11 =
Ã11+ÃH

11

2
. Notice further that because X̃+

1 X̃1X̃
+
1 = X̃+

1 , we have

P (G11 − X̃1ΛX̃+
1 )P = P (G11 −G11X̃1X̃

+
1 − X̃1ΛX̃+

1 + X̃1ΛX̃+
1 X̃1X̃

+
1 )

= P (G11 −G11X̃1X̃
+
1 ) = PG11P.

That is, PZ∗
1P = P (

Ã11+ÃH
11

2
)P . Similarly, QZ∗

2Q = Q(
Ã22+ÃH

22

2
)Q. Hence the

unique solution for Problem II is given by (18).

Based on Theorem 3, we propose the following algorithm for solving Problem

II over LS.

Algorithm I

(1) Compute X̃1 and X̃2 by (4).

(2) Compute X̃+
1 and X̃+

2 .

(3) If

X̃1ΛX̃+
1 X̃1 = X̃1Λ, (X̃+

1 )HΛ(X̃1)
H = X̃1ΛX̃+

1 ,

and

X̃2ΛX̃+
2 X̃2 = X̃2Λ, (X̃+

2 )HΛ(X̃2)
H = X̃2ΛX̃+

2 ,

then the solution set LS to Problem I is nonempty and we continue. Oth-

erwise we stop.
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(4) Compute Ã11 and Ã22 by (17).

(5) Compute G11 =
Ã11+ÃH

11

2
and G22 =

Ã22+ÃH
22

2
.

(6) Compute

M11 = X̃1ΛX̃+
1 + G11 −G11X̃1X̃

+
1 − X̃1X̃

+
1 G11 − X̃1X̃

+
1 G11X̃1X̃

+
1 ,

M22 = X̃2ΛX̃+
2 + G22 −G22X̃2X̃

+
2 − X̃2X̃

+
2 G22 + X̃2X̃

+
2 G22X̃2X̃

+
2 .

(7) Compute A∗ = U




M11 0

0 M22


 UH .

Now, we consider the computational complexity of our algorithm. We observe

from Lemma 2 that, for different choice of J , the structure of U ∈ U(n) may be

varied. Thus the total computational complexity may be changed.

We first consider the case when given a fixed J with U ∈ U(n) dense. For

Step (1), since U is dense, it requires O(n2m) operations to compute X̃1 and X̃2.

For Step (2), using singular value decomposition to compute X̃+
1 and X̃+

2 requires

O(n2m + m3) operations. Step (3) obviously requires O(n2m) operations. For

Step(4), because of the density of U , the operations required is O(n3). Step(5) re-

quires O(n) operations only. For Step(6), if we compute GiiX̃iX̃
+
i as [(GiiX̃i)X̃

+
i ],

X̃iX̃
+
i Gii as [X̃i(X̃

+
i Gii)], and X̃iX̃

+
i GiiX̃iX̃

+
i as {X̃i[(X̃

+
i (GiiX̃i))X̃

+
i ]} , then

the cost will only be of O(n2m) operations. Finally, because of the density of U

again, Step (7) requires O(n3) operations. Thus the total cost of the algorithm

is O(n3 + n2m + m3).
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In particular, if we choose that

J =




0 Ik

−Ik 0


 , U =

1√
2




Ik Ik

i · Ik −i · Ik


 ∈ U(n).

Then, because of the sparsity of U , Steps (1), (4) and (7) will require O(nm),

O(n2) and O(n2) respectively. Therefore the total complexity of the algorithm is

O(n2m + m3).

Finally, we remark that in practice, m ¿ n. In addition, it is easy to verify

that our algorithm is stable.

4 Numerical Experiments

In this section, we will give some numerical examples to illustrate our results.

