INITIAL TRACE OF SOLUTIONS FOR A DOUBLY NONLINEAR DEGENERATE PARABOLIC EQUATIONS＊

Wang Shujuan（王淑娟）$)^{1,2} \quad$ Zhao Junning（赵俊宁）${ }^{1}$
1．School of Mathematics，Xiamen University，Xiamen 361005，China
2．Department of Information and Computation Science，Zhenzhou University of Light Industry， Henan 450002，China

Abstract

In this note，we study the existence of an initial trace of nonnegative solutions for the following problem $$
u_{t}-\operatorname{div}\left(\left|\nabla u^{m}\right|^{p-2} \nabla u^{m}\right)+u^{q}=0 \quad \text { in } \quad Q_{T}=\Omega \times(0, T) .
$$

We prove that the initial trace is an outer regular Borel measure，which may not be locally bounded for some values of parameters p, q ，and m ．We also study the corresponding Cauchy problems with a given generalized Borel measure as initial data．

Key words Doubly degenerate；Initial trace；Borel measure
2000 MR Subject Classification 35K20；35K55

1 Introduction

Let Ω be a domain in $R^{N}(N \geq 1)$ ，possibly unbounded．The aim of this article is to investigate the initial trace problem for degenerate parabolic equation：

$$
\begin{equation*}
u_{t}-\operatorname{div}\left(\left|\nabla u^{m}\right|^{p-2} \nabla u^{m}\right)+u^{q}=0 \quad \text { in } \quad Q_{T}=\Omega \times(0, T), \tag{1.1}
\end{equation*}
$$

where $q \geq 0, p>1$ ，and $m>0$ ．We prove the existence of an initial trace in the class $\mathcal{B}_{\text {reg }}^{+}(\Omega)$ of outer regular positive Borel measure in Ω ，not necessarily locally bounded．Moreover，we study also Cauchy problem for（1．1）with initial data $\nu \in \mathcal{B}_{\text {reg }}^{+}\left(R^{N}\right)$ ．
（1．1）was suggested as a mathematical model for a variety of physical problems［1，2］， which is also called polypropic filtration equation．The evolution p－Laplacian equation（（1．1） when $m=1$ ）and the porous medium equation（Equ．（1．1）when $p=2$ ）are the special cases of （1．1）and analogous problems were considered in［3－5］．

Definition 1．1 A nonnegative function u is said to be a weak solution of（1．1）in Q_{T} ，if

$$
u \in L_{\mathrm{loc}}^{1}\left(Q_{T}\right), \quad u^{q} \in L_{\mathrm{loc}}^{1}\left(Q_{T}\right), \quad u^{m} \in L_{\mathrm{loc}}^{p}\left((0, T) ; W_{\mathrm{loc}}^{1, p}(\Omega)\right)
$$

[^0]and
\[

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left(-u \partial_{t} \varphi+\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \nabla \varphi+u^{q} \varphi\right) \mathrm{d} x \mathrm{~d} t=0 \tag{1.2}
\end{equation*}
$$

\]

for any $\varphi \in C_{0}^{\infty}\left(Q_{T}\right)$.
By Steklov averaging process, it follows from the definition of solution that for any function $h \in C_{b}(R) \bigcap W^{1, \infty}(R)$ and $\varphi \in C_{0}^{\infty}(\Omega \times[0, T])$, we have

$$
\begin{align*}
& \int_{t}^{\theta} \int_{\Omega}\left(-\int_{0}^{u(x, t)} h\left(s^{m}\right) \mathrm{d} s \partial_{t} \varphi+\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \cdot \nabla\left(h\left(u^{m}\right) \varphi\right)+u^{q} h\left(u^{m}\right) \varphi\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{\Omega} \int_{0}^{u(x, t)} h\left(s^{m}\right) \mathrm{d} s \varphi(x, t) \mathrm{d} x-\int_{\Omega} \int_{0}^{u(x, \theta)} h\left(s^{m}\right) \mathrm{d} s \varphi(x, \theta) \mathrm{d} x \tag{1.3}
\end{align*}
$$

for any $0<t<\theta<T$.
It is well known that if $q>1,(1.1)$ admits a particular solution in $R^{N} \times(0, \infty)$,

$$
W(x, t)=\left(\frac{1}{t(q-1)}\right)^{\frac{1}{q-1}},
$$

which is called the flat solution. This particular solution play an important role because it dominates any nonnegative solution of (1.1) that is locally bounded in $R^{N} \times(0, \infty)$. The flat solution W shows that the initial trace of solution of (1.1) can not be Radon measure.

Our main results are as follows:
Theorem 1 Assume that $q>m(p-1)$ or $q \leq m(p-1), m(p-1)>1$ and that u is a nonnegative weak solution of (1.1) in Q_{T}. Then, for any $y \in \Omega$, the following alternative occurs:
(i) either for any open subset $U \subset \Omega$ containing y

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{U} u(x, t) \mathrm{d} x=\infty \tag{1.4}
\end{equation*}
$$

or (ii) there exists an open neighborhood $U^{*} \subset \Omega$ of y and a nonnegative Radon measure $\ell_{U^{*}} \in \mathcal{M}^{+}$such that for any $\xi \in C_{0}\left(U^{*}\right)$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{U^{*}} u(x, t) \xi(x) \mathrm{d} x=\ell_{U^{*}}(\xi) \tag{1.5}
\end{equation*}
$$

and in any open set $U \subset \subset U^{*}$

$$
\begin{align*}
& \int_{0}^{\theta} \int_{U} u^{\sigma} \mathrm{d} x \mathrm{~d} t<\infty, \quad \text { for any } \sigma \in(0, m(p-1)+p / N) \tag{1.6}\\
& \int_{0}^{\theta} \int_{U}\left|\nabla u^{m}\right|^{r} \mathrm{~d} x \mathrm{~d} t<\infty, \quad \text { for any } r \in\left(0, p-\frac{m N}{m N+1}\right) \tag{1.7}
\end{align*}
$$

Owing to Theorem 1, we can define a set \mathcal{R} by

$$
\begin{equation*}
\mathcal{R}=\left\{y \in \Omega: \exists \text { open set } U \subset \Omega, y \in U, \varlimsup_{t \rightarrow 0} \int_{U} u(x, t) \mathrm{d} x<\infty\right\} . \tag{1.8}
\end{equation*}
$$

