量子环面上斜导子李代数的表示

林卫强 1,2 谭绍滨 1

(1. 厦门大学数学系, 厦门, 福建, 361005; 2. 漳州师范学院数学系, 漳州, 福建, 363000)

摘要: 记 L 为量子环面上的斜导子李代数,本文构造了一族从 sl_2 - 模到 L- 模的函子 F_g^α ,并对 L- 模 $F_g^\alpha(V)$ 的结构进行了完全刻画. 最后给出了 L- 模 $F_{g_1}^\alpha(V)$ 与 $F_{g_2}^\beta(W)$ 同构的充分必要条件.

关键词: 李代数; 斜导子; 表示理论; 量子环面 MR(1991) 主题分类: 17B10; 17B68 / 中图分类号: O152.5 文献标识码: A 文章编号: 1000-0917(2005)04-0477-11

0 引育

对每个线性李代数的表示,文 [S] 具体地构造出交换结合代数上导子李代数的子代数全形的一类表示。文 [E2] 研究了 Larsson 函子的像的结构,所谓 Larsson 函子的像,事实上是 [S] 中构造的与一般线性李代数 gl_n 的表示相对应的交换结合代数的全体导子构成的李代数的一类表示。受到他们工作的启发,本文先回顾量子环面上斜导子李代数 L 的定义,接着构造一族从特殊线性李代数 sl_2 的模 V 到 L- 模的函子 F_g^α , 然后刻画了 $F_g^\alpha(V)$ 的结构,最后给出 L- 模 $F_{g_1}^\alpha(V)$ 与 $F_{g_2}^\alpha(W)$ 同构的充分必要条件。本文所得结果包含了文 [E2] 中的结果。

第 1 节回顾量子环面 \mathbb{C}_q 的定义及其斜导子李代数 L 的定义,并构造一族从 sl_2 - 模到 L- 模的函子 F_g^α . 第 2 节定义了格 Γ 上的一个等价关系,并研究了 Γ 在该等价关系下的等价类的结构及 $F_g^\alpha(V)$ 的子模在 L 中内导子的作用下的性质. 第 3 节研究了当 q 是 p 次本原单位根时, $F_g^\alpha(V)$ 的子模在 L 中外导子的作用下的性质. 第 4 节我们利用第 2,3 节中的结论来刻画 L- 模 $F_g^\alpha(V)$ 的结构,并证明了下述定理.

定理 A 若 q 为 p 次本原单位根, V 为有限维不可约 sl_2 - 模,且 $\dim V \geq 3$,则

- (1) 存在 $\lambda, \mu \in \mathbb{Z}$, 使 $g(s) = q^{\lambda s_1 + \mu s_2}$.
- (2) $F_g^{\alpha}(V)$ 为完全可约模,且 $F_g^{\alpha}(V) = \mathcal{U}' \oplus \mathcal{U}''$,其中 $\mathcal{U}', \mathcal{U}''$ 为不可约 L- 模.

定理 B 若 q 为 p 次本原单位根, V 为 2 维不可约 sl₂- 模,则

- (1) 存在 $\lambda, \mu \in \mathbb{Z}$, 使 $g(s) = q^{\lambda s_1 + \mu s_2}$.
- (2) $F_g^{\alpha}(V)$ 不是完全可约模,但 $F_g^{\alpha}(V)=U'\oplus U^{''}$,其中 $U^{''}$ 为不可约 L- 模, $U^{'}$ 有不可约 子模 \mathcal{W} ,同时
 - (a) 若 $\alpha + \theta \notin \operatorname{rad}(f)$, 则 \mathcal{W} 是 \mathcal{U}' 的唯一非零真子模, 其中 $\theta = -\mu e_1 + \lambda e_2 \in \Gamma$;
 - (b) 若 $\alpha + \theta \in \text{rad}(f)$, 则 \mathcal{U}' 有唯一极大子模 $\widetilde{\mathcal{W}}$, 且 $\widetilde{\mathcal{W}}/\mathcal{W}$ 为平凡模.

定理 C 若 q 为 p 次本原单位根, V 为一维 sl₂- 模,则

- (1) 存在 $\lambda, \mu \in \mathbb{Z}$ 使 $g(s) = q^{\lambda s_1 + \mu s_2}$.
- (2) $F_g^{\alpha}(V)$ 为完全可约的,且 $F_g^{\alpha}(V) = U^{'} \oplus U^{''}$,其中 $U^{''}$ 为不可约 L- 模,而

收稿日期: 2003-07-21.

基金项目: 国家自然科学基金 (No. 10071061), 漳州师范学院科研基金.

- (a) 若 $\alpha + \theta \notin rad(f)$, 则 U' 是不可约 L- 模;
- (b) 若 $\alpha + \theta \in \text{rad}(f)$, 则 $U' = V(-\alpha) \oplus W$, 其中 $V(-\alpha)$, W 都为不可约 L- 模.