All the tests are performed by MATLAB which has a machine precision around

10−16. In the following, we let n = 2k, k ∈ N and J =




0 Ik

−Ik 0


. Then it is

clear that the spectral decomposition of J is given by

J = U




i · Ik 0

0 −i · Ik


 UH ,

where U = 1√
2




Ik Ik

i · Ik −i · Ik


, UHU = UUH = In.
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Example 1. We choose a random matrix A in HSHn×n:

A =




1.9157 -0.5359 + 5.5308i 0 + 0.0596i 4.2447 + 0.1557i

-0.5359 - 5.5308i -0.5504 -4.2447 + 0.1557i 0 + 0.8957i

0 - 0.0596i -4.2447 - 0.1557i 1.9157 -0.5359 + 5.5308i

4.2447 - 0.1557i 0 - 0.8957i -0.5359 - 5.5308i -0.5504




.

Then the eigenvalues of A are −9.7331, −0.4090, 2.7296, and 10.1431. We let

{x1,x2,x3,x4} denote the eigenvectors of A associated with −9.7331, −0.4090,

2.7296, and 10.1431 respectively. Now we take X = [x1,x2,x3,x4], i.e.

X =




-0.4554 - 0.0322i 0.3324 + 0.0983i 0.5910 + 0.1747i 0.5386 + 0.0381i

0.0000 - 0.5399i -0.0000 + 0.6163i -0.0000 - 0.3466i 0.0000 - 0.4566i

0.0322 - 0.4554i 0.0983 - 0.3324i 0.1747 - 0.5910i -0.0381 + 0.5386i

0.5399 0.6163 -0.3466 0.4566




and

Λ =




-9.7331 0 0 0

0 -0.4090 0 0

0 0 2.7296 0

0 0 0 10.1431




.

Given such X and Λ, it is easy to see that there exists a solution for Problem

I, i.e. A. Thus LS is nonempty. If we perturb A to obtain a matrix Ã(ε) =

A + ε · C 6∈ HSHn×n, where

C =




0.2476 + 0.7668i 0.3006 + 0.8790i 0.8569 + 0.4963i 0.2968 + 0.3608i

0.4358 + 0.5740i 0.2659 + 0.9058i 0.2429 + 0.3921i 0.3903 + 0.3135i

0.9776 + 0.7098i 0.1334 + 0.0886i 0.1949 + 0.5583i 0.1873 + 0.7436i

0.8600 + 0.8126i 0.7425 + 0.3055i 0.3908 + 0.6318i 0.8957 + 0.2838i




,

then the conditions in Theorem 2 and Theorem 3 are satisfied. Using Algorithm I

in §3, we get the solution A∗(ε) of Theorem 3 corresponding to Ã(ε). In Figure 1,

we plot the following two quantities for ε from 10−10 to 1010: log10 ‖Ã(ε)−A∗(ε)‖
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Figure 1: log10 ‖Ã(ε) − A∗(ε)‖ (“+”) and log10 ‖A − A∗(ε)‖ (“∗”) versus log10 ε for

Example 1.

(marked by “+”) and log10 ‖A−A∗(ε)‖ (marked by “∗”). We observe from Figure

1 that A∗(ε) approaches gradually Ã(ε) as ε goes to zero. While for any ε between

10−10 and 1010, A∗(ε) = A almost up to the machine precision.

Example 2. We solve Problems I and II with multiple eigenvalues. The

following is one of various eigenpairs we have tested:

X =




0.0553 + 0.2344i 0.1528 + 0.6470i 0.2859 + 0.3281i 0.3662 + 0.4202i

-0.6648 0.2408 -0.5573 0.4352

-0.2344 + 0.0553i -0.6470 + 0.1528i 0.3281 - 0.2859 0.4202 - 0.3662i

0 - 0.6648i 0 + 0.2408i 0 + 0.5573i 0 - 0.4352i




and

Λ =




-1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2




.
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Given such X and Λ, it is easy to verify that there exists a solution for Problem

I, i.e.