Clearly, \mathcal{R} is an open subset of Ω and by Theorem 1, there exists a unique Radon measure $\mu \in \mathcal{M}^{+}(\mathcal{R})$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{\mathcal{R}} u(x, t) \xi(x) \mathrm{d} x=\int_{\mathcal{R}} \xi(x) \mathrm{d} \mu(x) \quad \forall \xi \in C_{0}(\mathcal{R}) \tag{1.9}
\end{equation*}
$$

where u satisfies

$$
\begin{align*}
& \int_{0}^{\theta} \int_{\mathcal{R}}\left(-u \partial_{t} \varphi+\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \nabla \varphi+u^{q} \varphi\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{\mathcal{R}} \varphi(x, 0) \mathrm{d} \mu-\int_{\mathcal{R}} \varphi(x, \theta) u(x, \theta) \mathrm{d} x \tag{1.10}
\end{align*}
$$

for any $0<\theta<T$ and $\varphi \in C_{0}^{\infty}(\mathcal{R} \times[0, T))$ and (1.6),(1.7) hold in any open set $U \subset \subset \mathcal{R}$.
Definition 1.2 Let u be a nonnegative weak solution of (1.1) in Q_{T}. A point $y \in \Omega$ is called a regular point if $y \in \mathcal{R}$. Otherwise, it is called a singular point. The set of singular points is denoted by $\mathcal{S}=\Omega-\mathcal{R}$; it is a relatively closed subset of Ω. Denote

$$
\operatorname{tr}_{\Omega}(u)=(\mathcal{S}, \mu),
$$

where μ is the Radon measure in (1.9). $\operatorname{tr}_{\Omega}(u)$ is called the initial trace of u at $t=0$.
Remark 1.1 By Definition 1.2, Theorem 1 can be rewritten as: the solution of (1.1) has initial trace

$$
\nu=(\mathcal{S}, \mu) \in \mathcal{B}_{\text {reg }}^{+}(\Omega) .
$$

Theorem 2 Assume that u is a nonnegative weak solution of (1.1) in Q_{T} and that $0<q \leq 1, m(p-1)<1$, or $q \leq 1<m(p-1), \Omega=R^{N}$. Then, there exists a Radon measure $\mu \in \mathcal{M}^{+}(\Omega)$, such that

$$
\lim _{t \rightarrow 0} \int_{\Omega} u(x, t) \xi(x) \mathrm{d} x=\int_{\Omega} \xi(x) \mathrm{d} \mu \quad \forall \xi \in C_{0}(\Omega)
$$

that is, the singular set \mathcal{S} is empty.
Theorem 3 Let $\mu \in \mathcal{M}^{+}\left(R^{N}\right)$. Assume that

$$
p>\frac{(m+1) N}{m N+1}\left(\text { or } p>1 \text { if } \mu \in L_{\mathrm{loc}}^{1}\left(R^{N}\right)\right), 0<q<m(p-1)+\frac{p}{N}
$$

and that either $m(p-1)<1$ or $m(p-1)<q$. Then, the Cauchy problem

$$
\begin{cases}\frac{\partial u}{\partial t}=\nabla \cdot\left(\left|\nabla u^{m}\right|^{p-2} \nabla u^{m}\right)+u^{q} & \text { in } Q_{\infty}=R^{N} \times(0, \infty) \tag{1.11}\\ u(x, 0)=\mu & \text { on } R^{N}\end{cases}
$$

has a solution.
Remark 1.2 In Theorem 3, the growth condition of μ has not been required.
Theorem 4 Let

$$
\max \{1, m(p-1)\}<q \leq m(p-1)+\frac{p}{N} .
$$

Then, for any $\nu \in \mathcal{B}_{\text {reg }}^{+}\left(R^{N}\right)$, there exists at least one solution to Cauchy problem (1.1) with initial trace ν.

2 Main Estimates

Proposition 2.1 Let $\alpha<0, \alpha \neq-1,0<t<\theta<T$ and let u be a nonnegative weak solution of (1.1) in Q_{T}. Then, for any nonnegative function $\xi \in C_{0}^{\infty}(\Omega)$ and any $\tau>p$,

$$
\int_{\Omega} \int_{0}^{u(x, t)}\left(1+s^{m}\right)^{\alpha} \mathrm{d} s \xi^{\tau} \mathrm{d} x+\frac{|\alpha|}{2} \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t
$$

$$
\left.\begin{array}{c}
\leq \int_{\Omega} \int_{0}^{u(x, \theta)}\left(1+s^{m}\right)^{\alpha} \mathrm{d} s \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha} \xi^{\tau} u^{q} \mathrm{~d} x \mathrm{~d} t \\
+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha+p-1} \xi^{\tau-p}|\nabla \xi|^{p} \mathrm{~d} x \mathrm{~d} t
\end{array} \begin{array}{c}
\int_{\Omega}(1+u(x, t)) \xi^{\tau} \mathrm{d} x \leq \int_{\Omega}(1+u(x, \theta)) \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \\
+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{(1-\alpha)(p-1)} \xi^{\tau-p} \mathrm{~d} x \mathrm{~d} t
\end{array}\right\} \begin{aligned}
& \int_{\Omega} u(x, \theta) \xi^{\tau} \mathrm{d} x+\int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \leq \int_{\Omega} u(x, t) \xi^{\tau} \mathrm{d} x+\tau \int_{t}^{\theta} \int_{\Omega}\left|\nabla u^{m}\right|^{p-1}\left|\nabla \xi^{\tau}\right| \mathrm{d} x \mathrm{~d} t,
\end{aligned}
$$

where $C=C(\alpha, p, q, \tau)$.
Proof Taking $h(s)=\left(1+s^{m}\right)^{\alpha}, \phi=\xi^{\tau}$ in (1.3), where $\alpha \leq 0, \alpha \neq-1$, it yields

$$
\begin{align*}
& \int_{\Omega} \int_{0}^{u(x, t)}\left(1+s^{m}\right)^{\alpha} \mathrm{d} s \xi^{\tau} \mathrm{d} x+|\alpha| \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1}\left|\nabla u^{m}\right|^{p} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \\
= & \left.\int_{\Omega} \int_{0}^{u(x, \theta)}\left(1+s^{m}\right)^{\alpha}\right) \mathrm{d} s \xi^{\tau} \mathrm{d} x+\int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau}\left(1+u^{m}\right)^{\alpha} \\
& +\tau \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha} \xi^{\tau-1}\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \cdot \nabla \xi \mathrm{~d} x \mathrm{~d} t . \tag{2.4}
\end{align*}
$$

Using Young's inequality

$$
\begin{align*}
& \tau \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha} \xi^{\tau-1}\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \cdot \nabla \xi \mathrm{~d} x \mathrm{~d} t \\
\leq & \frac{|\alpha|}{2} \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha+p-1} \xi^{\tau-p}|\nabla \xi|^{p} \mathrm{~d} x \mathrm{~d} t . \tag{2.5}
\end{align*}
$$

Hence, (2.1) follows from (2.4) and (2.5).
As a particular case of (2.4) (with $\alpha=0$),

$$
\begin{align*}
\int_{\Omega}(1+u(x, t)) \xi^{\tau} \mathrm{d} x= & \int_{\Omega}(1+u(x, \theta)) \xi^{\tau} \mathrm{d} x+\int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \\
& +\tau \int_{t}^{\theta} \int_{\Omega} \xi^{\tau-1}\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \cdot \nabla \xi \mathrm{~d} x \mathrm{~d} t . \tag{2.6}
\end{align*}
$$

Thus, (2.3) holds. Using Young's inequality, for any $\alpha<0$,

$$
\begin{align*}
\int_{t}^{\theta} \int_{\Omega} \xi^{\tau-1}\left|\nabla u^{m}\right|^{p-1}|\nabla \xi| \mathrm{d} x \mathrm{~d} t \leq & \int_{t}^{\theta} \int_{\Omega} \xi^{\tau}\left|\nabla u^{m}\right|^{p}\left(1+u^{m}\right)^{\alpha-1} \mathrm{~d} x \mathrm{~d} t \\
& +\int_{t}^{\theta} \int_{\Omega} \xi^{\tau-p}|\nabla \xi|^{p}\left(1+u^{m}\right)^{(1-\alpha)(p-1)} \mathrm{d} x \mathrm{~d} t \tag{2.7}
\end{align*}
$$

Hence, (2.2) follows from (2.6) and (2.7).