定理 D 若 $q \neq 0$ 不是单位根, v_0, v_1, \dots, v_k 为有限维不可约 sl_2 - 模 V 的一组基, 则有

- (1) 若 $\forall \lambda, \mu \in \mathbb{Z}$, 都有 $g(s) \not\equiv q^{\lambda s_1 + \mu s_2}$, 则 $F_g^{\alpha}(V) = \bigoplus_{i=0}^k \mathcal{U}_i$, 其中 $\mathcal{U}_i = \bigoplus_{r \in \Gamma} \mathbb{C}v_i(r)$ 为不可约 L- 模.
- $(2) 若 \exists \lambda, \mu \in \mathbb{Z}, 使 g(s) = q^{\lambda s_1 + \mu s_2}, 则 F_g^{\alpha}(V) = \mathcal{U}^{'} \oplus \mathcal{U}^{''}, 其中 \mathcal{U}^{'} = \oplus_{i=1}^{k} \mathcal{U}_i^{'}, \mathcal{U}^{''} = \oplus_{i=1}^{k} \mathcal{U}_i^{''}, \mathcal{U}^{''} = \oplus_{i=1}^{k} \mathcal{U}_i^{$

最后在第5节,我们证明了下述定理.

定理 E 若 q 为 p 次本原单位根,则对任意有限维 sl_2 - 模 V 与 W, L- 模 $F_{g_1}^{\alpha}(V)$ 与 $F_{g_2}^{\beta}(W)$ 同构的充分必要条件是 $\alpha - \beta \in \Gamma$, $g_2(s) = f(\alpha - \beta, s)g_1(s)$, 且 sl_2 - 模 V 与 W 同构.

1 斜导子李代数及其表示

取定复数域 \mathbb{C} 上以 e_1, e_2 为基的向量空间 U, 在 U 上定义对称双线性型 (\cdot, \cdot) 使 $(e_i, e_j) = \delta_{ij} (1 \le i \le j \le 2)$. 令格 $\Gamma = \mathbb{Z}e_1 + \mathbb{Z}e_2$.

首先让我们回顾量子环面的定义和一些结论 [MP]. 取定非零复数 q, 量子环面 \mathbb{C}_q 是 \mathbb{C} 上的结合非交换代数,其生成元为 $x_+^{\pm 1}, x_-^{\pm 1}$,生成关系为

$$x_2x_1 = qx_1x_2, x_ix_i^{-1} = x_i^{-1}x_i = 1, \quad 1 \le i \le 2.$$

对 $n = n_1 e_1 + n_2 e_2 \in \Gamma$, 记 $x^n = x_1^{n_1} x_2^{n_2}$. 定义 $\Gamma \times \Gamma$ 到 $\mathbb C$ 的两个映射 σ, f 如下: $\forall n = n_1 e_1 + n_2 e_2, m = m_1 e_1 + m_2 e_2 \in \Gamma$, $\sigma(n, m) = q^{n_2 m_1}, f(n, m) = q^{n_2 m_1 - n_1 m_2}$. 定义 f 的根基为 $rad(f) = \{n \in \Gamma | f(n, m) = 1, \forall m \in \Gamma \}$, 则有

$$\sigma(n,m) = \sigma(m,n) = 1, \quad \forall n \in rad(f), m \in \Gamma,$$

且当 q 为 p 次本原单位根时, $\operatorname{rad}(f) = \{k_1pe_1 + k_2pe_2 | k_1, k_2 \in \mathbb{Z}\}$. \mathbb{C}_q 上有度导子 d_1, d_2 满足 $\forall n = n_1e_1 + n_2e_2 \in \Gamma, d_i(x^n) = n_ix^n (1 \leq i \leq 2)$. \mathbb{C}_q 上的内导子 $adx^n (n \in \Gamma)$, 在 \mathbb{C}_q 上的作用 为 $adx^n (x^m) = (\sigma(n,m) - \sigma(m,n))x^{n+m}$, 显然当 $n \in \operatorname{rad}(f)$ 时, $adx^n = 0$. 事实上关于 \mathbb{C}_q 的导子集 $\operatorname{Der}(\mathbb{C}_q)$ 有如下结论 [BGK],

$$\operatorname{Der}(\mathbb{C}_q) = \bigoplus_{n \in \Gamma} \operatorname{Der}(\mathbb{C}_q)_n,$$

其中, 当 $n \notin \operatorname{rad}(f)$ 时, $\operatorname{Der}(\mathbb{C}_q)_n = \mathbb{C} \operatorname{ad} x^n$; 当 $n \in \operatorname{rad}(f)$ 时, $\operatorname{Der}(\mathbb{C}_q)_n = \oplus_{i=1}^2 \mathbb{C} x^n d_i$.

对任一向量空间中的向量组 u_1, \cdots, u_k ,用 $\langle u_1, \cdots, u_k \rangle$ 表示它们在 $\mathbb C$ 上张成的线性子空间. $\forall r \in \operatorname{rad}(f), \ u \in \mathcal U$,记 $D(u,r) = x^r(u_1d_1 + u_2d_2)$. 记 $L = \langle D(u,r)|(u,r) = 0, r \in \operatorname{rad}(f), u \in \mathcal U \rangle \oplus \langle adx^n | n \in \Gamma \rangle$,称其为量子环面 $\mathbb C_q$ 的斜导子集合. 事实上我们容易验证下述两个结论.

