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Abstract

We study the solution of neutral delay differential equations (NDDEs) by using boundary
value methods (BVMs). The BVMs require the solution of nonsymmetric, large and sparse
linear systems. The GMRES method with the Strang-type block-circulant preconditioner is
proposed to solve these linear systems. We show that if an Ak1,k2-stable BVM is used for
solving an m-by-m system of NDDEs, then our preconditioner is invertible and the spectrum
of the preconditioned system is clustered. It follows that when the GMRES method is applied
to the preconditioned systems, the method could converge fast. Numerical results are given to
show that our method is effective.
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1 Introduction

In this paper, we consider the solution of neutral delay differential equation (NDDE)




y′(t) = Lny′(t− τ) + Mny(t) + Nny(t− τ), t ≥ t0,

y(t) = φ(t), t ≤ t0,
(1)

by boundary value methods (BVMs), where y(t), φ(t) : R → Rn; Ln, Mn, Nn ∈ Rn×n, and τ > 0
is a constant. Such kind of equations appear in many applications [11, 12]. BVMs that we used
are relatively new numerical methods for solving ordinary differential equations (ODEs), which are
based on the linear multistep formulae (LMF), see [3]. By applying a BVM, the discrete solution
of (1) is given by the solution of a linear system

Hy = b

where H depends on the LMF used. The advantage in using BVMs over classical initial value
methods comes from the stability properties of BVMs, see for instance [3].
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Recently, Bertaccini in [1, 2] proposed to use BVMs with Krylov subspace methods [15], such
as the GMRES method and the BiCGstab method, to solve initial value problems (IVPs) of ODEs.
In order to speed up the convergence rate of Krylov subspace methods, he proposed two circulant
matrices as preconditioners. The use of circulant preconditioners for solving Toeplitz systems has
been studied extensively since 1986, see [5, 9]. It has been shown that they are good preconditioners
for solving a large class of Toeplitz systems. In [6], Chan, Ng and Jin proposed a new preconditioner
called the Strang-type block-circulant preconditioner for solving linear systems from IVPs. They
proved that if an Ak1,k2-stable BVM is used to discretize IVP, then the Strang-type preconditioner
is invertible and the spectrum of the preconditioned matrix is clustered. It follows that the GMRES
method applied to the preconditioned system may converge fast. The Strang-type preconditioner
was also used to solve linear systems from both differential-algebraic equations and delay differential
equations, see [4, 10, 13, 14]. In this paper, we will use the Strang-type preconditioner for solving
NDDE (1).

The paper is organized as follows. In §2, we recall BVMs and their stability properties. We
introduce the Strang-type block-circulant preconditioner and prove its invertibility in §3. The
spectral analysis of our method is given in §4 and numerical examples are given in §5.

2 BVMs and Their Stability Properties

For NDDE (1), in order to find a reasonable numerical solution, we require that the solution of (1)
is asymptotically stable. Let σ(·) and Re(·) denote the spectrum of the matrix and the real part of
complex numbers respectively. We have the following lemma, see [8, 12].

Lemma 1 Let Ln, Mn and Nn be any matrices with ‖Ln‖2 < 1. Then solution of (1) is asymp-
totically stable if Re(λi) < 0 for any i, where

λi ∈ σ[(In − ηLn)−1(Mn + ηNn)] with |η| ≤ 1,

and In is the identity matrix.

Let h = τ/m be the step size where m is a positive integer. For (1), by using a BVM with
(k1, k2)-boundary conditions, we have

k∑

i=0

αiyp+i−k1 =
k∑

i=0

αiLnyp+i−k1−m + h

k∑

i=0

βi(Mnyp+i−k1 + Nnyp+i−k1−m), (2)

for p = k1, . . . , v − 1, where k = k1 + k2, and {αi}, {βi} are coefficients of the given BVM, see [3].
By providing the values

y−m, . . . ,y0, y1, . . . ,yk1−1, yv, . . . ,yv+k2−1, (3)

the equation (2) can be written in a matrix form as

Hy = b

where
H = A⊗ In −A(1) ⊗ Ln − hB ⊗Mn − hB(1) ⊗Nn, (4)
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the vector y is defined by

yT = (yT
k1

,yT
k1+1, . . . ,y

T
v−1) ∈ Rn(v−k1),

and the vector b ∈ Rn(v−k1) depends on the boundary values and the coefficients of the method.
In (4), A, A(1), B and B(1) ∈ R(v−k1)×(v−k1) are Toeplitz matrices given as follows:

A =




αk1 · · · αk
...