Proposition 2.2 Let u be a nonnegative solution of (1.1) in Q_{T} and let $0<\theta<T$. For any open set $U \subset \subset \Omega$, let

$$
\begin{equation*}
\sup _{t \in(0, \theta]} \int_{U} u(x, t) \mathrm{d} x<\infty . \tag{2.8}
\end{equation*}
$$

Then, for any $\xi \in C_{0}^{1}(U), \alpha \leq 0, \alpha \neq-1$,

$$
\begin{align*}
& \int_{0}^{\theta} \int_{U} \xi^{p-1+\alpha}\left(1+u^{m}\right)^{p-1+\alpha+\frac{p}{m N}} \mathrm{~d} x \mathrm{~d} t \\
\leq & C \int_{0}^{\theta} \int_{U} \xi^{p}\left(1+u^{m}\right)^{\alpha-1}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t+C \int_{0}^{\theta} \int_{U}\left(1+u^{m}\right)^{\alpha-1+p}|\nabla \xi|^{p} \mathrm{~d} x \mathrm{~d} t \tag{2.9}
\end{align*}
$$

Proof Let $\alpha \in(1-p, 0), \alpha \neq-1$ be fixed and $\beta=\frac{p-1+\alpha}{p}$. Using Gagliardo-NirenbergSobolev inequality and Hölder inequality, we obtain

$$
\begin{aligned}
& \int_{0}^{\theta} \int_{U} \xi^{p-1+\alpha}\left(1+u^{m}\right)^{p-1+\alpha+\frac{p}{m N}} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{0}^{\theta} \int_{U}\left[\xi\left(1+u^{m}\right)\right]^{p \beta}\left(u^{m}+1\right)^{\frac{p}{m N}} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{0}^{\theta}\left(\int_{U}\left[\xi\left(u^{m}+1\right)\right]^{\beta \frac{p N}{N-p}} \mathrm{~d} x\right)^{\frac{N-p}{N}}\left(\int_{U}\left(u^{m}+1\right)^{1 / m} \mathrm{~d} x\right)^{p / N} \mathrm{~d} t \\
\leq & C \int_{0}^{\theta} \int_{U} \xi^{p}\left(1+u^{m}\right)^{\beta-1}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t+C \int_{0}^{\theta} \int_{U}|\nabla \xi|^{p}\left(1+u^{m}\right)^{p \beta},
\end{aligned}
$$

and (2.9) is proved.
Proposition 2.3 Let u be a nonnegative solution of (1.1) in Q_{T} and let $0<\theta<T$. For any open set $U \subset \subset \Omega$, let (2.8) hold and

$$
\begin{equation*}
\int_{0}^{\theta} \int_{U}\left(u^{m(p-1)}+u^{q}\right) \mathrm{d} x \mathrm{~d} t<\infty \tag{2.10}
\end{equation*}
$$

Then,

$$
\begin{gather*}
\int_{0}^{\theta} \int_{U} u^{\sigma} \mathrm{d} x \mathrm{~d} t<\infty \tag{2.11}\\
\int_{0}^{\theta} \int_{U}\left|\nabla u^{m}\right|^{r} \mathrm{~d} x \mathrm{~d} t<\infty \tag{2.12}
\end{gather*}
$$

where $\sigma \in\left(0, m(p-1)+\frac{p}{N}\right)$ and $r \in\left(0, p-1+\frac{1}{m N+1}\right)$. Finally, there exists a Radon measure $\ell \in \mu^{+}(\Omega)$ such that, for any $\xi \in C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{\Omega} \xi u(x, t) \mathrm{d} x=\ell(\xi) \tag{2.13}
\end{equation*}
$$

and u satisfies

$$
\begin{align*}
& \int_{0}^{\theta} \int_{\Omega}\left(-u \partial_{t} \varphi+\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \nabla \varphi+u^{q} \varphi\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{\Omega} \varphi(x, 0) d \ell(x)-\int_{\Omega} u(x, \theta) \varphi(x, \theta) \mathrm{d} x, \tag{2.14}
\end{align*}
$$

for any $0<\theta<T$ and $\varphi \in C_{0}^{\infty}(\Omega \times[0, T))$.

Proof Let $\alpha<0$ be fixed. From (2.1), for any $0<t<\theta$, we obtain

$$
\begin{align*}
& \frac{|\alpha|}{2} \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{\Omega} \int_{0}^{u(x, \theta)}\left(1+s^{m}\right)^{\alpha} \mathrm{d} s \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha} \xi^{\tau} u^{q} \mathrm{~d} x \mathrm{~d} t \\
& +C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha+p-1} \xi^{\tau-p}|\nabla \xi|^{p} \mathrm{~d} x \mathrm{~d} t . \tag{2.15}
\end{align*}
$$

Because $\left(1+u^{m}\right)^{\alpha} u^{q} \leq u^{q}$ and $\left(1+u^{m}\right)^{\alpha+p-1} \leq\left(1+u^{m}\right)^{p-1}$, we find

$$
\int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1}\left|\nabla u^{m}\right|^{p} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \leq C
$$

hence,

$$
\begin{equation*}
\int_{0}^{\theta} \int_{U}\left(1+u^{m}\right)^{\alpha-1}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t<\infty . \tag{2.16}
\end{equation*}
$$

Using Proposition 2.2 and (2.16), we get (2.11).
Next, for any $0<r<p$ and any $\alpha<0$, we find

$$
\begin{align*}
\int_{0}^{\theta} \int_{U}\left|\nabla u^{m}\right|^{r} \mathrm{~d} x \mathrm{~d} t \leq & \left(\int_{0}^{\theta} \int_{U}\left(1+u^{m}\right)^{\alpha-1}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t\right)^{r / p} \\
& \times\left(\int_{0}^{\theta} \int_{U}\left(1+u^{m}\right)^{\frac{(1-\alpha) r}{p-r}} \mathrm{~d} x \mathrm{~d} t\right)^{(p-r) / p} \tag{2.17}
\end{align*}
$$

Hence,

$$
\int_{0}^{\theta} \int_{U}\left|\nabla u^{m}\right|^{r} \mathrm{~d} x \mathrm{~d} t \leq C
$$

if $0<r<p-1+1 /(m N+1)$. This proves (1.7), which implies (2.10) in particular. Now, from (1.3) with $h=1$, for any $\xi \in C_{0}^{\infty}(\Omega)$ and any $0<t<\theta<T$,

$$
\int_{\Omega} u(x, t) \xi(x) \mathrm{d} x=\int_{\Omega} u(x, \theta) \xi(x) \mathrm{d} x+\int_{t}^{\theta} \int_{U}\left(\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \cdot \nabla \xi+u^{q} \xi\right) \mathrm{d} x \mathrm{~d} t .
$$

As the right-hand side of the above equation has a finite limit when $t \longrightarrow 0$, so does $\int_{\Omega} u(x, t) \xi(x) \mathrm{d} x$. Thus, the mapping $\xi \mapsto \lim _{t \rightarrow 0} \int_{\Omega} u(x, t) \xi(x) \mathrm{d} x$ is a positive linear functional over the space $C_{0}^{\infty}(\Omega)$. It can be extended in a unique way as a Radon measure ℓ on Ω, and (2.11) holds in Ω. Finally, let $0<t<\theta$ be fixed. Taking $h=1, \varphi \in C_{0}^{\infty}(\Omega \times[0, T))$ in (1.3), we obtain

$$
\begin{align*}
& \int_{t}^{\theta} \int_{\Omega}\left(-u \partial_{t} \varphi+\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \cdot \nabla \varphi+u^{q} \varphi\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{\Omega} u(x, t) \varphi(x, t) \mathrm{d} x-\int_{\Omega} u(x, \theta) \varphi(x, \theta) \mathrm{d} x . \tag{2.18}
\end{align*}
$$

Letting t go to 0 in (2.18) and using (2.8),(2.10),(2.11), (2.12), and

$$
\mid \int_{\Omega} u(x, t)\left(\varphi(x, t)-\varphi(x, 0) \mathrm{d} x \mid \leq C t \int_{U} u(x, t) \mathrm{d} x \rightarrow 0 \text { as } t \rightarrow 0,\right.
$$

we obtain

$$
\int_{\Omega} u(x, t) \varphi(x, t) \mathrm{d} x \rightarrow \int_{\Omega} \varphi(x, 0) d \ell(x) .
$$

This proves (2.13). (2.14) follows from (2.18).

