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Abstract In this note, we study the existence of an initial trace of nonnegative solutions

for the following problem

ut − div(| ▽ um|p−2 ▽ um) + uq = 0 in QT = Ω × (0, T ).

We prove that the initial trace is an outer regular Borel measure, which may not be locally

bounded for some values of parameters p, q, and m. We also study the corresponding

Cauchy problems with a given generalized Borel measure as initial data.
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1 Introduction

Let Ω be a domain in RN (N ≥ 1), possibly unbounded. The aim of this article is to

investigate the initial trace problem for degenerate parabolic equation:

ut − div(| ▽ um|p−2 ▽ um) + uq = 0 in QT = Ω × (0, T ), (1.1)

where q ≥ 0, p > 1, and m > 0. We prove the existence of an initial trace in the class B+
reg(Ω) of

outer regular positive Borel measure in Ω, not necessarily locally bounded. Moreover, we study

also Cauchy problem for (1.1) with initial data ν ∈ B+
reg(R

N ).

(1.1) was suggested as a mathematical model for a variety of physical problems [1, 2],

which is also called polypropic filtration equation. The evolution p-Laplacian equation ((1.1)

when m = 1) and the porous medium equation (Equ.(1.1) when p = 2) are the special cases of

(1.1) and analogous problems were considered in [3–5].

Definition 1.1 A nonnegative function u is said to be a weak solution of (1.1) in QT , if

u ∈ L1
loc(QT ), uq ∈ L1

loc(QT ), um ∈ L
p
loc((0, T ); W 1,p

loc (Ω))
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and
∫ T

0

∫

Ω

(−u∂tϕ + | ▽ um|p−2 ▽ um ▽ ϕ + uqϕ)dxdt = 0 (1.2)

for any ϕ ∈ C∞
0 (QT ).

By Steklov averaging process, it follows from the definition of solution that for any function

h ∈ Cb(R)
⋂

W 1,∞(R) and ϕ ∈ C∞
0 (Ω × [0, T ]), we have

∫ θ

t

∫

Ω

(

−

∫ u(x,t)

0

h(sm)ds∂tϕ + | ▽ um|p−2 ▽ um · ▽(h(um)ϕ
)

+ uqh(um)ϕ)dxdt

=

∫

Ω

∫ u(x,t)

0

h(sm)dsϕ(x, t)dx −

∫

Ω

∫ u(x,θ)

0

h(sm)dsϕ(x, θ)dx (1.3)

for any 0 < t < θ < T .

It is well known that if q > 1, (1.1) admits a particular solution in RN × (0,∞),

W (x, t) =
( 1

t(q − 1)

)
1

q−1

,

which is called the flat solution. This particular solution play an important role because it

dominates any nonnegative solution of (1.1) that is locally bounded in RN × (0,∞). The flat

solution W shows that the initial trace of solution of (1.1) can not be Radon measure.

Our main results are as follows:

Theorem 1 Assume that q > m(p − 1) or q ≤ m(p − 1), m(p − 1) > 1 and that u is a

nonnegative weak solution of (1.1) in QT . Then, for any y ∈ Ω, the following alternative occurs:

(i) either for any open subset U ⊂ Ω containing y

lim
t→0

∫

U

u(x, t)dx = ∞, (1.4)

or (ii) there exists an open neighborhood U∗ ⊂ Ω of y and a nonnegative Radon measure

ℓU∗ ∈ M+ such that for any ξ ∈ C0(U
∗),

lim
t→0

∫

U∗

u(x, t)ξ(x)dx = ℓU∗(ξ) (1.5)

and in any open set U ⊂⊂ U∗

∫ θ

0

∫

U

uσdxdt < ∞, for any σ ∈ (0, m(p − 1) + p/N), (1.6)

∫ θ

0

∫

U

| ▽ um|rdxdt < ∞, for any r ∈
(

0, p −
mN

mN + 1

)

. (1.7)

Owing to Theorem 1, we can define a set R by

R =

{

y ∈ Ω : ∃ open set U ⊂ Ω, y ∈ U, lim
t→0

∫

U

u(x, t)dx < ∞

}

. (1.8)

Clearly, R is an open subset of Ω and by Theorem 1, there exists a unique Radon measure

µ ∈ M+(R) such that

lim
t→0

∫

R

u(x, t)ξ(x)dx =

∫

R

ξ(x)dµ(x) ∀ξ ∈ C0(R), (1.9)
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where u satisfies
∫ θ

0

∫

R

(−u∂tϕ + | ▽ um|p−2 ▽ um ▽ ϕ + uqϕ)dxdt

=

∫

R

ϕ(x, 0)dµ −

∫

R

ϕ(x, θ)u(x, θ)dx (1.10)

for any 0 < θ < T and ϕ ∈ C∞
0 (R× [0, T )) and (1.6),(1.7) hold in any open set U ⊂⊂ R.