. . . . . . . . .

α0
. . . . . . . . . αk

. . . . . .
...

α0 · · · αk1




, A(1) =




O

αk
. . .

...
. . . . . .

α0 · · · αk
. . .

. . . . . . . . .
α0 · · · αk O




,

and

B =




βk1 · · · βk
...

. . . . . . . . .

β0
. . . . . . . . . βk

. . . . . .
...

β0 · · · βk1




B(1) =




O

βk
. . .

...
. . . . . .

β0 · · · βk
. . .

. . . . . . . . .
β0 · · · βk O




,

see [3]. We remark that the first column of A(1) is given by:

(0, . . . , 0︸ ︷︷ ︸
m+k1−k

, αk, . . . , α0, 0, . . . , 0︸ ︷︷ ︸
v−m−2k1−1

)T ,

and the first column of B(1) is given by

(0, . . . , 0︸ ︷︷ ︸
m+k1−k

, βk, . . . , β0, 0, . . . , 0︸ ︷︷ ︸
v−m−2k1−1

)T .

Now we introduce the stability properties of the BVM. The characteristic polynomials ρ(z) and
σ(z) of the BVM are defined by

ρ(z) ≡
k∑

j=0

αjz
j and σ(z) ≡

k∑

j=0

βjz
j , (5)

where {αi} and {βi} are given by (2). The Ak1,k2-stability polynomial is defined by

π(z, q) ≡ ρ(z)− qσ(z) (6)

where z, q ∈ C. Let C− ≡ {q ∈ C : Re(q) < 0}.
Definition 1 [3] The region

Dk1,k2 = {q ∈ C : π(z, q) has k1 zeros inside |z| = 1 and k2 zeros outside |z| = 1}
is called the region of Ak1,k2-stability of a given BVM with (k1, k2)-boundary conditions. Moreover,
the BVM is said to be Ak1,k2-stable if C− ⊆ Dk1,k2.
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3 Strang-Type Preconditioner

In this section, we first introduce the Strang-type block-circulant preconditioner and then discuss
its invertibility.

3.1 Strang-type block-circulant preconditioner

The Strang-type block-circulant preconditioner for (4) is defined as follows:

S ≡ s(A)⊗ In − s(A(1))⊗ Ln − hs(B)⊗Mn − hs(B(1))⊗Nn, (7)

where s(E) is Strang’s preconditioner of Toeplitz matrix E, for E = A, B, A(1), B(1) respectively.
More precisely, for any given Toeplitz matrix

Tl = [ti−j ]li,j=1 = [tq]l−1
q=−l+1,

Strang’s preconditioner s(Tl) is a circulant matrix with diagonals given by

[s(Tl)]q =





tq, 0 ≤ q ≤ bl/2c,

tq−l, bl/2c < q < l,

[s(Tl)]l+q, 0 < −q < l,

see [5, 9]. Since any circulant matrix can be diagonalized by the Fourier matrix ([5, 9]), we obtain
the following decomposition,

S = (F ∗ ⊗ In)(ΛA ⊗ In − ΛA(1) ⊗ Ln − hΛB ⊗Mn − hΛB(1) ⊗Nn)(F ⊗ In), (8)

where ΛE is the diagonal matrix given by ΛE = Fs(E)F ∗, for E = A, B, A(1), B(1) respectively,
and F is the Fourier matrix.

3.2 Invertibility of preconditioner

Now we discuss the invertibility of the Strang-type preconditioner. Note that the jth-block of

ΛA ⊗ In − ΛA(1) ⊗ Ln − hΛB ⊗Mn − hΛB(1) ⊗Nn

in (8) is given by

Sj = [ΛA]jjIn − [ΛA(1) ]jjLn − h[ΛB]jjMn − h[ΛB(1) ]jjNn,

for j = 1, 2, . . . , v − k1. Therefore, we need to prove that

Sj = [ΛA]jjIn − [ΛA(1) ]jjLn − h[ΛB]jjMn − h[ΛB(1) ]jjNn,

are invertible, for j = 1, 2, . . . , v − k1. Let wj = e
2πij
v−k1 where i ≡ √−1. We have

[ΛA]jj = ρ(wj)/wk1
j , [ΛB]jj = σ(wj)/wk1

j ,
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[ΛA(1) ]jj = αkw
−m−k1+k
j + · · ·+ α0w

−m−k1
j = ρ(wj)/wm+k1

j ,

and
[ΛB(1) ]jj = βkw

−m−k1+k
j + · · ·+ β0w

−m−k1
j = σ(wj)/wm+k1

j ,

where ρ(z) and σ(z) are defined as in (5), see [6]. Therefore,

Sj =
1

wm+k1
j

[
wm

j (ρ(wj)In − hσ(wj)Mn)− ρ(wj)Ln − hσ(wj)Nn

]
.