3 Proof of Theorem 1

3.1 The Case $q>m(p-1)>0$

We first prove the following lemma.
Lemma 3.1 Let $q>m(p-1)>0$ and let u be a nonnegative solution of (1.1). Then, for any nonnegative function $\xi \in C_{0}^{\infty}(\Omega)$, the following dichotomy occurs:
(i) either $\int_{0}^{T} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t<\infty$, then,

$$
\begin{equation*}
t \longmapsto \int_{\Omega} u(x, t) \xi^{\tau} \mathrm{d} x \quad \text { remains bounded near } t=0, \tag{3.1}
\end{equation*}
$$

or (ii) $\int_{0}^{T} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t=\infty$, then,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{\Omega} u(x, t) \xi^{\tau} \mathrm{d} x=\infty \tag{3.2}
\end{equation*}
$$

Proof Because $q>m(p-1)$, we choose α small enough such that

$$
\begin{gather*}
\int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha+p-1} \xi^{\tau-p}|\nabla \xi|^{p} \mathrm{~d} x \mathrm{~d} t \leq C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C \tag{3.3}\\
\int_{t}^{\theta} \int_{\Omega} \xi^{\tau-p}|\nabla \xi|^{p}\left(1+u^{m}\right)^{(1-\alpha)(p-1)} \mathrm{d} x \mathrm{~d} t \leq C \int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C \tag{3.4}
\end{gather*}
$$

where $C=C(\xi, \alpha, \tau, p, q)$. Substituting (3.3) into (2.1), we obtain

$$
\begin{align*}
& \frac{|\alpha|}{2} \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{\Omega} u(x, \theta) \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C . \tag{3.5}
\end{align*}
$$

Combining (2.2), (3.4), and (3.5), it yields

$$
\begin{equation*}
\int_{\Omega} u(x, t) \xi^{\tau} \mathrm{d} x \leq \int_{\Omega} u(x, \theta) \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C \tag{3.6}
\end{equation*}
$$

where $C=C(\tau, p, q, \alpha, \xi)$. Thus, if

$$
\int_{0}^{T} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t<\infty
$$

then, (3.1) holds.
We now consider the case

$$
\int_{0}^{T} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t=\infty
$$

Using Young's inequality and (3.5), for any $\varepsilon>0$,

$$
\begin{align*}
& \tau \int_{t}^{\theta} \int_{\Omega} \xi^{\tau-1}\left|\nabla u^{m}\right|^{p-1}|\nabla \xi| \mathrm{d} x \mathrm{~d} t \\
\leq & \epsilon \int_{t}^{\theta} \int_{\Omega} \xi^{\tau}\left|\nabla u^{m}\right|^{p}\left(1+u^{m}\right)^{\alpha-1} \mathrm{~d} x \mathrm{~d} t+C(\epsilon) \int_{t}^{\theta} \int_{\Omega} \xi^{\tau-p}|\nabla \xi|^{p}\left(1+u^{m}\right)^{(1-\alpha)(p-1)} \mathrm{d} x \mathrm{~d} t \\
\leq & \epsilon \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1}\left|\nabla u^{m}\right|^{p} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+\epsilon \int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C_{1}(\epsilon) \\
\leq & C \varepsilon \int_{\Omega} u(x, \theta) \xi^{\tau} \mathrm{d} x+C \varepsilon \int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C_{1}(\varepsilon) . \tag{3.7}
\end{align*}
$$

Choosing $\epsilon>0$ small enough and combining (3.7) and (2.3), we obtain

$$
\begin{equation*}
\int_{\Omega} u(x, \theta) \xi^{\tau} \mathrm{d} x+\int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \leq C \int_{\Omega} u(x, t) \xi^{\tau} \mathrm{d} x+C . \tag{3.8}
\end{equation*}
$$

Thus, $\int_{t}^{T} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t=\infty$ implies (3.2).
We now prove Theorem 1 for the case $q>m(p-1)$. We first assume that for any open subset U of Ω containing y and any nonnegative $\xi \in C_{0}^{\infty}(U), \xi=1$ in a neighborhood of y

$$
\int_{0}^{T} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t=\infty
$$

Then, (1.4) holds from Lemma 3.1.
Assume now that there exists an open neighborhood $\widetilde{U} \subset \Omega$ of y and a nonnegative function $\xi \in C_{0}^{\infty}(\widetilde{U}), \xi=1$ in a neighborhood U^{*} of y such that

$$
\int_{0}^{T} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t<\infty
$$

Then,

$$
t \longmapsto \int_{U^{*}} u(x, t) \mathrm{d} x
$$

remains bounded near $t=0$ from Lemma 3.1. Moreover, we have also

$$
\begin{equation*}
\int_{0}^{T} \int_{U^{*}}\left|\nabla u^{m}\right|^{p-1} \mathrm{~d} x \mathrm{~d} t<\infty \tag{3.9}
\end{equation*}
$$

Indeed, using Young's inequality and Hölder inequality, we have

$$
\begin{align*}
\int_{t}^{\theta} \int_{\Omega}\left|\nabla u^{m}\right|^{p-1} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \leq & \int_{t}^{\theta} \int_{\Omega}\left|\nabla u^{m}\right|^{p}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \\
& +\int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{(1-\alpha)(p-1)} \xi^{\tau} \mathrm{d} x \mathrm{~d} t
\end{aligned} \begin{aligned}
& \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{(1-\alpha)(p-1)} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \leq \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\frac{q}{m}} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C \tag{3.10}\\
& \leq C \int_{t}^{\theta} \int_{\Omega} u^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C
\end{align*}
$$

where $m(1-\alpha)(p-1) \leq q$. Then, (3.9) follows from (3.5), (3.10), and (3.11).
3.2 The Case $q \leq m(p-1), m(p-1)>1$

In the range of exponents, the proof of Theorem 1 is a consequence of the following lemma.
Lemma 3.2 Let $0<q \leq m(p-1)$ and $m(p-1)>1$. Assume that u is a nonnegative weak solution of (1.1) in Q_{T} and that for any open set $U \subset \subset \Omega$

$$
t \mapsto \int_{U} u(x, t) \mathrm{d} x
$$

remains bounded near $t=0$. Then, for any $0<\theta<T$,

$$
\int_{0}^{\theta} \int_{U} u^{m(p-1)}(x, t) \mathrm{d} x \mathrm{~d} t+\int_{0}^{\theta} \int_{U}\left|\nabla u^{m}\right|^{p-1} \mathrm{~d} x \mathrm{~d} t<\infty .
$$