Definition 1.2 Let u be a nonnegative weak solution of (1.1) in QT . A point y ∈ Ω is

called a regular point if y ∈ R. Otherwise, it is called a singular point. The set of singular

points is denoted by S = Ω −R; it is a relatively closed subset of Ω. Denote

trΩ(u) = (S, µ),

where µ is the Radon measure in (1.9). trΩ(u) is called the initial trace of u at t = 0.

Remark 1.1 By Definition 1.2, Theorem 1 can be rewritten as: the solution of (1.1) has

initial trace

ν = (S, µ) ∈ B+
reg(Ω).

Theorem 2 Assume that u is a nonnegative weak solution of (1.1) in QT and that

0 < q ≤ 1, m(p − 1) < 1, or q ≤ 1 < m(p − 1), Ω = RN . Then, there exists a Radon measure

µ ∈ M+(Ω), such that

lim
t→0

∫

Ω

u(x, t)ξ(x)dx =

∫

Ω

ξ(x)dµ ∀ξ ∈ C0(Ω),

that is, the singular set S is empty.

Theorem 3 Let µ ∈ M+(RN ). Assume that

p >
(m + 1)N

mN + 1
(or p > 1 if µ ∈ L1

loc(R
N )), 0 < q < m(p − 1) +

p

N

and that either m(p − 1) < 1 or m(p − 1) < q. Then, the Cauchy problem






∂u

∂t
= ∇ · (|∇um|p−2∇um) + uq in Q∞ = RN × (0,∞)

u(x, 0) = µ on RN
(1.11)

has a solution.

Remark 1.2 In Theorem 3, the growth condition of µ has not been required.

Theorem 4 Let

max{1, m(p− 1)} < q ≤ m(p − 1) +
p

N
.

Then, for any ν ∈ B+
reg(R

N ), there exists at least one solution to Cauchy problem (1.1) with

initial trace ν.

2 Main Estimates

Proposition 2.1 Let α < 0, α 6= −1, 0 < t < θ < T and let u be a nonnegative weak

solution of (1.1) in QT . Then, for any nonnegative function ξ ∈ C∞
0 (Ω) and any τ > p,

∫

Ω

∫ u(x,t)

0

(1 + sm)αdsξτdx +
|α|

2

∫ θ

t

∫

Ω

(1 + um)α−1ξτ | ▽ um|pdxdt
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≤

∫

Ω

∫ u(x,θ)

0

(1 + sm)αdsξτdx + C

∫ θ

t

∫

Ω

(1 + um)αξτuqdxdt

+C

∫ θ

t

∫

Ω

(1 + um)α+p−1ξτ−p| ▽ ξ|pdxdt, (2.1)

∫

Ω

(1 + u(x, t))ξτdx ≤

∫

Ω

(1 + u(x, θ))ξτ dx + C

∫ θ

t

∫

Ω

uqξτdxdt

+C

∫ θ

t

∫

Ω

(1 + um)α−1ξτ | ▽ um|pdxdt

+C

∫ θ

t

∫

Ω

(1 + um)(1−α)(p−1)ξτ−pdxdt, (2.2)

∫

Ω

u(x, θ)ξτdx +

∫ θ

t

∫

Ω

uqξτdxdt ≤

∫

Ω

u(x, t)ξτdx + τ

∫ θ

t

∫

Ω

|∇um|p−1|∇ξτ |dxdt, (2.3)

where C = C(α, p, q, τ).

Proof Taking h(s) = (1 + sm)α, φ = ξτ in (1.3), where α ≤ 0, α 6= −1, it yields

∫

Ω

∫ u(x,t)

0

(1 + sm)αdsξτdx + |α|

∫ θ

t

∫

Ω

(1 + um)α−1| ▽ um|pξτdxdt

=

∫

Ω

∫ u(x,θ)

0

(1 + sm)α)dsξτdx +

∫ θ

t

∫

Ω

uqξτ (1 + um)α

+τ

∫ θ

t

∫

Ω

(1 + um)αξτ−1| ▽ um|p−2 ▽ um · ▽ξdxdt. (2.4)

Using Young’s inequality

τ

∫ θ

t

∫

Ω

(1 + um)αξτ−1| ▽ um|p−2 ▽ um · ▽ξdxdt

≤
|α|

2

∫ θ

t

∫

Ω

(1 + um)α−1ξτ | ▽ um|pdxdt + C

∫ θ

t

∫

Ω

(1 + um)α+p−1ξτ−p| ▽ ξ|pdxdt. (2.5)

Hence, (2.1) follows from (2.4) and (2.5).