A =




1.1946 0.2329 + 0.4945i 0 + 0.4266i 0.1288 + 0.0858i

0.2329 - 0.4945i 0.3054 -0.1288 + 0.0858i 0 + 1.0734i

0 - 0.4266i -0.1288 - 0.0858i 1.1946 0.2329 + 0.4945i

0.1288 - 0.0858i 0 - 1.0734i 0.2329 - 0.4945i 0.3054




.

Thus LS is nonempty. We now perturb A to obtain a matrix Ã(ε) = A + ε ·F 6∈
HSHn×n, where

F =




0.8408 + 0.4910i 0.7168 + 0.5550i 0.9106 + 0.6066i 0.8739 + 0.6959i

0.6463 + 0.9427i 0.8112 + 0.5147i 0.2761 + 0.3202i 0.7105 + 0.7889i

0.0559 + 0.5107i 0.1534 + 0.7272i 0.9571 + 0.4688i 0.9746 + 0.9407i

0.2057 + 0.3490i 0.0864 + 0.1896i 0.7400 + 0.7850i 0.1543 + 0.6763i




.

Then the conditions in Theorems 2 and 3 are satisfied. Using Algorithm I in

§3, we get the solution A∗(ε) of Theorem 3 corresponding to Ã(ε). In Figure 2,

we plot the following two quantities for ε from 10−10 to 1010: log10 ‖Ã(ε)−A∗(ε)‖

(marked by “+”) and log10 ‖A−A∗(ε)‖ (marked by “∗”). We can see from Figure

2 that A∗(ε) approximates to Ã(ε) as ε goes to zero. However, for any ε between

10−10 and 1010, A∗(ε) = A almost up to the machine precision.

Example 3. Let T (1 : n) denote a n-by-n Hermitian Toeplitz matrix whose

first row is (1, 2+2 ·i, . . . , n+n ·i), and T (1 : 1/n) be a n-by-n Hermitian Toeplitz
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Figure 2: log10 ‖Ã(ε)− A∗(ε)‖ (“+”) and log10 ‖A− A∗(ε)‖ (“∗”) versus log10 ε for Example

2.

matrix whose first row is (1, 1/2 + 1/2 · i, . . . , 1/n + 1/n · i). For example

T (1 : 4) =




1 2 + 2i 3 + 3i 4 + 4i

2− 2i 1 2 + 2i 3 + 3i

3− 3i 2− 2i 1 2 + 2i

4− 4i 3− 3i 2− 2i 1




,

and

T (1 : 1/4) =




1 1/2 + 1/2i 1/3 + 1/3i 1/4 + 1/4i

1/2− 1/2i 1 1/2 + 1/2i 1/3 + 1/3i

1/3− 1/3i 1/2− 1/2i 1 1/2 + 1/2i

1/4− 1/4i 1/3− 1/3i 1/2− 1/2i 1




.

By Theorem 1, if

A = U




A11 0

0 A22


 UH , A11, A22 ∈ Hn×n,
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k A11 A22 ‖∆A‖ = ‖Ã−A∗‖ Time (s)

25 T(1:25) T(1:1/25) 0.2930 0.1300

50 T(1:50) T(1:1/50) 0.8226 0.6500

100 T(1:100) T(1:1/100) 2.3181 4.3300

150 T(1:150) T(1:1/150) 4.2532 13.6500

200 T(1:200) T(1:1/200) 6.5442 31.2800

Table 1: Numerical results for Example 3.

then A ∈ HSHn×n. We assume that λj,xj are eigenpairs of A. Now we take

X = [x1, . . . ,xn], Λ = diag(λ1, . . . , λn). Let Ã = A + ∆A, ∆A = 10−3 · C, where

C is a complex matrix of order n whose first column is (1, 2, . . . , n)T and whose

first row is (1, 2 · i, . . . , n · i) and the other entries are zeros. Then the Frobenius

norm of ∆A becomes larger as n increases. We can theoretically show that A∗

approaches to A as the rank of X is greater. In particular, when the rank of X

is n, it is clear that A∗ = A. We take A11 = T (1 : k) and A22 = T (1 : 1/k). We

test Algorithm I in §3 using MATLAB 6.1.