In order to prove that Sj is invertible, we only need to show that

Q ≡ eimθ(ρ(eiθ)In − hσ(eiθ)Mn)− ρ(eiθ)Ln − hσ(eiθ)Nn

is invertible for any θ ∈ R. Note that the matrix Q can be rewritten as follows,

Q = ρ(eiθ)(eimθIn − Ln)− h(eimθMn + Nn)σ(eiθ)

= eimθ(In − e−imθLn)T

where
T ≡ ρ(eiθ)In − h(In − e−imθLn)−1(Mn + e−imθNn)σ(eiθ).

Assume that ‖Ln‖2 < 1. It follows that the matrix In − e−imθLn is invertible for any θ ∈ R. We
therefore only need to prove that T is invertible on the unit circle |z| = 1. We have the following
theorem.

Theorem 1 If the BVM with (k1, k2)-boundary conditions is Ak1,k2-stable and the conditions in
Lemma 1 hold, the matrix

T ≡ ρ(z)In − h(In − e−imθLn)−1(Mn + e−imθNn)σ(z)

is invertible on the unit circle |z| = 1. It follows that the Strang-type preconditioner S defined as
in (7) is also invertible.

Proof: Let
U ≡ (In − e−imθLn)−1(Mn + e−imθNn).

Then T can be written as
T = ρ(z)In − hUσ(z).

Note that the eigenvalues λi(T ) of T are given by

λi(T ) = ρ(z)− hλi(U)σ(z), i = 1, · · · , n,

where λi(U) denote the eigenvalues of U . By Lemma 1, we know that

Re[λi(U)] < 0, i = 1, · · · , n.
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It follows that hλi(U) ∈ C−. Since the BVM is Ak1,k2-stable, we have hλi(U) ∈ Dk1,k2 . Therefore,
the Ak1,k2-stability polynomial defined by (6)

π[z, hλi(U)] ≡ ρ(z)− hλi(U)σ(z)

will have no root on the unit circle |z| = 1. Thus, for any |z| = 1, we have

λi(T ) = ρ(z)− hλi(U)σ(z) 6= 0, i = 1, · · · , n.

It follows that T is invertible. Therefore, the Strang-type preconditioner S defined as in (7) is also
invertible.

4 Spectral Analysis

In this section, we study the convergence rate of the preconditioned GMRES method with the
preconditioner S. It is well-known that the convergence rate of Krylov subspace methods is closely
related to the spectrum of the preconditioned matrix S−1M . By noting that

S−1M = I + S−1(M − S),

one can prove the following result easily. We therefore omit the proof.

Theorem 2 Let H be given by (4) and S be given by (7). Then we have

S−1H = In(v−k1) + L

where In(v−k1) ∈ Rn(v−k1)×n(v−k1) is the identity matrix and L is a matrix with

rank(L) ≤ 2(k + m + k1 + 1)n.

Now, we discuss the convergence rate of the GMRES method for solving S−1Hy = S−1b. It
was proved in [9] that

Lemma 2 Let A be invertible and can be decomposed as A = I + L where I is the identity matrix.
If the GMRES method is applied to the linear system Ax = b, then the method will converge in at
most rank(L) + 1 iterations in exact arithmetic.

By combining Theorem 2 and Lemma 2, we have

Corollary 1 When the GMRES method is applied to the preconditioned system

S−1Hy = S−1b,

the method will converge in at most 2(k + m + k1 + 1)n + 1 iterations in exact arithmetic.

We observe from Corollary 1 that if the step size h = τ/m is fixed, the number of iterations
for convergence of the GMRES method, when applied to S−1Hy = S−1b, will be independent
of v (and therefore is independent of the length of the interval that we considered). We should
emphasize that numerical examples in the next section show a much faster convergence rate than
that predicted by Corollary 1.
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5 Numerical Tests

In this section, we illustrate the efficiency of our preconditioner by solving the following problems.
All the experiments were performed in MATLAB. We used the MATLAB-provided M-file “gmres”
(see MATLAB on-line documentation) to solve the preconditioned systems. In our tests, the zero
vector is the initial guess and the stopping criterion is

||rq||2
||r0||2 < 10−6

where rq is the residual after the q-th iteration.