As a particular case of (2.4) (with α = 0),

∫

Ω

(1 + u(x, t))ξτ dx =

∫

Ω

(1 + u(x, θ))ξτ dx +

∫ θ

t

∫

Ω

uqξτdxdt

+τ

∫ θ

t

∫

Ω

ξτ−1| ▽ um|p−2 ▽ um · ▽ξdxdt. (2.6)

Thus, (2.3) holds. Using Young’s inequality, for any α < 0,

∫ θ

t

∫

Ω

ξτ−1| ▽ um|p−1| ▽ ξ|dxdt ≤

∫ θ

t

∫

Ω

ξτ | ▽ um|p(1 + um)α−1dxdt

+

∫ θ

t

∫

Ω

ξτ−p| ▽ ξ|p(1 + um)(1−α)(p−1)dxdt. (2.7)

Hence, (2.2) follows from (2.6) and (2.7).
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Proposition 2.2 Let u be a nonnegative solution of (1.1) in QT and let 0 < θ < T. For

any open set U ⊂⊂ Ω, let

sup
t∈(0,θ]

∫

U

u(x, t)dx < ∞. (2.8)

Then, for any ξ ∈ C1
0 (U), α ≤ 0, α 6= −1,

∫ θ

0

∫

U

ξp−1+α(1 + um)p−1+α+ p
mN dxdt

≤ C

∫ θ

0

∫

U

ξp(1 + um)α−1| ▽ um|pdxdt + C

∫ θ

0

∫

U

(1 + um)α−1+p|∇ξ|pdxdt. (2.9)

Proof Let α ∈ (1 − p, 0), α 6= −1 be fixed and β = p−1+α
p . Using Gagliardo-Nirenberg-

Sobolev inequality and Hölder inequality, we obtain

∫ θ

0

∫

U

ξp−1+α(1 + um)p−1+α+ p
mN dxdt

≤

∫ θ

0

∫

U

[ξ(1 + um)]pβ(um + 1)
p

mN dxdt

≤

∫ θ

0

(
∫

U

[ξ(um + 1)]β
pN

N−p dx

)

N−p
N

(
∫

U

(um + 1)1/mdx

)p/N

dt

≤ C

∫ θ

0

∫

U

ξp(1 + um)β−1| ▽ um|pdxdt + C

∫ θ

0

∫

U

|∇ξ|p(1 + um)pβ ,

and (2.9) is proved.

Proposition 2.3 Let u be a nonnegative solution of (1.1) in QT and let 0 < θ < T. For

any open set U ⊂⊂ Ω, let (2.8) hold and

∫ θ

0

∫

U

(um(p−1) + uq)dxdt < ∞. (2.10)

Then,
∫ θ

0

∫

U

uσdxdt < ∞, (2.11)

∫ θ

0

∫

U

|∇um|rdxdt < ∞, (2.12)

where σ ∈ (0, m(p− 1) + p
N ) and r ∈ (0, p− 1 + 1

mN+1 ). Finally, there exists a Radon measure

ℓ ∈ µ+(Ω) such that, for any ξ ∈ C∞
0 (Ω),

lim
t→0

∫

Ω

ξu(x, t)dx = ℓ(ξ) (2.13)

and u satisfies

∫ θ

0

∫

Ω

(−u∂tϕ + | ▽ um|p−2 ▽ um ▽ ϕ + uqϕ)dxdt

=

∫

Ω

ϕ(x, 0)dℓ(x) −

∫

Ω

u(x, θ)ϕ(x, θ)dx, (2.14)

for any 0 < θ < T and ϕ ∈ C∞
0 (Ω × [0, T )).
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Proof Let α < 0 be fixed. From (2.1), for any 0 < t < θ, we obtain

|α|

2

∫ θ

t

∫

Ω

(1 + um)α−1ξτ | ▽ um|pdxdt

≤

∫

Ω

∫ u(x,θ)

0

(1 + sm)αdsξτdx + C

∫ θ

t

∫

Ω

(1 + um)αξτuqdxdt

+C

∫ θ

t

∫

Ω

(1 + um)α+p−1ξτ−p| ▽ ξ|pdxdt. (2.15)

Because (1 + um)αuq ≤ uq and (1 + um)α+p−1 ≤ (1 + um)p−1, we find

∫ θ

t

∫

Ω

(1 + um)α−1| ▽ um|pξτdxdt ≤ C,

hence,
∫ θ

0

∫

U

(1 + um)α−1| ▽ um|pdxdt < ∞. (2.16)

Using Proposition 2.2 and (2.16), we get (2.11).

Next, for any 0 < r < p and any α < 0, we find

∫ θ

0

∫

U

| ▽ um|rdxdt ≤

(
∫ θ

0

∫

U

(1 + um)α−1| ▽ um|pdxdt

)r/p

×

(
∫ θ

0

∫

U

(1 + um)
(1−α)r

p−r dxdt

)(p−r)/p

. (2.17)

Hence,
∫ θ

0

∫

U

| ▽ um|rdxdt ≤ C

if 0 < r < p− 1+ 1/(mN + 1). This proves (1.7), which implies (2.10) in particular. Now, from

(1.3) with h = 1, for any ξ ∈ C∞
0 (Ω) and any 0 < t < θ < T ,

∫

Ω

u(x, t)ξ(x)dx =

∫

Ω

u(x, θ)ξ(x)dx +

∫ θ

t

∫

U

(| ▽ um|p−2 ▽ um · ▽ξ + uqξ)dxdt.