引理 1.1 令 $L=\langle D(u,r)|(u,r)=0, r\in \mathrm{rad}(f), u\in \mathcal{U}\rangle\oplus\langle adx^n|n\in\Gamma\rangle,$ 则 L 为 $\mathrm{Der}(\mathbb{C}_q)$ 的李子代数.

设 x_+, x_-, h 为单李代数 sl_2 的 Chevalley 基, 即, $[h, x_+] = 2x_+, [h, x_-] = -2x_-, [x_+, x_-] = h$. 记

$$A(u,r) = r_1 u_2 x_+ + r_2 u_1 x_- + r_1 u_1 h,$$

其中 $u = u_1e_1 + u_2e_2 \in \mathcal{U}, r = r_1e_1 + r_2e_2 \in rad(f)$.

引理 1.2 设 g 为从 Γ 到 $\mathbb C$ 的函数,满足 $g(n)g(m)=g(n+m)(\forall n,m\in\Gamma)$,且 $g(s)=1(\forall s\in \mathrm{rad}(f))$,则

- (1) 若 $q \neq 0$ 不是单位根,则存在 $a, b \in \mathbb{C} \setminus \{0\}$, 使 $g(n) = a^{n_1}b^{n_2}$;
- (2) 若 q 是 p 次本原单位根,则存在 $\lambda, \mu \in \mathbb{Z}$, 使 $g(n) = q^{\lambda n_1 + \mu n_2}$.

从现在起我们取定一个具有引理 1.2 所述性质的函数 g, 以及 $\alpha \in \mathcal{U}$. 下面我们构造一个从 sl_2 - 模到 L- 模的函子 F_a^α .

定义 1.3 对任意 sl_2 - 模 V, $\forall n \in \Gamma$, 令 $V(n) = \{v(n)|v \in V, n \in \Gamma\}$ 为向量空间 V 的线性 同构. 定义映射 $F_g^{\alpha}: sl_2$ - 模 $\rightarrow L$ - 模, $V \mapsto F_g^{\alpha}(V) = \oplus_{n \in \Gamma} V(n)$. 规定 L 中元素在 $F_g^{\alpha}(V)$ 上的作用如下:

- (1) $\forall s \notin \operatorname{rad}(f), v \in V, adx^s v(n) = \sigma(s, n)(g(s) f(n, s))v(s + n);$
- (2) $\forall r \in \operatorname{rad}(f), u \in \mathcal{U}, D(u,r)v(n) = (u,n+\alpha)v(n+r) + A(u,r)v(n+r).$

根据上述定义容易验证 $F_g^{\alpha}(V)$ 为 L- 模,且 F_g^{α} 是一个从 sl_2 - 模到 L- 模的函子,并有下述结论:

引理 1.4 (1) 设 V 为有限维 sl_2 - 模,则 $F_g^{\alpha}(V)$ 是关于 Cartan 子代数 $\{D(u,0)|u\in U\}$ 的 L 权模,且它的每个权子空间的维数都等于 V 的维数.

(2) $E_q(V_1, V_2) + S_q(V_1) = F_q^{\alpha}(V_1) + F_q^{\alpha}(V_2)$.

由于每一个有限维 sl_2 - 模都是完全可约的,故研究 L- 模 $F_g^{\alpha}(V)$ 的结构只须考虑 V 为不可约模的情形. 此外,由于权模的子模仍是权模,故若 W 为 L 模 $F_g^{\alpha}(V)$ 的子模,则可记 $W=\oplus_{n\in\Gamma}W(n)$,其中 W(n) 为 W 的权子空间.

2 Г 上的等价关系

本节给出了 Γ 上的一个等价关系,并且详细研究了该等价关系下的等价类。在第 3,4 节中我们将用这些结果来证明 $F^o_o(V)$ 的结构定理。对任意 $n \in \Gamma$, 令

 $\Gamma_n^1 = \{ s \not\in \operatorname{rad}(f) | f(n,s) \neq g(s) \},\,$

 $\Gamma_n^2 = \{s \not\in \operatorname{rad}(f) | f(n,s) = g(s) \text{ 且存在 } r \not\in \operatorname{rad}(f), \text{ 使 } f(n,r) \neq g(r), f(n+s,r) \neq g(r)\},$

 $\Gamma_n^3 = \{s \not\in \operatorname{rad}(f) | f(n,s) = g(s) \text{ 且 } \forall r \not\in \operatorname{rad}(f) \text{ 有 } f(n,r) = g(r) \text{ 或 } f(n+s,r) = g(r)\},$

 $\Gamma_n = \Gamma_n^1 \cup \Gamma_n^2 \cup \operatorname{rad}(f),$

由此及定义 1.3, 容易验证如下两个引理.

引理 2.1 设 W 为 L- 模 $F_q^{\alpha}(V)$ 的子模, 对 $n \in \Gamma, v \in V$, 则

- (1) 若 $v(n) \in W(n)$ 且 $s \in \Gamma_n^1 \cup \Gamma_n^2$, 则 $v(n+s) \in W(n+s)$.
- (2) 若 $m+s \in \Gamma_n^3$, 则 $adx^s v(n+m) = 0$, 其中 $m \in \Gamma_n$.