In Table 1, we list our numerical results, where ‘Time’ is the CPU timings.

The above three examples and many other examples we have tested by MAT-

LAB confirm our theoretical results in this paper. We also note from the numeri-

cal experiments that as Ã approximates a solution of Problem I, Ã becomes closer

to the unique solution A∗ of Problem II. This also agrees with our prediction.

Acknowledgment: We thank the referees for their helpful and valuable com-

ments.
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Inverse Eigenproblems for Centrosymmetric and

Centroskew Matrices and Their Approximation

Abstract

In this paper, we first give the solvability condition for the following

inverse eigenproblem (IEP): given a set of vectors {xi}m
i=1 in Cn and a set of

complex numbers {λi}m
i=1, find a centrosymmetric or centroskew matrix C

in Rn×n such that {xi}m
i=1 and {λi}m

i=1 are the eigenvectors and eigenvalues

of C respectively. We then consider the best approximation problem for

the IEPs that are solvable. More precisely, given an arbitrary matrix B

in Rn×n, we find the matrix C which is the solution to the IEP and is

closest to B in the Frobenius norm. We show that the best approximation

is unique and derive an expression for it.

1 Introduction

Let Jn be the n-by-n anti-identity matrix, i.e, Jn has 1 on the anti-diagonal and

zeros elsewhere. An n-by-n matrix C is said to be centrosymmetric (or persym-

metric) if C = JnCJn, and it is called centroskew (or skew-centrosymmetric) if

C = −JnCJn. The centrosymmetric and centroskew matrices play an important

role in many areas [7, 16] such as signal processing [8, 11], the numerical solution

of differential equations [2], and Markov processes [17].

64
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In this paper, we consider two problems related to centrosymmetric and cen-

troskew matrices. Both problems are on numerical and approximate computing

but here we solve them algebraically, based on some explicit expressions for the

solutions of overdetermined linear systems of equations. The first problem is an

inverse eigenproblem. There are many applications of structured inverse eigen-

problems, see for instance the expository paper [5]. In particular, the inverse

eigenproblem for Toeplitz matrices (a special case of centrosymmetric matrices)

arises in trigonometric moment problem [10] and signal processing [9]. The in-

verse eigenproblem for centrosymmetric Jacobi matrices also comes from inverse

Sturm-Liouville problem [19, p.70]. There are also different types of inverse eigen-

problem, for instances multiplicative type and additive type [19, Chapter 4]. Here

we consider the following type of inverse eigenproblem which appeared in the de-

sign of Hopfield neural networks [4, 13].

Problem I. Given X = [x1,x2, . . . ,xm] in Cn×m and Λ = diag(λ1, . . . , λm)

in Cm×m, find a centrosymmetric or centroskew matrix C in Rn×n such that

CX = XΛ.

The second problem we consider in this paper is the problem of best approx-

imation:

Problem II. Let LS be the solution set of Problem I. Given a matrix B ∈ Rn×n,
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find C∗ ∈ LS such that

‖B − C∗‖ = min
C∈LS

‖B − C‖,

where ‖ · ‖ is the Frobenius norm.

The best approximation problem occurs frequently in experimental design,

see for instance [14, p.123]. Here the matrix B may be a matrix obtained from

experiments, but it may not satisfy the structural requirement (centrosymmetric

or centroskew) and/or spectral requirement (having eigenpairs X and Λ). The

best estimate C∗ is the matrix that satisfies both requirements and is the best

approximation of B in the Frobenius norm. In addition, because there are fast

algorithms for solving various kinds of centrosymmetric and centroskew matrices

[12], the best approximate C∗ of B can also be used as a preconditioner in the pre-

conditioned conjugate gradient method for solving linear systems with coefficient

matrix B, see for instance [1].