Proof Let $\alpha \in(1-p, 0), \alpha \neq-1$ be fixed and $\xi \in C_{0}^{\infty}(\Omega)$ as above. Combining (2.13), (2.8), and $0<q \leq m(p-1)$, we obtain

$$
\begin{equation*}
\frac{|\alpha|}{2} \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t \leq C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{p-1+\alpha} \xi^{\tau-p} \mathrm{~d} x \mathrm{~d} t+C . \tag{3.12}
\end{equation*}
$$

Let U, U^{*} be open sets with $U \subset \subset U^{*} \subset \subset \Omega$ and $\xi \in C_{0}^{\infty}(\Omega), 0 \leq \xi \leq 1, \xi=1$ on U, and $\xi=0$ outside of U^{*}. Using Proposition 2.2 and (3.12), we obtain

$$
\begin{equation*}
\int_{0}^{\theta} \int_{U}\left(1+u^{m}\right)^{p-1+\alpha+\frac{p}{m N}} \mathrm{~d} x \mathrm{~d} t \leq C+C \int_{0}^{\theta} \int_{U^{*}}\left(1+u^{m}\right)^{\alpha-1+p} \mathrm{~d} x \mathrm{~d} t . \tag{3.13}
\end{equation*}
$$

Hence, any estimate of $\left(1+u^{m}\right)^{\alpha-1+p}$ in $L^{1}\left((0, \theta), L_{\mathrm{loc}}^{1}(\Omega)\right)$ implies the same estimate for $\left(1+u^{m}\right)^{p-1+\alpha+\frac{p}{N m}}$. We first take $\alpha_{0}=1+\frac{1}{m}-p$. From (3.13) and $\alpha_{0}+(p-1)=\frac{1}{m}$, we obtain

$$
u^{m \sigma_{1}} \in L^{1}\left((0, \theta), L_{\mathrm{loc}}^{1}(\Omega)\right)
$$

with $\sigma_{1}=\alpha_{0}+p-1+\frac{p}{m N}=\frac{1}{m}+\frac{p}{m N}$.
Defining by induction

$$
\alpha_{n+1}=\alpha_{n}+\frac{p}{m N}, \quad \sigma_{n}=\alpha_{n}+p-1, \quad \forall n \in \mathbb{N},
$$

it yields

$$
\left(1+u^{m}\right)^{\sigma_{n+1}} \in L^{1}\left((0, \theta), L_{\mathrm{loc}}^{1}(\Omega)\right)
$$

as long as $\alpha_{n}=\frac{n p}{m N}+1-p+\frac{1}{m}<0$. Let n_{0} be the largest integer such that $\alpha_{n}<0$. Then, $\left(1+u^{m}\right)^{\sigma_{n_{0}+1}} \in L^{1}\left((0, \theta), L_{\text {loc }}^{1}(\Omega)\right)$ and $\sigma_{n_{0}+1} \geq p-1$. In particular,

$$
u^{m(p-1)} \in L^{1}\left((0, \theta), L_{\mathrm{loc}}^{1}(\Omega)\right) .
$$

Hence, from Proposition 2.3, we obtain $\left|\nabla u^{m}\right| \in L^{r}\left((0, \theta), L_{\mathrm{loc}}^{1}(\Omega)\right)$ for any $r<p-1+\frac{1}{m N+1}$. In particular,

$$
\left|\nabla u^{m}\right| \in L^{p-1}\left((0, \theta), L_{\mathrm{loc}}^{1}(\Omega)\right) .
$$

We now prove Theorem 1 for $0<q \leq m(p-1)$ and $m(p-1)>1$. Let $y \in \Omega$. Then, either statement (i) of Theorem 1 holds, or there exists an open subset $U^{*} \subset \Omega$ containing y such that $\int_{U^{*}} u(x, t) \mathrm{d} x$ is bounded near $t=0$. Hence, statement (ii) follows from Lemma 3.2 and Proposition 2.3.

4 Proof of Theorem 2

We first prove the following lemma.
Lemma 4.1 Let $0<q \leq 1, m(p-1)<1$ and let u be a nonnegative weak solution of (1.1) in Q_{T}. Then, there exists a Radon measure $\mu \in \mathcal{M}^{+}(\Omega)$ such that

$$
\lim _{t \rightarrow 0} \int_{\Omega} u(x, t) \xi(x) \mathrm{d} x=\int_{\Omega} \xi(x) \mathrm{d} \mu(x), \quad \text { for } \quad \forall \xi \in C_{0}(\Omega) .
$$

Proof Let α, t, θ, ξ, and τ be as in Proposition 2.1. Using Proposition 2.1 and Young's inequality, it yields

$$
\begin{align*}
& \frac{|\alpha|}{2} \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha-1} \xi^{\tau}\left|\nabla u^{m}\right|^{p} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{\Omega} \int_{0}^{u(x, \theta)}\left(1+s^{m}\right)^{\alpha} \mathrm{d} s \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha} \xi^{\tau} u^{q} \mathrm{~d} x \mathrm{~d} t \\
& +C \int_{t}^{\theta} \int_{\Omega}\left(1+u^{m}\right)^{\alpha+p-1} \xi^{\tau-p}|\nabla \xi|^{p} \mathrm{~d} x \mathrm{~d} t \\
\leq & \int_{\Omega}(1+u(x, \theta)) \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega}(1+u(x, t)) \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C . \tag{4.1}
\end{align*}
$$

Combining (4.1), (2.2) and choosing α such that $m(p-1)(1-\alpha) \leq 1$, we obtain

$$
\int_{\Omega}(1+u(x, t)) \xi^{\tau} \mathrm{d} x \leq C \int_{\Omega}(1+u(x, \theta)) \xi^{\tau} \mathrm{d} x+C \int_{t}^{\theta} \int_{\Omega}(1+u(x, t)) \xi^{\tau} \mathrm{d} x \mathrm{~d} t+C .
$$

By Gronwall inequality, there exists $M>0$ such that

$$
\begin{equation*}
\int_{t}^{\theta} \int_{\Omega}(1+u(x, t)) \xi^{\tau} \mathrm{d} x \mathrm{~d} t<M \quad \int_{\Omega}(1+u(x, t)) \xi^{\tau} \mathrm{d} x<M \tag{4.2}
\end{equation*}
$$

for $t \in(0, \theta]$, which implies the claim of lemma.
Proof of Theorem 2 When $0<q \leq 1, m(p-1)<1$, (2.10) follows from $q \leq 1, m(p-$ $1)<1$, (4.2) and Hölder inequality. (2.11)-(2.13) follow from (2.10) and Proposition 2.3.