As the right-hand side of the above equation has a finite limit when t −→ 0, so does
∫

Ω
u(x, t)ξ(x)dx.

Thus, the mapping ξ 7→ limt→0

∫

Ω u(x, t)ξ(x)dx is a positive linear functional over the space

C∞
0 (Ω). It can be extended in a unique way as a Radon measure ℓ on Ω, and (2.11) holds in

Ω. Finally, let 0 < t < θ be fixed. Taking h = 1, ϕ ∈ C∞
0 (Ω × [0, T )) in (1.3), we obtain

∫ θ

t

∫

Ω

(−u∂tϕ + | ▽ um|p−2 ▽ um · ▽ϕ + uqϕ)dxdt

=

∫

Ω

u(x, t)ϕ(x, t)dx −

∫

Ω

u(x, θ)ϕ(x, θ)dx. (2.18)

Letting t go to 0 in (2.18) and using (2.8),(2.10),(2.11), (2.12), and
∣

∣

∣

∣

∫

Ω

u(x, t)(ϕ(x, t) − ϕ(x, 0)dx

∣

∣

∣

∣

≤ Ct

∫

U

u(x, t)dx → 0 as t → 0,

we obtain
∫

Ω

u(x, t)ϕ(x, t)dx →

∫

Ω

ϕ(x, 0)dℓ(x).

This proves (2.13). (2.14) follows from (2.18).



1180 ACTA MATHEMATICA SCIENTIA Vol.30 Ser.B

3 Proof of Theorem 1

3.1 The Case q > m(p − 1) > 0

We first prove the following lemma.

Lemma 3.1 Let q > m(p − 1) > 0 and let u be a nonnegative solution of (1.1). Then,

for any nonnegative function ξ ∈ C∞
0 (Ω), the following dichotomy occurs:

(i) either
∫ T

0

∫

Ω
uqξτdxdt < ∞, then,

t 7−→

∫

Ω

u(x, t)ξτdx remains bounded near t = 0, (3.1)

or (ii)
∫ T

0

∫

Ω uqξτdxdt = ∞, then,

lim
t→0

∫

Ω

u(x, t)ξτdx = ∞. (3.2)

Proof Because q > m(p − 1), we choose α small enough such that
∫ θ

t

∫

Ω

(1 + um)α+p−1ξτ−p| ▽ ξ|pdxdt ≤ C

∫ θ

t

∫

Ω

(1 + um)αuqξτdxdt + C (3.3)

∫ θ

t

∫

Ω

ξτ−p| ▽ ξ|p(1 + um)(1−α)(p−1)dxdt ≤ C

∫ θ

t

∫

Ω

uqξτdxdt + C, (3.4)

where C = C(ξ, α, τ, p, q). Substituting (3.3) into (2.1), we obtain

|α|

2

∫ θ

t

∫

Ω

(1 + um)α−1ξτ | ▽ um|pdxdt

≤

∫

Ω

u(x, θ)ξτdx + C

∫ θ

t

∫

Ω

(1 + um)αuqξτdxdt + C. (3.5)

Combining (2.2), (3.4), and (3.5), it yields
∫

Ω

u(x, t)ξτdx ≤

∫

Ω

u(x, θ)ξτ dx + C

∫ θ

t

∫

Ω

uqξτdxdt + C, (3.6)

where C = C(τ, p, q, α, ξ). Thus, if
∫ T

0

∫

Ω

uqξτdxdt < ∞,

then, (3.1) holds.

We now consider the case
∫ T

0

∫

Ω

uqξτdxdt = ∞.

Using Young’s inequality and (3.5), for any ε > 0,

τ

∫ θ

t

∫

Ω

ξτ−1| ▽ um|p−1| ▽ ξ|dxdt

≤ ǫ

∫ θ

t

∫

Ω

ξτ | ▽ um|p(1 + um)α−1dxdt + C(ǫ)

∫ θ

t

∫

Ω

ξτ−p| ▽ ξ|p(1 + um)(1−α)(p−1)dxdt

≤ ǫ

∫ θ

t

∫

Ω

(1 + um)α−1| ▽ um|pξτdxdt + ǫ

∫ θ

t

∫

Ω

uqξτdxdt + C1(ǫ)

≤ Cε

∫

Ω

u(x, θ)ξτ dx + Cε

∫ θ

t

∫

Ω

uqξτdxdt + C1(ε). (3.7)
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Choosing ǫ > 0 small enough and combining (3.7) and (2.3), we obtain

∫

Ω

u(x, θ)ξτ dx +

∫ θ

t

∫

Ω

uqξτdxdt ≤ C

∫

Ω

u(x, t)ξτdx + C. (3.8)

Thus,
∫ T

t

∫

Ω uqξτdxdt = ∞ implies (3.2).

We now prove Theorem 1 for the case q > m(p − 1). We first assume that for any open

subset U of Ω containing y and any nonnegative ξ ∈ C∞
0 (U), ξ = 1 in a neighborhood of y

∫ T

0

∫

Ω

uqξτdxdt = ∞.