引理 2.2 任给 $n, m \in \Gamma$, 则有

$$m - n \in \Gamma_n \Leftrightarrow n + \Gamma_n = m + \Gamma_m,$$

$$(n + \Gamma_n) \cap (m + \Gamma_m) \neq \emptyset \Leftrightarrow n + \Gamma_n = m + \Gamma_m,$$

$$m \in \Gamma_n^1 \Leftrightarrow -m \in \Gamma_{m+n}^1,$$

$$m \in \Gamma_n^2 \Leftrightarrow -m \in \Gamma_{m+n}^2,$$

且 $\forall s \in \text{rad}(f)$, 有 $\Gamma_n^1 = \Gamma_{n+s}^1$, $\Gamma_n^2 = \Gamma_{n+s}^2$.

根据引理 2.2 的结论我们可以在 Γ 上定义一个等价关系.

定义 2.3 任给 $n,m\in\Gamma$, 定义 $n\sim m$ 当且仅当 $n+\Gamma_n=m+\Gamma_m$, 则 \sim 是 Γ 上的一个等价关系. 记 $\Gamma^*=\Gamma/\sim$, s 的等价类记为 \bar{s} , 则有 $\bar{s}=s+\Gamma_s$ 且 $\Gamma=\uplus_{s\in\Gamma^*}\bar{s}$.

引理 2.4 (1) 若 $\forall \lambda, \mu \in \mathbb{Z}$, 都有 $g(s) \not\equiv q^{\lambda \theta_1 + \mu \theta_2}$, 则 $\Gamma = \bar{0}$;

- (2) 若存在 λ , $\mu \in \mathbb{Z}$, 使 $g(s) = q^{\lambda s_1 + \mu s_2}$, 记 $\theta = -\mu e_1 + \lambda e_2$, 则有
- (i) 当 q = 1 时, $\Gamma = \text{rad}(f) = \bar{\theta}$;
- (ii) 当 $q \neq 1$ 且 $g(s) \equiv 1$ 时,则 $\Gamma = \bar{\theta} \uplus \bar{e}_1$,其中 $\bar{\theta} = \theta + \text{rad}(f)$, $\Gamma_{e_1}^1 \neq \emptyset$ 且 $\bar{e}_1 = \{r \mid r \notin \text{rad}(f)\}$;
- (iii) 当 $q \neq 1$ 且 $g(s) \not\equiv 1$ 时,则 $\Gamma = \bar{0} \uplus \bar{\theta}$,其中 $\bar{\theta} = \theta + \operatorname{rad}(f)$, $\Gamma_0^1 \neq \emptyset$,且 $\bar{0} = \{\theta + r \mid r \not\in \operatorname{rad}(f)\}$.

证明 (1) 若 $\Gamma \neq \bar{0}$, 则存在 $s \in \Gamma_0^3$, 即 g(s) = 1 且 $\forall r \notin \text{rad}(f)$, 有 g(r) = 1 或 f(s,r) = g(r), 亦即 $a^{s_1}b^{s_2} = 1$ 且 $a^{r_1}b^{r_2} = 1$ 或 $q^{s_2r_1-s_1r_2} = a^{r_1}b^{r_2}$.

又 $e_1,e_2 \notin \operatorname{rad}(f)$, (由引理 1.2 可知 $q \neq 1$) 故 a = 1 或 $q^{s_2} = a$ 且 b = 1 或 $q^{-s_1} = b$, 于是存在 $\lambda, \mu \in \mathbb{Z}$ 使 $a = q^{\lambda}, b = q^{\mu}$. 矛盾产生.

- (2)(i)显然成立.
- (ii) 因为 $g(s) \equiv 1$, 故 $\lambda = \mu = 0$, $\theta = 0$, 且显然有 $\Gamma_{\theta}^1 = \Gamma_{\theta}^2 = \emptyset$, 故 $\bar{\theta} = \text{rad}(f)$.

因为 $e_1 \notin \operatorname{rad}(f)$, 故存在 $s \notin \operatorname{rad}(f)$, 使 $f(e_1,s) \neq 1 = g(s)$, 于是 $\Gamma_{e_1}^1 \neq \emptyset$. 现在要证明 $\bar{e}_1 = \{r \mid r \notin \operatorname{rad}(f)\}$, 只须证 $\forall r \notin \operatorname{rad}(f)$, 有 $r - e_1 \in \Gamma_{e_1}$. 否则存在 $m \notin \operatorname{rad}(f)$, 使 $m - e_1 \in \Gamma_{e_1}^3$. 则有 $q^{-m_2} = 1$, 且 $\forall n \notin \operatorname{rad}(f)$, 有 $q^{-n_2} = 1$ 或 $q^{m_2n_1 - m_1n_2} = 1$. 于是 f(m,n) = 1, 矛盾.