Example 1. Consider




y′(t) = Lny′(t− 1) + Mnyt + Nny(t− 1), t ≥ 0,

y(t) = (1, 1, · · · , 1)T , t ≤ 0,

where

Ln =
1
n




2 1

1
. . . . . .
. . . . . . 1

1 2




, Mn =




−8 2 1

2
. . . . . . . . .

1
. . . . . . . . . 1
. . . . . . . . . 2

1 2 −8




,

and

Nn =
1
n




2 −1

−1
. . . . . .
. . . . . . −1

−1 2




.

Example 2. Consider




y′(t) = Lny′(t− 1) + Mnyt + Nny(t− 1), t ≥ 0,

y(t) = (1, 1, · · · , 1)T , t ≤ 0,

where

Ln =
1
n




2 1

1
. . . . . .
. . . . . . 1

1 2




, Mn =
1
n




−10 2 1

2
. . . . . . . . .

1
. . . . . . . . . 1
. . . . . . . . . 2

1 2 −10




,
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and

Nn =
1
n




4 −2 −1

−2
. . . . . . . . .

−1
. . . . . . . . . −1
. . . . . . . . . −2

−1 −2 4




.

Example 1 is solved by using the fifth order generalized Adams method (GAM) and Example
2 is solved by using the third order generalized backward differentiation formulae (GBDF) for
t ∈ [0, 4]. In practice, we do not have the boundary values y1, . . . ,yk1−1 and yv, . . . ,yv+k2−1

provided in (3). Instead of giving the above values, k1 − 1 initial additional equations and k2 final
additional equations are given. The equations of the GAM and the GBDF with the corresponding
additional equations can be found in [3]. We remark that after introducing the additional equations,
the matrices A, B, A(1) and B(1) in (4) are Toeplitz matrices with small rank perturbations. By
neglecting the small rank perturbations, we can also construct the Strang-type preconditioner (7).

Table 1 lists the number of iterations required for convergence of the GMRES method with
different preconditioners. In the table, I means no preconditioner is used and S denotes the Strang-
type block-circulant preconditioner defined as in (7). Besides, T and P denote the T. Chan’s and
Bertaccini’s block-circulant preconditioners respectively. We remark that for a Toeplitz matrix
A = [ti−j ]

l
i,j=1, the diagonals of T. Chan’s circulant preconditioner c(A) are defined by

[c(A)]q =
(
1− q

l

)
tq +

q

l
tq−l, q = 0, . . . , l − 1,

see [7]. Thus, T. Chan’s block-circulant preconditioner for NDDEs is defined as

T ≡ c(A)⊗ In − c(A(1))⊗ Ln − hc(B)⊗Mn − hc(B(1))⊗Nn.

Similarly, the diagonals of Bertaccini’s circulant preconditioner p(A) for A = [ti−j ]
l
i,j=1 are defined

as
[p(A)]q =

(
1 +

q

l

)
tq +

q

l
tq−l, q = 0, . . . , l − 1,

see [1], and therefore Bertaccini’s block-circulant preconditioner for NDDEs is defined by

P ≡ p(A)⊗ In − p(A(1))⊗ Ln − hp(B)⊗Mn − hp(B(1))⊗Nn.

From Table 1, we note that the number of iterations for convergence with a block-circulant pre-
conditioner is much less than that with no preconditioner. The performance of the Strang-type
preconditioner is better than that of other preconditioners.
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n m I S T P

12 10 41 9 9 10
20 77 8 9 10
40 151 8 9 9
80 295 8 9 9

24 10 43 7 8 8
20 83 7 7 8
40 161 7 7 8
80 * 7 7 8

48 10 44 6 7 7
20 83 6 6 7
40 163 6 6 7
80 * 6 6 7

n m I S T P

12 10 212 38 41 40
20 381 39 42 40
40 * 41 42 40
80 * 42 42 41

24 10 193 27 30 47
20 348 27 30 49
40 * 27 31 50
80 * 27 33 50

48 10 184 20 23 31
20 328 21 23 32
40 * 22 23 33
80 * 23 26 33

Table 1: Number of iterations for Example 1 (left), Example 2 (right).
‘*’ means out of memory.
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