Problems I and II have been solved for different classes of structured matrices,

see for instance [18, 20]. In this paper, we extend the results in [18, 20] to the

classes of centrosymmetric and centroskew matrices. We first give a solvability

condition for Problem I and also the form of its general solution. Then in the

case when Problem I is solvable, we show that Problem II has a unique solution

and we give a formula for the minimizer C∗.

The paper is organized as follows: In §2 we first characterize the class of

centrosymmetric matrices and give the solvability condition of Problem I over
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this class of matrices. In §3, we derive a formula for the best approximation of

Problem II, give the algorithm for finding the minimizer, and study the stability

of the problem. In §4 we give an example to illustrate the theory. In the last

section, we extend the results in §§2–3 to centroskew matrices.

2 Solvability Condition for Problem I

We first characterize the set of all centrosymmetric matrices. For all positive

integers k, let

K2k =
1√
2




Ik Ik

Jk −Jk


 and K2k+1 =

1√
2




Ik 0 Ik

0
√

2 0

Jk 0 −Jk




.

Clearly Kn is orthogonal for all n. The matrix Kn plays an important role

in analyzing the properties of centrosymmetric matrices, see for example [6].

In particular, we have the following splitting of centrosymmetric matrices into

smaller submatrices using Kn.

Lemma 1 [6] Let Cn be the set of all centrosymmetric matrices in Rn×n. We

have

C2k =






 E FJk

JkF JkEJk


 ∣∣ E, F ∈ Rk×k

}
,

C2k+1 =








E a FJk

bT c bT Jk

JkF Jka JkEJk




∣∣ E, F ∈ Rk×k, a,b ∈ Rk, c ∈ R





.
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Moreover, for all n = 2k and 2k + 1, we have

Cn =



Kn


 G1 0

0 G2


 KT

n

∣∣ G1 ∈ R(n−k)×(n−k), G2 ∈ Rk×k
}

. (1)

Before we come to Problem I, we first note that we can assume without loss of

generality that X and Λ are real matrices. In fact, since Cn ⊂ Rn×n, the complex

eigenvectors and eigenvalues of any C ∈ Cn will appear in complex conjugate pairs.

If α±β
√−1 and x±√−1y are one of its eigenpair, then we have Cx = αx−βy

and Cy = αy + βx, i.e.

C[x,y] = [x,y]




α β

−β α


 .

Hence we can assume without loss of generality that X ∈ Rn×m and

Λ = diag(Φ1, Φ2, . . . , Φl, γ1, . . . , γm−2l) ∈ Rm×m, (2)

where Φi =




αi βi

−βi αi


 with αi, βi and γi in R.

Next, we investigate the solvability of Problem I. We need the following lemma

where U+ denotes the Moore-Penrose pseudo-inverse of U .

Lemma 2 [15, Lemma 1.3] Let U, V ∈ Rn×m be given. Then Y U = V is

solvable if and only if V U+U = V . In this case the general solution is

Y = V U+ + Z(I − UU+),

where Z ∈ Rn×n is arbitrary.

In the remaining part of the paper, we will only give the theorems and the

proofs for even n. The case where n is odd can be proved similarly. Thus we let

n = 2k.
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Theorem 1 Given X ∈ Rn×m and Λ as in (2), let

KT
n X =


 X̃1

X̃2


 , (3)

where X̃2 ∈ Rk×m. Then there exists a matrix C ∈ Cn such that CX = XΛ if

and only if

X̃1ΛX̃+
1 X̃1 = X̃1Λ and X̃2ΛX̃+

2 X̃2 = X̃2Λ. (4)

In this case, the general solution to CX = XΛ is given by

Cs = C0 + Kn


 Z1(In−k − X̃1X̃

+
1 ) 0

0 Z2(Ik − X̃2X̃
+
2 )


 KT

n , (5)

where Z1 ∈ R(n−k)×(n−k) and Z2 ∈ Rk×k are both arbitrary, and

C0 = Kn


 X̃1ΛX̃+

1 0

0 X̃2ΛX̃+
2


 KT

n . (6)