(iii) 因为 $g(s) \not\equiv 1$, 故存在 $s \not\in \operatorname{rad}(f)$, 使 $g(s) \not\equiv 1 = f(0,s)$, 于是 $\Gamma_0^1 \not\equiv \emptyset$. 下证 $\theta \not\in \tilde{0}$. 即证 $\theta \in \Gamma_0^3$. 因为 $g(s) \not\equiv 1$, 故 $\theta \not\in \operatorname{rad}(f)$. 此外 $f(0,\theta) = 1 = g(\theta)$, 且 $\forall r \not\in \operatorname{rad}(f)$ 有 $f(\theta,r) = q^{\lambda r_1 + \mu r_2} = g(r)$, 故 $\theta \in \Gamma_0^3$.

最后证明 $\bar{\theta} = \theta + \operatorname{rad}(f)$ 且 $\bar{0} = \{\theta + r | r \notin \operatorname{rad}(f)\}$. 因为 $\bar{0} = \operatorname{rad}(f) \cup \Gamma_0^1 \cup \Gamma_0^2$, $\Gamma = \operatorname{rad}(f) \cup \Gamma_0^1 \cup \Gamma_0^2 \cup \Gamma_0^3$, $\bar{0} \cup \bar{\theta} \subset \Gamma$ 且 $\bar{0} \cap \bar{\theta} = \emptyset$, 故若 $\forall m \in \Gamma_0^3$ 有 $m - \theta \in \operatorname{rad}(f)$, 则 $\bar{\theta} \subset \Gamma_0^3 \subset \theta + \operatorname{rad}(f) \subset \bar{\theta}$, 于是 $\bar{\theta} = \theta + \operatorname{rad}(f)$ 且 $\Gamma = \bar{0} \cup \bar{\theta}$, 故 $\bar{0} = \Gamma \setminus \bar{\theta} = \{\theta + r \mid r \notin \operatorname{rad}(f)\}$. 所以我们只须证 $\forall m \in \Gamma_0^3$ 有 $m - \theta \in \operatorname{rad}(f)$.

因为 $m \in \Gamma_0^3$, 故 $1 = f(0, m) = g(m) = q^{\lambda m_1 + \mu m_2}$, 且 $\forall r \not\in \operatorname{rad}(f)$ 有 $1 = f(0, r) = g(r) = q^{\lambda r_1 + \mu r_2}$ 或 $q^{m_2 r_1 - m_1 r_2} = f(m, r) = g(r) = q^{\lambda r_1 + \mu r_2}$. 由于 $q \neq 1$, 则有 $e_1, e_2, e_1 + e_2 \not\in \operatorname{rad}(f)$, 于是由上述结论可得 $q^{\lambda} = 1$ 或 $q^{m_2} = q^{\lambda}$, $q^{\mu} = 1$ 或 $q^{-m_1} = q^{\mu}$, 且 $q^{\lambda + \mu} = 1$ 或 $q^{\lambda + \mu} = q^{m_2 - m_1}$.

情形 1 当 $q^{\lambda} = 1$ 时,则由 $g(s) \not\equiv 1$ 可得 $q^{\mu} \not\equiv 1$,故 $q^{\lambda+\mu} \not\equiv 1$,于是有 $q^{-m_1} = q^{\mu}$,且 $q^{m_2-m_1} = q^{\lambda+\mu}$,故 $q^{m_2} = q^{\lambda} = 1$,因而 $\forall r \in \Gamma$,有 $f(m-\theta,r) = q^{(m_2-\lambda)r_1-(m_1+\mu)r_2} = 1$,故 $m-\theta \in \operatorname{rad}(f)$.

情形 2 当 $q^{\lambda} \neq 1$ 时,则有 $q^{m_2} = q^{\lambda}$.

子情形 1 当 $q^{\mu} = 1$ 时,有 $q^{\lambda + \mu} \neq 1$,故 $q^{m_2 - m_1} = q^{\lambda + \mu}$,于是 $q^{-m_1} = q^{\mu} = 1$. 因而 $\forall r \in \Gamma$,有 $f(m - \theta, r) = q^{(m_2 - \lambda)r_1 - (m_1 + \mu)r_2} = 1$,故 $m - \theta \in \text{rad}(f)$.

子情形 2 当 $q^{\mu} \neq 1$ 时,有 $q^{-m_1} = q^{\mu}$,故 $\forall r \in \Gamma$,有 $f(m-\theta,r) = 1$,于是 $m-\theta \in rad(f)$. **推论 2.5** 若存在 $\lambda, \mu \in \mathbb{Z}$,使 $g(s) = q^{\lambda s_1 + \mu s_2}$,记 $\theta = -\mu e_1 + \lambda e_2$,则

- $(1) \, \stackrel{.}{\to} \, q \neq 1 \, \text{时} \, \exists n \in \Gamma; \, \text{使} \, \Gamma = \bar{\theta} \, \uplus \, \bar{n}, \, \text{其中} \, \bar{\theta} = \theta + \text{rad}(f), \, \Gamma_n^1 \neq \emptyset, \, \text{且} \, \bar{n} = \{\theta + r | r \not \in \text{rad}(f)\};$
- (2) 当 q=1 时, $\Gamma=\bar{\theta}=\mathrm{rad}(f)$.