Then, (1.4) holds from Lemma 3.1.

Assume now that there exists an open neighborhood ˜U ⊂ Ω of y and a nonnegative function

ξ ∈ C∞
0 (˜U), ξ = 1 in a neighborhood U∗ of y such that

∫ T

0

∫

Ω

uqξτdxdt < ∞.

Then,

t 7−→

∫

U∗

u(x, t)dx

remains bounded near t = 0 from Lemma 3.1. Moreover, we have also

∫ T

0

∫

U∗

| ▽ um|p−1dxdt < ∞. (3.9)

Indeed, using Young’s inequality and Hölder inequality, we have

∫ θ

t

∫

Ω

| ▽ um|p−1ξτdxdt ≤

∫ θ

t

∫

Ω

| ▽ um|p(1 + um)α−1ξτdxdt

+

∫ θ

t

∫

Ω

(1 + um)(1−α)(p−1)ξτdxdt, (3.10)

∫ θ

t

∫

Ω

(1 + um)(1−α)(p−1)ξτdxdt ≤

∫ θ

t

∫

Ω

(1 + um)
q
m ξτdxdt + C

≤ C

∫ θ

t

∫

Ω

uqξτdxdt + C, (3.11)

where m(1 − α)(p − 1) ≤ q. Then, (3.9) follows from (3.5), (3.10), and (3.11).

3.2 The Case q ≤ m(p − 1), m(p − 1) > 1

In the range of exponents, the proof of Theorem 1 is a consequence of the following lemma.

Lemma 3.2 Let 0 < q ≤ m(p − 1)and m(p − 1) > 1. Assume that u is a nonnegative

weak solution of (1.1) in QT and that for any open set U ⊂⊂ Ω

t 7→

∫

U

u(x, t)dx

remains bounded near t = 0. Then, for any 0 < θ < T ,

∫ θ

0

∫

U

um(p−1)(x, t)dxdt +

∫ θ

0

∫

U

| ▽ um|p−1dxdt < ∞.
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Proof Let α ∈ (1 − p, 0), α 6= −1 be fixed and ξ ∈ C∞
0 (Ω) as above. Combining (2.13),

(2.8), and 0 < q ≤ m(p − 1), we obtain

|α|

2

∫ θ

t

∫

Ω

(1 + um)α−1ξτ | ▽ um|pdxdt ≤ C

∫ θ

t

∫

Ω

(1 + um)p−1+αξτ−pdxdt + C. (3.12)

Let U, U∗ be open sets with U ⊂⊂ U∗ ⊂⊂ Ω and ξ ∈ C∞
0 (Ω), 0 ≤ ξ ≤ 1, ξ = 1 on U , and

ξ = 0 outside of U∗. Using Proposition 2.2 and (3.12), we obtain

∫ θ

0

∫

U

(1 + um)p−1+α+ p
mN dxdt ≤ C + C

∫ θ

0

∫

U∗

(1 + um)α−1+pdxdt. (3.13)

Hence, any estimate of (1 + um)α−1+p in L1((0, θ), L1
loc(Ω)) implies the same estimate for

(1+um)p−1+α+ p
Nm . We first take α0 = 1+ 1

m −p. From (3.13) and α0 +(p−1) = 1
m , we obtain

umσ1 ∈ L1((0, θ), L1
loc(Ω))

with σ1 = α0 + p − 1 + p
mN = 1

m + p
mN .

Defining by induction

αn+1 = αn +
p

mN
, σn = αn + p − 1, ∀ n ∈ N,

it yields

(1 + um)σn+1 ∈ L1((0, θ), L1
loc(Ω))

as long as αn = np
mN + 1 − p + 1

m < 0. Let n0 be the largest integer such that αn < 0. Then,

(1 + um)σn0+1 ∈ L1((0, θ), L1
loc(Ω)) and σn0+1 ≥ p − 1. In particular,

um(p−1) ∈ L1((0, θ), L1
loc(Ω)).

Hence, from Proposition 2.3, we obtain | ▽ um| ∈ Lr((0, θ), L1
loc(Ω)) for any r < p− 1 + 1

mN+1 .

In particular,

| ▽ um| ∈ Lp−1((0, θ), L1
loc(Ω)).

We now prove Theorem 1 for 0 < q ≤ m(p− 1) and m(p− 1) > 1. Let y ∈ Ω. Then, either

statement (i) of Theorem 1 holds, or there exists an open subset U∗ ⊂ Ω containing y such

that
∫

U∗
u(x, t)dx is bounded near t = 0. Hence, statement (ii) follows from Lemma 3.2 and

Proposition 2.3.

4 Proof of Theorem 2

We first prove the following lemma.