Proof: From (1), C ∈ Cn is a solution to Problem I if and only if there exist

G1 ∈ R(n−k)×(n−k) and G2 ∈ Rk×k such that

C = Kn




G1 0

0 G2


 KT

n (7)

and 
Kn




G1 0

0 G2


 KT

n


 X = XΛ. (8)

Using (3), (8) is equivalent to

G1X̃1 = X̃1Λ and G2X̃2 = X̃2Λ. (9)
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According to Lemma 2, equations (9) have solutions if and only if equations (4)

hold. Moreover in this case, the general solution of (9) is given by

G1 = X̃1ΛX̃+
1 + Z1(In−k − X̃1X̃

+
1 ), (10)

G2 = X̃2ΛX̃+
2 + Z2(Ik − X̃2X̃

+
2 ), (11)

where Z1 ∈ R(n−k)×(n−k) and Z2 ∈ Rk×k are both arbitrary. Putting (10) and

(11) into (7), we get (5).

3 The Minimizer of Problem II

Let CS
n be the solution set of Problem I over Cn. In this section, we solve Problem

II over CS
n when CS

n is nonempty.

Theorem 2 Given X ∈ Rn×m and Λ as in (2), let the solution set CS
n of Problem

I be nonempty. Then for any B ∈ Rn×n, the problem min
C∈CS

n

‖B − C‖ has a unique

solution C∗ given by

C∗ = C0 + Kn


 B̃11(In−k − X̃1X̃

+
1 ) 0

0 B̃22(Ik − X̃2X̃
+
2 )


 KT

n . (12)

Here X̃1, X̃2, and C0 are given in (3) and (6), and B̃11 and B̃22 are obtained by

partitioning KT
n BKn as

KT
n BKn =


 B̃11 B̃12

B̃21 B̃22


 , (13)

where B̃22 ∈ Rk×k.

Proof: When CS
n is nonempty, it is easy to verify from (5) that CS

n is a closed

convex set. Since Rn×n is a uniformly convex Banach space under the Frobenius
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norm, there exists a unique solution for Problem II [3, p. 22]. Moreover, because

the Frobenius norm is unitary invariant, Problem II is equivalent to

min
C∈CS

n

‖KT
n BK −KT

n CK‖2. (14)

By (5), we have

‖KT
n BK −KT

n CK‖2 =

∥∥∥∥∥∥


 B̃11 − X̃1ΛX̃+

1 B̃12

B̃21 B̃22 − X̃2ΛX̃+
2


−


 Z1P 0

0 Z2Q




∥∥∥∥∥∥

2

,

where

P = In−k − X̃1X̃
+
1 and Q = Ik − X̃2X̃

+
2 . (15)

Thus (14) is equivalent to

min
Z1∈R(n−k)×(n−k)

‖B̃11 − X̃1ΛX̃+
1 − Z1P‖2 + min

Z2∈Rk×k
‖B̃22 − X̃2ΛX̃+

2 − Z2Q‖2.

Clearly, the solution is given by Z1 and Z2 such that

Z1P = B̃11 − X̃1ΛX̃+
1 and Z2Q = B̃22 − X̃2ΛX̃+

2 .

Notice that by (15), P and Q are projection matrices, i.e. P 2 = P and Q2 = Q.

Therefore Z1P = (B̃11− X̃1ΛX̃+
1 )P and Z2Q = (B̃22− X̃2ΛX̃+

2 )Q. Notice further

that because X̃+
1 X̃1X̃

+
1 = X̃+

1 , we have

(B̃11 − X̃1ΛX̃+
1 )P = B̃11 − B̃11X̃1X̃

+
1 − X̃1ΛX̃+

1 + X̃1ΛX̃+
1 X̃1X̃

+
1

= B̃11 − B̃11X̃1X̃
+
1 = B̃11P.
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Similarly, Z2Q = (B̃22 − X̃2ΛX̃+
2 )Q = B̃22Q. Hence the unique solution for

Problem II is given by (12).