$3 F_q^{\alpha}(V)$ 的子模的性质

当 V 为不可约 sl_2 - 模时,本节研究 L- 模 $F_g^\alpha(V)$ 在 L 中外导子作用下的性质。因为当 q 不是单位根时, rad(f)=0,L 中外导子的作用并不影响 $F_g^\alpha(V)$ 的子模的性质,故在本节中总设 q 是 p 次本原单位根,于是 $rad(f)=\{k_1pe_1+k_2pe_2|k_1,k_2\in\mathbb{Z}\}$. 我们首先研究 $\dim V>2$ 时 $F_g^\alpha(V)$ 的子模的性质。为此要利用不可约 sl_2 - 模的下述性质。

引理 3.1^[H] 若 V 为 k+1 维不可约 sl_2 - 模,则 V 中存在一个最高权向量 v_0 和一组基 $\{v_j = \frac{1}{i!}x_-^j.v_0|0 \le j \le k\}$ 满足下列条件:

- (1) $x_+v_0 = 0$, $x_+v_j = (k-j+1)v_{j-1}$, $0 < j \le k$;
- (2) $x_-v_k = 0$, $x_-v_j = (j+1)v_{j+1}$, $0 \le j < k$;
- (3) $hv_j = (k-2j)v_j, 0 \le j \le k$.

引理 3.2 若 W 为 L 模 $F_a^{\alpha}(V)$ 的子模, $v(n) \in W(n)$, 则 W(n) 中含有下列向量:

$$x_{+}^{2}v(n), \quad x_{-}^{2}v(n);$$
 (3.3)

$$(hx_{+} + x_{+}h)v(n), \quad (hx_{-} + x_{-}h)v(n);$$
 (3.4)

$$(h^2 - x_+ x_- - x_- x_+) v(n). (3.5)$$

证明 任取 $\lambda, \mu \in \mathbb{Z}$, 令 $r = \lambda pe_1 + \mu pe_2$, $u = \mu e_1 - \lambda e_2$, 则有 $D(u,r) \in L$. 于是由定义 1.3 可得

$$D(u,-r)D(u,r)v(n) = ((u,n+\alpha)^2 - A(u,r)A(u,r))v(n) \in W(n).$$

故

$$\lambda^{2} \mu^{2} p^{2} (h^{2} - x_{+} x_{-} - x_{-} x_{+}) v(n) + \lambda^{4} p^{2} x_{+}^{2} v(n) + \mu^{4} p^{2} x_{-}^{2} v(n) + \lambda \mu^{3} p^{2} (h x_{-} + x_{-} h) v(n) - \lambda^{3} \mu p^{2} (h x_{+} + x_{+} h) v(n) \in W(n).$$

$$(3.6)$$

在 (3.6) 中分别令 $\lambda = 0, \mu = 1$ 和 $\lambda = 1, \mu = 0$, 则得 (3.3). 在 (3.6) 中分别令 $\lambda = \mu = 1$ 和 $\lambda = 1, \mu = -1$, 再结合 (3.3) 可得

$$(h^2 - x_+ x_- - x_- x_+)v(n) + (hx_- + x_- h)v(n) - (hx_+ + x_+ h)v(n) \in W(n),$$
(3.7)

$$(h^2 - x_+ x_- - x_- x_+)v(n) - (hx_- + x_- h)v(n) + (hx_+ + x_+ h)v(n) \in W(n).$$
 (3.8)

由 (3.7) 加上 (3.8) 得 (3.5). 最后在 (3.6) 中分别令 $\lambda = \mu = 1$ 和 $\lambda = 1$, $\mu = 2$, 再利用 (3.3), (3.5) 可得 (3.4).

引理 3.9 若 V 为有限维不可约 sl_2 - 模, dim $V=k+1\geq 3$, W 为 L- 模 $F_g^{\alpha}(V)$ 的子模,且 $W(n)\neq 0$, 则 $\forall r\in \mathrm{rad}(f)$, 有 W(n+r)=V(n+r).

证明 把证明过程分成三步,首先证明 $v_0(n) \in W(n)$ (其中 v_0 为 V 的最高权向量), 然后证 W(n) = V(n), 最后证 $\forall r \in \text{rad}(f)$, 有 W(n+r) = V(n+r).

情形 1 当 r_1 为偶数时,令 $\mu = \frac{r_1}{2}$,则由 (3.3) 及引理 3.1 可得

$$x_+^{2\mu}v(n)=(k-r_l+1)(k-r_l+2)\cdots(k-r_l+2\mu)a_{r_l}v_0(n)\in W(n),$$

故 $v_0(n) \in W(n)$.

情形 2 当 r_l 为奇数时,令 $\mu = \frac{r_1-1}{2}$,则由 (3.3), (3.4) 及引理 3.1 可得

$$(hx_{+} + x_{+}h)x_{+}^{2\mu}v(n) = (k - r_{l} + 1)\cdots(k - r_{l} + 2\mu)a_{r_{l}}2k(k - 1)v_{0}(n) \in W(n),$$

故 $v_0(n) \in W(n)$.

(2) 只须证 $\forall 0 \leq j \leq k$, 有 $v_j(n) \in W(n)$. 由于 $v_0(n) \in W(n)$, 故由归纳法只须证 $\forall 0 \leq j < k$, 若 $\forall 0 \leq i \leq j$ 都有 $v_i(n) \in W(n)$, 则 $v_{j+1}(n) \in W(n)$.