Lemma 4.1 Let 0 < q ≤ 1, m(p − 1) < 1 and let u be a nonnegative weak solution of

(1.1) in QT . Then, there exists a Radon measure µ ∈ M+(Ω) such that

lim
t→0

∫

Ω

u(x, t)ξ(x)dx =

∫

Ω

ξ(x)dµ(x), for ∀ξ ∈ C0(Ω).
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Proof Let α, t, θ, ξ, and τ be as in Proposition 2.1. Using Proposition 2.1 and Young’s

inequality, it yields

|α|

2

∫ θ

t

∫

Ω

(1 + um)α−1ξτ | ▽ um|pdxdt

≤

∫

Ω

∫ u(x,θ)

0

(1 + sm)αdsξτdx + C

∫ θ

t

∫

Ω

(1 + um)αξτuqdxdt

+C

∫ θ

t

∫

Ω

(1 + um)α+p−1ξτ−p| ▽ ξ|pdxdt

≤

∫

Ω

(1 + u(x, θ))ξτ dx + C

∫ θ

t

∫

Ω

(1 + u(x, t))ξτ dxdt + C. (4.1)

Combining (4.1), (2.2) and choosing α such that m(p − 1)(1 − α) ≤ 1, we obtain

∫

Ω

(1 + u(x, t))ξτdx ≤ C

∫

Ω

(1 + u(x, θ))ξτ dx + C

∫ θ

t

∫

Ω

(1 + u(x, t))ξτ dxdt + C.

By Gronwall inequality, there exists M > 0 such that

∫ θ

t

∫

Ω

(1 + u(x, t))ξτdxdt < M

∫

Ω

(1 + u(x, t))ξτ dx < M (4.2)

for t ∈ (0, θ], which implies the claim of lemma.

Proof of Theorem 2 When 0 < q ≤ 1, m(p−1) < 1, (2.10) follows from q ≤ 1, m(p−

1) < 1, (4.2) and Hölder inequality. (2.11)–(2.13) follow from (2.10) and Proposition 2.3.

We now consider the case q ≤ 1 < m(p − 1), Ω = RN . We show that, for any b ∈ RN ,

there exists ρ > 0, such that

lim sup
t→0

∫

Bρ(b)

u(x, t)dx < ∞. (4.3)

We argue by contradiction. Assume that (4.3) is false. Then, there exists some b ∈ RN such

that, for any ρ > 0, there exists a sequence {tn,ρ} converging to 0 with the property

lim
tn,ρ→0

∫

Bρ(b)

u(x, tn,ρ)dx = ∞. (4.4)

Let k > 0 be an integer. For any ρ > 0, there exists Nρ such that, for any nρ ≥ Nρ,

∫

Bρ(b)

u(x, tnρ)dx ≥ k. (4.5)

By continuity of the integral with respect to the domain, there exists some 0 < ρ̃ ≤ ρ such that
∫

Beρ(b)

u(x, tnρ)dx = k. (4.6)

Moreover, ρ̃ is uniquely determined if we impose it to be the largest as possible. Clearly tnρ → 0

as ρ → 0, because t 7→ u(., t) is continuous from (0, T ) into L1
loc(R

N ). Let wρk be the solution

of






∂tw −∇ · (| ▽ wm|p−2 ▽ wm) + wq = 0 in RN × (0,∞)

w(., 0) = u(., tnρ)χBeρ(b), in RN .
(4.7)
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Where χBeρ(b) is the characteristic function of Beρ(b). As u is nonnegative, it follows by the

comparison principle [6] that

u(x, t + tnρ,ρ) ≥ wρk(x, t) in RN × (0, T − tnρ). (4.8)

Notice that, when ρ → 0, wρk converges to the solution wk of the following problem







∂twk −∇ · (| ▽ wm
k |p−2 ▽ wm

k ) + w
q
k = 0 in RN × (0,∞)

wk(., 0) = kδb, in RN .
(4.9)

(4.8) implies

u(x, t) > wk(x, t) in RN × (0,∞). (4.10)

For k1 > k, we require
∫

Beρ1
(b)

u(x, tnρ)dx = k1

for some ρ̃1 > ρ̃. Let wρ1k1
be the solution of







∂tw −∇ · (| ▽ wm|p−2 ▽ wm) + wq = 0 in RN × (0,∞)

w(., 0) = u(., tnρ)χBeρ1
(b), in RN .

By comparison principle,

wρ1k1
(x, t) ≥ wρk(x, t) in RN × (0, T − tnρ). (4.11)

Let wρ1k1
→ wk1

as ρ̃1 → 0. Then, wk1
is the solution of the following problem







∂twk1
−∇ · (| ▽ wm

k1
|p−2 ▽ wm

k1
) + w

q
k1

= 0 in RN × (0,∞)

wk1
(., 0) = k1δb, in RN .

(4.11) implies

wk1
(x, t) ≥ wk(x, t).

Thus, k 7→ wk is increasing. Let

w∞ = lim
k→∞

wk.