We now consider the case $q \leq 1<m(p-1), \Omega=\mathbb{R}^{N}$. We show that, for any $b \in \mathbb{R}^{N}$, there exists $\rho>0$, such that

$$
\begin{equation*}
\limsup _{t \rightarrow 0} \int_{B_{\rho}(b)} u(x, t) \mathrm{d} x<\infty \tag{4.3}
\end{equation*}
$$

We argue by contradiction. Assume that (4.3) is false. Then, there exists some $b \in R^{N}$ such that, for any $\rho>0$, there exists a sequence $\left\{t_{n, \rho}\right\}$ converging to 0 with the property

$$
\begin{equation*}
\lim _{t_{n, \rho} \rightarrow 0} \int_{B_{\rho}(b)} u\left(x, t_{n, \rho}\right) \mathrm{d} x=\infty . \tag{4.4}
\end{equation*}
$$

Let $k>0$ be an integer. For any $\rho>0$, there exists N_{ρ} such that, for any $n_{\rho} \geq N_{\rho}$,

$$
\begin{equation*}
\int_{B_{\rho}(b)} u\left(x, t_{n_{\rho}}\right) \mathrm{d} x \geq k . \tag{4.5}
\end{equation*}
$$

By continuity of the integral with respect to the domain, there exists some $0<\widetilde{\rho} \leq \rho$ such that

$$
\begin{equation*}
\int_{B_{\tilde{\rho}(}(b)} u\left(x, t_{n_{\rho}}\right) \mathrm{d} x=k . \tag{4.6}
\end{equation*}
$$

Moreover, $\widetilde{\rho}$ is uniquely determined if we impose it to be the largest as possible. Clearly $t_{n_{\rho}} \rightarrow 0$ as $\rho \rightarrow 0$, because $t \mapsto u(., t)$ is continuous from $(0, T)$ into $L_{\text {loc }}^{1}\left(R^{N}\right)$. Let $w_{\rho k}$ be the solution of

$$
\begin{cases}\partial_{t} w-\nabla \cdot\left(\left|\nabla w^{m}\right|^{p-2} \nabla w^{m}\right)+w^{q}=0 & \text { in } \mathbb{R}^{N} \times(0, \infty) \tag{4.7}\\ w(., 0)=u\left(., t_{n_{\rho}}\right) \chi_{B_{\tilde{\rho}}(b)}, & \text { in } R^{N} .\end{cases}
$$

Where $\chi_{B_{\tilde{\rho}}(b)}$ is the characteristic function of $B_{\tilde{\rho}}(b)$. As u is nonnegative, it follows by the comparison principle [6] that

$$
\begin{equation*}
u\left(x, t+t_{n_{\rho}, \rho}\right) \geq w_{\rho k}(x, t) \text { in } R^{N} \times\left(0, T-t_{n_{\rho}}\right) . \tag{4.8}
\end{equation*}
$$

Notice that, when $\rho \rightarrow 0, w_{\rho k}$ converges to the solution w_{k} of the following problem

$$
\begin{cases}\partial_{t} w_{k}-\nabla \cdot\left(\left|\nabla w_{k}^{m}\right|^{p-2} \nabla w_{k}^{m}\right)+w_{k}^{q}=0 & \text { in } R^{N} \times(0, \infty) \tag{4.9}\\ w_{k}(., 0)=k \delta_{b}, & \text { in } R^{N}\end{cases}
$$

(4.8) implies

$$
\begin{equation*}
u(x, t)>w_{k}(x, t) \text { in } R^{N} \times(0, \infty) \tag{4.10}
\end{equation*}
$$

For $k_{1}>k$, we require

$$
\int_{B_{\tilde{\rho}_{1}}(b)} u\left(x, t_{n_{\rho}}\right) \mathrm{d} x=k_{1}
$$

for some $\widetilde{\rho_{1}}>\widetilde{\rho}$. Let $w_{\rho_{1} k_{1}}$ be the solution of

$$
\begin{cases}\partial_{t} w-\nabla \cdot\left(\left|\nabla w^{m}\right|^{p-2} \nabla w^{m}\right)+w^{q}=0 & \text { in } \mathbb{R}^{N} \times(0, \infty) \\ w(., 0)=u\left(., t_{n_{\rho}}\right) \chi_{B_{\tilde{\rho}_{1}}(b)}, & \text { in } R^{N} .\end{cases}
$$

By comparison principle,

$$
\begin{equation*}
w_{\rho_{1} k_{1}}(x, t) \geq w_{\rho k}(x, t) \text { in } R^{N} \times\left(0, T-t_{n_{\rho}}\right) . \tag{4.11}
\end{equation*}
$$

Let $w_{\rho_{1} k_{1}} \rightarrow w_{k_{1}}$ as $\widetilde{\rho}_{1} \rightarrow 0$. Then, $w_{k_{1}}$ is the solution of the following problem

$$
\begin{cases}\left.\partial_{t} w_{k_{1}}-\nabla \cdot\left(\mid \nabla w_{k_{1}}^{m}\right)^{p-2} \nabla w_{k_{1}}^{m}\right)+w_{k_{1}}^{q}=0 & \text { in } \mathbb{R}^{N} \times(0, \infty) \\ w_{k_{1}}(., 0)=k_{1} \delta_{b}, & \text { in } R^{N}\end{cases}
$$

(4.11) implies

$$
w_{k_{1}}(x, t) \geq w_{k}(x, t) .
$$

Thus, $k \mapsto w_{k}$ is increasing. Let

$$
w_{\infty}=\lim _{k \rightarrow \infty} w_{k} .
$$

Then, w_{∞} is a very singular solution and the convergence is uniformly to $t>t_{0}>0$ [7]. Notice that if w_{k} is a solution of (1.1), then,

$$
N_{\ell}\left(w_{k}\right)(x, t)=\ell^{\frac{1}{q-1}} w_{k}\left(b+\ell^{\gamma}(x-b), \ell t\right)
$$

with $\gamma=\frac{q-m(p-1)}{p(q-1)}$ and $\ell>0$ is also a solution of (1.1) and

$$
\begin{equation*}
N_{\ell}\left(w_{k}\right)(x, t)=w_{k \ell^{1 /(q-1)-\gamma N}}, \quad N_{\ell}\left(w_{k}\right)(x, 0)=k \ell^{\frac{1}{q-1}-N \gamma} \delta_{b} . \tag{4.12}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in (4.12), it leads to the invariance property

$$
\begin{equation*}
N_{\ell}\left(w_{\infty}\right)=w_{\infty}, \quad \forall \ell>0 . \tag{4.13}
\end{equation*}
$$

By the uniform convergence of w_{k}, choosing $\ell=\frac{1}{t}$ in (4.12), we obtain

$$
\begin{equation*}
w_{\infty}(x, t)=t^{\frac{1}{1-q}} f\left(t^{-\gamma}(x-b)\right) \forall(x, t) \in \mathbb{R}^{N} \times(0, \infty) \tag{4.14}
\end{equation*}
$$

This implies, in particular, that $f(0)$ is finite and

$$
w_{k}(b, t) \leq t^{\frac{1}{1-q}} f(0) \leq u(b, t) \quad \forall t \in(0, T)
$$

This contradicts the fact that $w_{k}(b, t) \rightarrow \infty$ when $t \rightarrow 0$, because $q<1$. When $q=1$ (and $m(p-1) \neq 1$ otherwise, the results is well known), (1.1) is invariant with respect to the transformation $M_{\ell}(w)$ defined (for $\ell>0$) by

$$
M_{\ell}(w)(x, t)=\ell w\left(b+\ell^{\frac{1-m(p-1)}{p}}(x-b), t\right)
$$

which yields

$$
M_{\ell}\left(w_{k}\right)=w_{k \ell^{1+N(m(p-1)-1) / p}}
$$

Let $k \rightarrow \infty$ to get

$$
M_{\ell}\left(w_{\infty}\right)=w_{\infty} \quad \forall \ell>0
$$

This estimate implies

$$
0<M_{k}(b, T / 2) \leq w_{\infty}(b, T / 2)=\ell w_{\infty}(b, T / 2) \leq u(b, T / 2) \quad \forall \ell>0
$$

which is again a contradiction. Thus, (4.3) holds. (4.3) implies that for any bounded open set U

$$
t \mapsto \int_{U} u(x, t) \mathrm{d} x
$$

remains bounded near $t=0$. Theorem 2 is proved.