情形 1 当 $j \neq \frac{k-1}{2}$ 时,由 (3.4) 可得 $(hx_-+x_-h)v_j(n)=2(k-2j-1)(j+1)v_{j+1}(n)\in W(n)$. 故 $v_{j+1}(n)\in W(n)$.

情形 2 当 $j = \frac{k-1}{2}$ 时,由 $k \ge 2$ 可得 $j \ge 1$,于是 $v_{j-1}(n) \in W(n)$,根据 (3.3) 有

$$x_{-}^{2}v_{j-1}(n) = j(j+1)v_{j+1}(n) \in W(n),$$

故 $v_{j+1}(n) \in W(n)$.

(3) 由于 $rad(f) = \{k_1pe_1 + k_2pe_2 | k_1, k_2 \in \mathbb{Z}\}$, 故只须证 $\forall k_1 \in \mathbb{Z}$ 有 $W(n + k_1pe_1) \neq 0$ 且 $W(n + k_1pe_2) \neq 0$. 事实上,当 $k_1 = 0$ 时,命题显然成立.当 $k_1 \neq 0$ 时,由第二步结论有 $\forall v \in V$, $v(n) \in W(n)$,于是有

 $D(e_2, k_1 p e_1)v(n) = (e_2, n + \alpha)v(k_1 p e_1 + n) + k_1 p x_+ v(n + k_1 p e_1) \in W(n + k_1 p e_1).$

当 $(e_2, n + \alpha) = 0$ 时,在上式中取 $v = v_0$; 当 $(e_2, n + \alpha) \neq 0$ 时,在上式中取 $v = v_1$,可得 $v_0(n + k_1pe_1) \in W(n + k_1pe_1)$. 同理 $W(n + k_1pe_2) \neq 0$.

下面要研究 V 为 2 维不可约 sl_2 - 模时, L- 模 $F_g^{\alpha}(V)$ 的子模 W 在 L 中外导子作用下的性质.设 V 为 2 维不可约 sl_2 - 模,在向量空间 U 上定义 sl_2 的自然表示: $x_+e_l=\delta_{2,l}e_1$, $x_-e_l=\delta_{1,l}e_2$, $he_l=\delta_{1,l}e_1-\delta_{2,l}e_2$,则有模同构 $U\simeq V$. 于是由定义 1.3 可知 L 中外导子在 $F_g^{\alpha}(V)$ 上的作用如下:

$$D(u,r)v(n) = (u, n + \alpha)v(n+r) + (u,v)r(n+r), \quad \forall D(u,r) \in L, \ n \in \Gamma, \ v \in V.$$
 (3.10)

为了表述方便我们引进如下记号: $\forall n \in \Gamma, \mathcal{W}(n) = \langle (n+\alpha)(n) \rangle, \mathcal{W}_n = \oplus_{r \in \Gamma_n} \mathcal{W}(n+r) = \oplus_{r \in \overline{n}} \mathcal{W}(r), \mathcal{U}_n = \oplus_{r \in \Gamma_n} V(n+r) = \oplus_{r \in \overline{n}} V(r),$ 若 $\alpha \in \Gamma$, $\widetilde{\mathcal{W}}_{-\alpha} = \mathcal{W}_{-\alpha} \oplus V(-\alpha)$.

引理 3.11 若 V 为 2 维不可约 sl_2 - 模, W 为 $F_g^{\alpha}(V)$ 的子模,且 $\mathcal{W}(n) \cap W(n) \neq 0$,则有 (1) $\mathcal{W}(n) \subset W(n)$;

(2) $\forall r \in \operatorname{rad}(f), \, \mathcal{W}(n+r) \subset W(n+r).$

证明 (1) 因为 $\mathcal{W}(n) \cap W(n) \neq 0$, 故 $n \neq -\alpha$ 且 $\dim \mathcal{W}(n) = 1$, 故 $\mathcal{W}(n) \subset W(n)$.

(2) 只须证 $\forall k_1 \in \mathbb{Z}$ 有 $(n + k_1 p e_1 + \alpha)(n + k_1 p e_1) \in W(n + k_1 p e_1)$ 且 $(n + k_1 p e_2 + \alpha)(n + k_1 p e_2) \in W(n + k_1 p e_2)$. 下面分三种情形证明 $(n + k_1 p e_1 + \alpha)(n + k_1 p e_1) \in W(n + k_1 p e_1)$.

情形 1 当 $n + k_1 p e_1 + \alpha = 0$ 时,结论显然成立.

情形 2 当 $n+k_1pe_1+\alpha \neq 0$ 且 $n+\alpha$ 与 k_1pe_1 线性无关时,可选取 $u \in V$, 使 $(u,n+\alpha)=1$ 且 $(u,k_1pe_1)=0$. 于是 $D(u,k_1pe_1)\in L$, 故由 (3.10) 有

$$D(u, k_1 p e_1)(n + \alpha)(n) = (n + \alpha + k_1 p e_1)(n + k_1 p e_1) \in W(n + k_1 p e_1),$$

命题得证.