Based on Theorem 2, we give the following algorithm for solving Problem II

for n = 2k.

ALGORITHM I

(a) Compute X̃1 and X̃2 by (3) and then compute X̃+
1 and X̃+

2 .

(b) If X̃1ΛX̃+
1 X̃1 = X̃1Λ and X̃2ΛX̃+

2 X̃2 = X̃2Λ, then the solution set CS
n to

Problem I is nonempty and we continue. Otherwise we stop.

(c) Partition KT
n BKn as in (13) to get B̃11 and B̃22.

(d) Compute

W1 = X̃1ΛX̃+
1 + B̃11 − B̃11X̃1X̃

+
1 ,

W2 = X2ΛX+
2 + B̃22 − B̃22X̃2X̃

+
2 .

(e) Then C∗ = Kn




W1 0

0 W2


 KT

n .

Next we consider the computational complexity of our algorithm. For Step

(a), since Kn has only 2 nonzero entries per row, it requires O(nm) operations to

compute X̃1 and X̃2. Then using singular value decomposition to compute X̃+
1

and X̃+
2 requires O(n2m + m3) operations. Step (b) obviously requires O(n2m)

operations. For Step (c), because of the sparsity of Kn, the operations required is
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O(n2) only. For Step (d), if we compute B̃iiX̃iX̃
+
i as [(B̃iiX̃i)X̃

+
i ], then the cost

will only be of O(n2m) operations. Finally, because of the sparsity of Kn again,

Step (e) requires O(n2) operations. Thus the total complexity of the algorithm

is O(n2m + m3). We remark that in practice, m ¿ n.

Before we end this section, we give a stability analysis for Problem II, that is,

we study how the solution of Problem II is affected by a small perturbation of B.

We have the following result.

Corollary 1 Given B(i) ∈ Rn×n, i = 1, 2. Let C∗(i) = arg min
C∈CS

n

‖B(i) − C‖ for

i = 1, 2. Then there exists a constant α independent of B(i), i = 1, 2, such that

‖C∗(2) − C∗(1)‖ ≤ α‖B(2) −B(1)‖. (16)

Proof: By Theorem 2, C∗(i) is given by

C∗(i) = C0 + Kn




B̃
(i)
11 P 0

0 B̃
(i)
22 Q


 KT

n , i = 1, 2,

where B̃
(i)
22 are the blocks of KT

n B(i)Kn as defined in (13), and P and Q are given

in (15). Thus we have

‖C∗(2) − C∗(1)‖ =

∥∥∥∥∥∥∥∥
Kn




(
B̃

(2)
11 − B̃

(1)
11

)
P 0

0
(
B̃

(2)
22 − B̃

(1)
22

)
Q


 KT

n

∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥




B̃
(2)
11 − B̃

(1)
11 0

0 B̃
(2)
22 − B̃

(1)
22




∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥




P 0

0 Q




∥∥∥∥∥∥∥∥

≤
∥∥KT

n

(
B(2) −B(1)

)
Kn

∥∥

∥∥∥∥∥∥∥∥




P 0

0 Q




∥∥∥∥∥∥∥∥
≤ α

∥∥B(2) −B(1)
∥∥ ,
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where α = ‖P‖+ ‖Q‖. Thus (16) holds.

4 Demonstration by an Example

Let us first compute the input matrices X and Λ for which Problem I has a

solution. We start by choosing a random matrix Ĉ in Cn:

Ĉ =




0.1749 0.0325 −0.2046 0.0932 0.0315

0.0133 −0.0794 −0.0644 0.1165 −0.0527

0.1741 0.0487 0.1049 0.0487 0.1741

−0.0527 0.1165 −0.0644 −0.0794 0.0133

0.0315 0.0932 −0.2046 0.0325 0.1749




∈ C5.