5 Proofs of Theorems 3 and 4

Proof of Theorem 3 Let $\mu_{n} \in C_{0}^{\infty}\left(R^{N}\right)$ be nonnegative and converge to μ in weak sense. We consider the approximate problem

$$
\begin{cases}\frac{\partial u}{\partial t}=\nabla \cdot\left(\left|\nabla u^{m}\right|^{p-2} \nabla u^{m}\right)-u^{q} & \text { in } Q_{\infty}=R^{N} \times(0, \infty) \tag{5.1}\\ u(x, 0)=\mu_{n} & \text { on } R^{N}\end{cases}
$$

Problem (5.1) has a solution $u_{n} \in L^{\infty}\left(Q_{\infty}\right) \cap C\left([0, \infty): L^{1}\left(R^{N}\right)\right), u_{n}^{q} \in C\left([0, \infty): L^{1}\left(R^{N}\right)\right)$, $\nabla u_{n} \in C\left([0, T): L^{p}\left(R^{N}\right)\right), \frac{\partial u_{n}^{\frac{m+1}{2}}}{\partial t} \in L^{2}\left(Q_{\infty}\right)[6]$. Moreover,

$$
u_{n} \leq\left(\frac{1}{(q-1) t}\right)^{\frac{1}{q-1}} \quad \text { if } q>1
$$

by the comparison principle. Let $\xi \in C_{0}^{2}\left(B_{2 \rho}\right), \xi=1$ on $B_{\rho}, 0 \leq \xi \leq 1$, and $\tau>0$ large enough, $0<t<\theta$. Applying (2.3) to u_{n} and letting $t \rightarrow 0$, we obtain

$$
\begin{align*}
& \int_{B_{2 \rho}} u_{n}(x, \theta) \xi^{\tau} \mathrm{d} x+\int_{0}^{\theta} \int_{B_{2 \rho}} u_{n}^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \\
\leq & \int_{B_{2 \rho}} \mu_{n} \xi^{\tau} \mathrm{d} x+\tau \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau-1}\left|\nabla u_{n}^{m}\right|^{p-1}| | \nabla \xi \mid \mathrm{d} x \mathrm{~d} t . \tag{5.2}
\end{align*}
$$

Similar to the proof of (3.8), if $q>m(p-1)$, we obtain

$$
\int_{B_{2 \rho}} u_{n}(x, \theta) \xi^{\tau} \mathrm{d} x+\int_{0}^{\theta} \int_{B_{2 \rho}} u_{n}^{q} \xi^{\tau} \mathrm{d} x \mathrm{~d} t \leq C \int_{B_{2 \rho}} \mu_{n} \xi^{\tau} \mathrm{d} x+C .
$$

If $0 \leq m(p-1)<1$, using Young's inequality and (2.1), we obtain

$$
\begin{align*}
& \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau-1}\left|\nabla u_{n}^{m}\right|^{p-1}|\nabla \xi| \mathrm{d} x \mathrm{~d} t \\
\leq & \epsilon \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau}\left|\nabla u_{n}^{m}\right|^{p}\left(1+u_{n}^{m}\right)^{\alpha-1} \mathrm{~d} x \mathrm{~d} t+C_{\epsilon} \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau-p}\left(1+u_{n}^{m}\right)^{(1-\alpha)(p-1)} \mathrm{d} x \mathrm{~d} t \\
\leq & \epsilon \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau}\left|\nabla u_{n}^{m}\right|^{p}\left(1+u_{n}^{m}\right)^{\alpha-1} \mathrm{~d} x \mathrm{~d} t+\epsilon \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau} u_{n} \mathrm{~d} x \mathrm{~d} t+C_{\epsilon} \\
\leq & \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau} u_{n} \mathrm{~d} x \mathrm{~d} t+C \epsilon \int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau} u_{n}^{q} \mathrm{~d} x \mathrm{~d} t+C \epsilon \int_{B_{2 \rho}} u_{n}(x, \theta) \xi^{\tau} \mathrm{d} x++C_{\epsilon}, \tag{5.3}
\end{align*}
$$

where $\alpha<0,(1-\alpha) m(p-1)<1$. Substituting (5.3) into (5.2) and using Gronwall's inequality, we obtain

$$
\int_{B_{2 \rho}} \xi^{\tau} u_{n}(x, \theta) \mathrm{d} x+\int_{0}^{\theta} \int_{B_{2 \rho}} \xi^{\tau} u_{n}^{q} \mathrm{~d} x \mathrm{~d} t \leq C .
$$

In both cases, $\left\{u_{n}\right\}$ is uniformly bounded in $L^{\infty}\left((0, \infty) ; L^{1}\left(B_{\rho}\right)\right)$ and $\left\{u_{n}^{q}\right\}$ is uniformly bounded in $L^{1}\left(B_{\rho} \times(0, \infty)\right)$. Besides, $\left\{u_{n}^{m(p-1)}\right\}$ is bounded in $L^{1}\left(B_{\rho} \times(0, T)\right)$, whenever $q>m(p-1)$ or $m(p-1)<1$. Then, by Proposition 2.3,

$$
\int_{0}^{T} \int_{B_{\rho}}\left|\nabla u_{n}^{m}\right|^{r} \mathrm{~d} x \mathrm{~d} t<M, \quad r \in\left(0, p-1+\frac{1}{m N+1}\right)
$$

and

$$
\int_{0}^{T} \int_{B_{\rho}} u_{n}^{\sigma} \mathrm{d} x \mathrm{~d} t<M, \quad \sigma \in\left(0, m(p-1)+\frac{p}{N}\right),
$$

where M is a constant independent of n. Similar to argument in [6], if $p>\frac{N(m+1)}{m N+1}$, there exists a subsequence of $\left\{u_{n}\right\}$ and $u \in L_{\text {loc }}^{1}\left(R^{N} \times(0, T)\right)$ such that

$$
u_{n} \rightarrow u \text { uniformly on any compact set of } R^{N} \times(0, T)
$$

and u is a weak solution of (1.1). Notice that for any $\xi \in C_{0}^{\infty}\left(R^{N}\right)$

$$
\int_{R^{N}} u_{n}(x, t) \xi(x) \mathrm{d} x-\int_{R^{N}} \mu_{n} \xi(x) \mathrm{d} x=-\int_{0}^{t} \int_{R^{N}}\left(\left|\nabla u_{n}^{m}\right|^{p-2} \nabla u_{n}^{m} \cdot \nabla \xi+u_{n}^{q} \xi\right) \mathrm{d} x \mathrm{~d} t .
$$

Using proposition 2.3, $q<m(p-1)+\frac{p}{N}$, and Hölder's inequality, we can obtain $u(x, 0)=\mu$ in weak sense.