Then, w∞ is a very singular solution and the convergence is uniformly to t > t0 > 0 [7]. Notice

that if wk is a solution of (1.1), then,

Nℓ(wk)(x, t) = ℓ
1

q−1 wk(b + ℓγ(x − b), ℓt)

with γ = q−m(p−1)
p(q−1) and ℓ > 0 is also a solution of (1.1) and

Nℓ(wk)(x, t) = wkℓ1/(q−1)−γN , Nℓ(wk)(x, 0) = kℓ
1

q−1
−Nγδb. (4.12)

Letting k → ∞ in (4.12), it leads to the invariance property

Nℓ(w∞) = w∞, ∀ℓ > 0. (4.13)
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By the uniform convergence of wk, choosing ℓ = 1
t in (4.12), we obtain

w∞(x, t) = t
1

1−q f(t−γ(x − b)) ∀(x, t) ∈ RN × (0,∞). (4.14)

This implies, in particular, that f(0) is finite and

wk(b, t) ≤ t
1

1−q f(0) ≤ u(b, t) ∀t ∈ (0, T ).

This contradicts the fact that wk(b, t) → ∞ when t → 0, because q < 1. When q = 1 (and

m(p − 1) 6= 1 otherwise, the results is well known), (1.1) is invariant with respect to the

transformation Mℓ(w) defined (for ℓ > 0) by

Mℓ(w)(x, t) = ℓw(b + ℓ
1−m(p−1)

p (x − b), t),

which yields

Mℓ(wk) = wkℓ1+N(m(p−1)−1)/p .

Let k → ∞ to get

Mℓ(w∞) = w∞ ∀ℓ > 0.

This estimate implies

0 < Mk(b, T/2) ≤ w∞(b, T/2) = ℓw∞(b, T/2) ≤ u(b, T/2) ∀ℓ > 0,

which is again a contradiction. Thus, (4.3) holds. (4.3) implies that for any bounded open set

U

t 7→

∫

U

u(x, t)dx

remains bounded near t = 0. Theorem 2 is proved.

5 Proofs of Theorems 3 and 4

Proof of Theorem 3 Let µn ∈ C∞
0 (RN ) be nonnegative and converge to µ in weak

sense. We consider the approximate problem







∂u

∂t
= ∇ · (|∇um|p−2∇um) − uq in Q∞ = RN × (0,∞)

u(x, 0) = µn on RN .
(5.1)

Problem (5.1) has a solution un ∈ L∞(Q∞) ∩ C([0,∞) : L1(RN )), uq
n ∈ C([0,∞) : L1(RN )),

∇un ∈ C([0, T ) : Lp(RN )), ∂u
m+1

2
n

∂t ∈ L2(Q∞) [6]. Moreover,

un ≤
( 1

(q − 1)t

)
1

q−1

if q > 1,

by the comparison principle. Let ξ ∈ C2
0 (B2ρ), ξ = 1 on Bρ, 0 ≤ ξ ≤ 1, and τ > 0 large enough,

0 < t < θ. Applying (2.3) to un and letting t → 0, we obtain

∫

B2ρ

un(x, θ)ξτ dx +

∫ θ

0

∫

B2ρ

uq
nξτdxdt

≤

∫

B2ρ

µnξτdx + τ

∫ θ

0

∫

B2ρ

ξτ−1|∇um
n |p−1||∇ξ|dxdt. (5.2)
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Similar to the proof of (3.8), if q > m(p − 1), we obtain

∫

B2ρ

un(x, θ)ξτ dx +

∫ θ

0

∫

B2ρ

uq
nξτdxdt ≤ C

∫

B2ρ

µnξτdx + C.

If 0 ≤ m(p − 1) < 1, using Young’s inequality and (2.1), we obtain

∫ θ

0

∫

B2ρ

ξτ−1|∇um
n |p−1|∇ξ|dxdt

≤ ǫ

∫ θ

0

∫

B2ρ

ξτ | ▽ um
n |p(1 + um

n )α−1dxdt + Cǫ

∫ θ

0

∫

B2ρ

ξτ−p(1 + um
n )(1−α)(p−1)dxdt

≤ ǫ

∫ θ

0

∫

B2ρ

ξτ | ▽ um
n |p(1 + um

n )α−1dxdt + ǫ

∫ θ

0

∫

B2ρ

ξτundxdt + Cǫ

≤

∫ θ

0

∫

B2ρ

ξτundxdt + Cǫ

∫ θ

0

∫

B2ρ

ξτuq
ndxdt + Cǫ

∫

B2ρ

un(x, θ)ξτ dx + +Cǫ, (5.3)

where α < 0, (1−α)m(p− 1) < 1. Substituting (5.3) into (5.2) and using Gronwall’s inequality,

we obtain
∫

B2ρ

ξτun(x, θ)dx +

∫ θ

0

∫

B2ρ

ξτuq
ndxdt ≤ C.