Then we compute its eigenpairs. The eigenvalues of Ĉ are 0.1590± 0.2841
√−1,

−0.1836, 0.1312, and 0.0304. Let x1±
√−1x2, x3,x4, and x5 be the corresponding

eigenvectors. Then we take

X = [x1,x2,x3,x4,x5] =




0.4815 0.2256 −0.2455 −0.7071 −0.1313

0.0118 0.1700 0.7071 −0.1427 −0.7071

0.4322 −0.5120 0.2235 0 0

0.0118 0.1700 0.7071 0.1427 0.7071

0.4815 0.2256 −0.2455 0.7071 0.1313



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and

Λ =




0.1590 0.2841 0 0 0

−0.2841 0.1590 0 0 0

0 0 0.0304 0 0

0 0 0 0.1312 0

0 0 0 0 −0.1836




.

Given this X and Λ, clearly we have a solution to Problem I, namely Ĉ. Thus

CS
5 is nonempty. Next we perturb Ĉ by a random matrix to obtain a matrix

B(ε) 6∈ C5:

B(ε) = Ĉ + ε ·




1.4886 −0.9173 1.2688 −0.1869 −1.0830

1.2705 −1.1061 −0.7836 1.0132 1.0354

−1.8561 0.8106 0.2133 0.2484 1.5854

2.1343 0.6985 0.7879 0.0596 0.9157

1.4358 −0.4016 0.8967 1.3766 −0.5565




.

Then we can apply our algorithm in §3 to obtain C∗(ε) corresponding to B(ε).

In Figure 1, we plot the following two quantities for ε between 10−10 to 1010:

log10 ‖B(ε) − C∗(ε)‖ (marked by “∗”) and log10 ‖Ĉ − C∗(ε)‖ (marked by “+”).

We can see that as ε goes to zero, C∗(ε) approaches B(ε) as expected. Also when

ε ≤ 10−1, C∗(ε) = Ĉ up to the machine precision (we use matlab which has

machine precision around 10−16).
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Figure 1: log10 ‖B(ε)− C∗(ε)‖ (“∗”) and log10 ‖Ĉ − C∗(ε)‖ (“+”) versus log10 ε.

5 Extension to the Set of Centroskew Matrices

In this section, we extend our results in §§2–3 to centroskew matrices, i.e. ma-

trices S such that S = −JnSJn. The results and the proofs are similar to the

centrosymmetric case, and we only list the results for the case when n is even

and omit the proofs. Let n = 2k. Considering Problem I for Sn, we have the

following theorem.

Theorem 3 Given X ∈ Rn×m and Λ as in (2), let X̃1 and X̃2 be as defined in

(3). Then there exists S ∈ Sn such that SX = XΛ if and only if

X̃1ΛX̃+
2 X̃2 = X̃1Λ and X̃2ΛX̃+

1 X̃1 = X̃2Λ.

In this case, the general solution to SX = XΛ is given by

Ss = S0 + Kn


 0 Z1(Ik − X̃2X̃

+
2 )

Z2(Ik − X̃1X̃
+
1 ) 0


 KT

n ,
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where Z1 ∈ Rk×k and Z2 ∈ Rk×k are both arbitrary, and

S0 = Kn


 0 X̃1ΛX̃+

2

X̃2ΛX̃+
1 0


 KT

n . (17)

For Problem II over the solution set SS
n of Problem I for Sn, we have the

following result.

Theorem 4 Given X ∈ Rn×m and Λ as in (2), let the solution set SS
n of Problem

I be nonempty. Then for any B ∈ Rn×n, the problem min
S∈SS

n

‖B − S‖ has a unique

solution S∗ given by

S∗ = S0 + Kn


 0 B̃12(Ik − X̃2X̃

+
2 )

B̃21(In−k − X̃1X̃
+
1 ) 0


 KT

n .

Here X̃1, X̃2, B̃12, B̃21, and S0 are given in (3), (13), and (17). Moreover S∗ is

a continuous function of B.
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