To prove Theorem 4, consider the following Cauchy problem

$$
\begin{cases}\partial_{t} w_{k}-\nabla\left(\left|\nabla w_{k}^{m}\right|^{p-1} \nabla w_{k}^{m}\right)+w_{k}^{q}=0 & \text { in } \mathbb{R}^{N} \times(0, \infty) \tag{5.4}\\ w_{k}(., 0)=k \delta_{b}, & \text { in } \mathbb{R}^{N} .\end{cases}
$$

By Theorem 3, (5.4) has a singular solution w_{k} satisfying

$$
\begin{equation*}
w_{k} \leq\left(\frac{1}{(q-1) t}\right)^{\frac{1}{q-1}} \tag{5.5}
\end{equation*}
$$

We require that w_{k} increases and converges to w_{∞}, which is a very singular solution of (1.1), that is, $w_{\infty} \in C\left(\overline{Q_{\infty}} \backslash\{0,0\}\right.$ satisfies (1.1) and for any $\rho>0$,

$$
\lim _{t \rightarrow 0} \int_{B_{\rho}} w_{\infty}(x, t) \mathrm{d} x=\infty
$$

Similar to the argument of (4.14),

$$
w_{\infty}(x, t)=t^{\frac{1}{1-q}} f\left(t^{-\gamma}(x-b)\right), \quad \forall(x, t) \in \mathbb{R}^{N} \times(0, \infty)
$$

with $\gamma=\frac{q-m(p-1)}{p(q-1)}$.
Lemma 5.1 Assume that $\max (1, m(p-1))<q<m(p-1)+\frac{p}{N}$ and let $u \in C\left(R^{N} \times(0, T)\right)$ be a nonnegative weak solution of (1.1) with initial trace $\operatorname{tr}_{R^{N}}(u)=(\mathcal{S}, \mu)$. If $y \in \mathcal{S}$, then,

$$
u(x, t) \geq w_{\infty}(x-y, t) \quad \forall(x, t) \in R^{N} \times(0, T)
$$

The proof of Lemma 5.1 is similar to the argument of (4.10).
Lemma 5.2 Let $\mu_{1}, \mu_{2} \in \mathcal{M}^{+}$with $\mu_{1} \leq \mu_{2}$. Assume that

$$
p>\frac{N(m+1)}{m N+1}
$$

and that

$$
1 \leq q<m(p-1)+\frac{p}{N} \text { or } m(p-1)<1
$$

Then, there exist solutions u_{1} and u_{2} with respective initial traces $\mu_{1} \mu_{2}$, such that $u_{1} \leq u_{2}$ a.e. in Q_{∞}.

Proof Let $\mu_{1 n}, \mu_{2 n} \in C_{0}^{\infty}\left(R^{N}\right), \quad \mu_{1 n} \leq \mu_{2 n}$, and

$$
\mu_{1 n} \rightharpoonup \mu_{1}, \quad \mu_{2 n} \rightharpoonup \mu_{2} .
$$

Then, there exist solutions $u_{1 n}$ and $u_{2 n}$ with respective initial traces $\mu_{1 n} \mu_{2 n}$. Then, by comparison principle, $u_{1 n} \leq u_{2 n}$, hence $u_{1} \leq u_{2}$ a.e. in Q_{∞}.

Proof of Theorem 4 Suppose $\nu=(\mathcal{S}, \mu)$ and let $\left\{a_{k}\right\}_{k=1}^{k=\infty}$ be a countable dense subset of \mathcal{S}. We define $\mu_{k} \in \mathcal{M}^{+}\left(R^{N}\right)$ by

$$
\mu_{k}=\mu+k \sum_{j=1}^{j=k} \delta_{a_{j}}
$$

From Theorem 3 and Lemma 5.2, there exists a sequence $\left\{u_{k}\right\}$ of solutions of (1.11) with initial data μ_{k} such that

$$
0 \leq w_{a_{j}} \leq u_{k} \leq u_{k+1}, \quad \forall k>0, \quad j=1, \cdots, k
$$

and u_{k} satisfies (5.5), where $w_{a_{j}}$ is the solution of (1.1) with initial data $k \delta_{a_{j}}$. (5.5) implies that $\left\{u_{k}\right\}$ is uniformly bounded in $C_{\mathrm{loc}}^{\alpha}\left(Q_{\infty}\right)$ [8]. Thus, there exists a function $u \in C\left(Q_{\infty}\right)$, such
that $u_{k} \rightarrow u$ uniformly in any compact set of Q_{∞}, as $k \rightarrow \infty$, and u is a weak solution of (1.1) in Q_{∞}. Notice that for $\forall \rho>0$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{\rho}\left(a_{j}\right)} w_{a_{j}, \infty} \mathrm{~d} x=\infty \tag{5.6}
\end{equation*}
$$

Because $\left\{a_{j}\right\}$ is dense in \mathcal{S}, the any point of \mathcal{S} satisfies property (5.5). Thus, the initial trace of u in \mathcal{S} is satisfied. In contrast, for any open sets $V \subset \subset V^{*} \subset \subset \mathcal{R}=R^{N} \backslash \mathcal{S}$, if we take a test function ξ with support in V^{*} in proof of Theorem 3, we verify that $\int_{R^{N}} u_{k}(x, t) \xi \mathrm{d} x$ is uniformly bounded to $t>0$. They also hold for u, because μ and μ_{n} have the same restriction to \mathcal{R}. Finally, for any $\theta>0$, letting $k \rightarrow \infty$ in the equation, we obtain

$$
\begin{aligned}
& \int_{0}^{\theta} \int_{V^{*}}\left(-u_{k} \partial_{t} \phi+\left|\nabla u_{k}^{m}\right|^{p-2} \nabla u^{m} \cdot \nabla \phi+u_{k}^{q} \phi\right) \mathrm{d} x \mathrm{~d} t \\
= & \int_{V^{*}} \phi(x, 0) \mathrm{d} \mu_{k}-\int_{V^{*}} u_{k}(x, \theta) \phi(x, \theta) \mathrm{d} x,
\end{aligned}
$$

where $\phi \in C_{0}^{\infty}\left(V^{*} \times[0, \infty)\right)$, it implies that u satisfies (1.10) in V^{*}. This proves that the regular part of the initial trace of u is μ and consequently, $\operatorname{tr}_{R^{N}}(u)=\nu \in \mathcal{B}_{\text {reg }}^{+}\left(R^{N}\right)$.

References

[1] Kalashnikov A S. Some problems of nonlinear parabolic equations of second order. USSR Math Nauk, T.42, 1987, 2 (2): 135-176
[2] Ladyzenskaya O A. New equations for the description of incompressible fluids and solvability in the large boundary value problem for them. Proc Steklov Inst Math, 1967, 102: 95-118
[3] Marcus M, Veron L. Initial trace of positive solutions of some nonlinear parabolic equations. Comm Partial Differential Equations, 1989, 24: 1445-1499
[4] Chasseigne E. Initial trace for a porous medium equation: I. The strong absorption case. Ann Math Pura Appl, 2001, 179(1): 413-458
[5] Veron M B, Chasseigne E, Veron L. Initial trace of solutions of some quasilinear parabolic equations with absorption. Journal of Functional Analysis, 2002, 193(1): 140-205
[6] Zhao J N, Yuan H J. The Cauchy problem of some nonlinear doubly degenerate parabolic equations. Chinese Journal of Contemporary Mathematics, 1995, 16(2): 173-192
[7] Guo B L, Du X Y. The exponential attractor for the equations of thermohydraulics. Acta Mathematica Scientia, 2005, 25B(2): 317-326
[8] Ivanov A V. Hölder estimates for quasilinear doubly degenerate parabolic equations. J Soviet Math, 1991, 56(12): 2320-2347

[^0]: ＊Received December 27，2007；revised September 18， 2008