In both cases, {un} is uniformly bounded in L∞((0,∞); L1(Bρ)) and {uq
n} is uniformly bounded

in L1(Bρ × (0,∞)). Besides, {u
m(p−1)
n } is bounded in L1(Bρ × (0, T )), whenever q > m(p − 1)

or m(p − 1) < 1. Then, by Proposition 2.3,

∫ T

0

∫

Bρ

|∇um
n |rdxdt < M, r ∈

(

0, p − 1 +
1

mN + 1

)

and
∫ T

0

∫

Bρ

uσ
ndxdt < M, σ ∈

(

0, m(p − 1) +
p

N

)

,

where M is a constant independent of n. Similar to argument in [6], if p >
N(m+1)
mN+1 , there exists

a subsequence of {un} and u ∈ L1
loc(R

N × (0, T )) such that

un → u uniformly on any compact set of RN × (0, T )

and u is a weak solution of (1.1). Notice that for any ξ ∈ C∞
0 (RN )

∫

RN

un(x, t)ξ(x)dx −

∫

RN

µnξ(x)dx = −

∫ t

0

∫

RN

(| ▽ um
n |p−2 ▽ um

n · ▽ξ + uq
nξ)dxdt.

Using proposition 2.3, q < m(p− 1) + p
N , and Hölder’s inequality, we can obtain u(x, 0) = µ in

weak sense.

To prove Theorem 4, consider the following Cauchy problem







∂twk −∇(| ▽ wm
k |p−1 ▽ wm

k ) + w
q
k = 0 in RN × (0,∞)

wk(., 0) = kδb, in RN .
(5.4)
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By Theorem 3, (5.4) has a singular solution wk satisfying

wk ≤
( 1

(q − 1)t

)
1

q−1

. (5.5)

We require that wk increases and converges to w∞, which is a very singular solution of (1.1),

that is, w∞ ∈ C(Q∞\{0, 0} satisfies (1.1) and for any ρ > 0,

lim
t→0

∫

Bρ

w∞(x, t)dx = ∞.

Similar to the argument of (4.14),

w∞(x, t) = t
1

1−q f(t−γ(x − b)), ∀(x, t) ∈ RN × (0,∞)

with γ = q−m(p−1)
p(q−1) .

Lemma 5.1 Assume that max(1, m(p−1)) < q < m(p−1)+ p
N and let u ∈ C(RN×(0, T ))

be a nonnegative weak solution of (1.1) with initial trace trRN (u) = (S, µ). If y ∈ S, then,

u(x, t) ≥ w∞(x − y, t) ∀(x, t) ∈ RN × (0, T ).

The proof of Lemma 5.1 is similar to the argument of (4.10).

Lemma 5.2 Let µ1, µ2 ∈ M+ with µ1 ≤ µ2. Assume that

p >
N(m + 1)

mN + 1
,

and that

1 ≤ q < m(p − 1) +
p

N
or m(p − 1) < 1.

Then, there exist solutions u1 and u2 with respective initial traces µ1 µ2, such that u1 ≤ u2

a.e. in Q∞.

Proof Let µ1n, µ2n ∈ C∞
0 (RN), µ1n ≤ µ2n, and

µ1n ⇀ µ1, µ2n ⇀ µ2.

Then, there exist solutions u1n and u2n with respective initial traces µ1n µ2n. Then, by com-

parison principle, u1n ≤ u2n, hence u1 ≤ u2 a.e. in Q∞.

Proof of Theorem 4 Suppose ν = (S, µ) and let {ak}k=∞
k=1 be a countable dense subset

of S. We define µk ∈ M+(RN ) by

µk = µ + k

j=k
∑

j=1

δaj .

From Theorem 3 and Lemma 5.2, there exists a sequence {uk} of solutions of (1.11) with initial

data µk such that

0 ≤ waj ≤ uk ≤ uk+1, ∀k > 0, j = 1, · · ·, k,

and uk satisfies (5.5), where waj is the solution of (1.1) with initial data kδaj . (5.5) implies that

{uk} is uniformly bounded in Cα
loc(Q∞) [8]. Thus, there exists a function u ∈ C(Q∞), such
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that uk → u uniformly in any compact set of Q∞, as k → ∞, and u is a weak solution of (1.1)

in Q∞. Notice that for ∀ρ > 0,

lim
t→0

∫

Bρ(aj)

waj ,∞dx = ∞. (5.6)

Because {aj} is dense in S, the any point of S satisfies property (5.5). Thus, the initial trace

of u in S is satisfied. In contrast, for any open sets V ⊂⊂ V ∗ ⊂⊂ R = RN\S, if we take a

test function ξ with support in V ∗ in proof of Theorem 3, we verify that
∫

RN uk(x, t)ξdx is

uniformly bounded to t > 0. They also hold for u, because µ and µn have the same restriction

to R. Finally, for any θ > 0, letting k → ∞ in the equation, we obtain

∫ θ

0

∫

V ∗

(−uk∂tφ + |∇um
k |p−2∇um · ∇φ + u

q
kφ)dxdt

=

∫

V ∗

φ(x, 0)dµk −

∫

V ∗

uk(x, θ)φ(x, θ)dx,

where φ ∈ C∞
0 (V ∗× [0,∞)), it implies that u satisfies (1.10) in V ∗. This proves that the regular

part of the initial trace of u is µ and consequently, trRN (u) = ν ∈ B+
reg(R

N ).
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