情形 3 当 $n + k_1 p e_1 + \alpha \neq 0$ 且 $n + \alpha$ 与 $k_1 p e_1$ 线性相关时,令 $r = k_1 p e_1 + p e_2$,则 $n + \alpha$ 与 r 线性无关,且 $n + \alpha + r$ 与 $-p e_2$ 线性无关,故可选取 $u, u' \in V$,使得 $(u, n + \alpha) = 1$, (u, r) = 0. $(u', n + \alpha + r) = 1$, $(u', -p e_2) = 0$,于是 $D(u, r) \in L$, $D(u', -p e_2) \in L$,故有

$$D(u', -pe_2)D(u, r)(n + \alpha)(n) = (n + \alpha + k_1pe_1)(n + k_1pe_1) \in W(n + k_1pe_1).$$

同理可证 $(n + k_1 p e_2 + \alpha)(n + k_1 p e_2) \in W(n + k_1 p e_2)$.

引理 3.12 若 V 为 2 维不可约 sl_2 - 模, W 为 $F_g^{\alpha}(V)$ 的子模,且 $W(n)\setminus \mathcal{W}(n)\neq\emptyset$,则有

- (1) $\stackrel{\text{def}}{=}$ n + α = 0 $\stackrel{\text{def}}{=}$ $\forall r \in \text{rad}(f), W(n+r) \subset W(n+r);$
- (2) 当 $n + \alpha \neq 0$ 时, $\forall r \in \text{rad}(f), V(n+r) = W(n+r).$

证明 (1) 任取 $0 \neq v(n) \in W(n) \setminus W(n)$, 则存在 $i \in \{1, 2\}$, 使 pe_i 与 v 线性无关, 故可选取 $u \in V$, 使得 $(u, pe_i) = 0$ 且 (u, v) = 1, 于是 $D(u, pe_i) \in L$, 因而有 $D(u, pe_i)v(n) = pe_i(n + pe_i) \in L$

 $W(n+pe_i)$. 又 $n+\alpha=0$, 故 $pe_i(n+pe_i)\in \mathcal{W}(n+pe_i)$, 于是由引理 3.11 可得 $\forall r\in \mathrm{rad}(f)$, $\mathcal{W}(n+pe_i+r)\subset W(n+pe_i+r)$ 即 $\mathcal{W}(n+r)\subset W(n+r)$ ($\forall r\in \mathrm{rad}(f)$).

(2) 先证 W(n) = V(n). 因为 $n + \alpha \neq 0$ 且 $W(n) \setminus W(n) \neq \emptyset$, 故存在 $v = a_1e_1 + a_2e_2 \in V$, 使 $v(n) \in W(n)$ 且 $v = n + \alpha$ 线性无关. 记 $n + \alpha = b_1e_1 + b_2e_2$, 则由 (3.10) 可得

$$D(e_1 - e_2, -pe_1 - pe_2)D(e_1, pe_2)D(e_2, pe_1)v(n)$$

$$= b_2(b_1 + p)(b_1 - b_2)v(n) + (b_1a_2 - b_2a_1)p(b_1e_1 + b_2e_2)(n) \in W(n).$$

又因为 v 与 $n + \alpha$ 线性无关,故 $b_1a_2 - b_2a_1 \neq 0$,于是 $(n + \alpha)(n) \in W(n)$. 由于 $\dim V = 2$, v 与 $n + \alpha$ 线性无关,且 $v(n) \in W(n)$, $(n + \alpha)(n) \in W(n)$, 因而有 V(n) = W(n).

再证若 $m + \alpha \neq 0$ 且 W(m) = V(m), 则 $\forall k_1 \in \mathbb{Z}$ 有 $W(m + k_1 p e_1) = V(m + k_1 p e_1)$ 且 $W(m + k_1 p e_2) = V(m + k_1 p e_2)$. 令 $m + \alpha = c_1 e_1 + c_2 e_2$, 任取 $v = a_1 e_1 + a_2 e_2$, 则

$$D(e_2, k_1 p e_1 v(m) = ((c_2 a_1 + a_2 k_1 p) e_1 + c_2 a_2 e_2)(m + k_1 p e_1) \in W(m + k_1 p e_1).$$
(3.13)

情形 1 当 $c_2 \neq 0$ 时,在 (3.13) 中分别取 $a_2 = 0$, $a_1 = c_2^{-1}$ 和 $a_1 = 0$, $a_2 = c_2^{-1}$, 可得 $e_i(m+k_1pe_1) \in W(m+k_1pe_1)(i=1,2)$, 故 $W(m+k_1pe_1) = V(m+k_1pe_1)$.

情形 2 当 $c_1 \neq 0, c_2 = 0$ 时,在 (3.13) 中取 $a_1 = 0, a_2 = k_1^{-1} p^{-1}$,则有 $e_1(m + k_1 p e_1) \in W(m + k_1 p e_1)$ 又

$$D(e_1, -k_1pe_2)D(e_1 - e_2, k_1pe_1 + k_1pe_2)e_2(m)$$

$$= (-k_1p(c_1 + k_1p)e_1 + c_1^2e_2)(m + k_1pe_1) \in W(m + k_1pe_1),$$

故 $e_2(m+k_1pe_1) \in W(m+k_1pe_1)$, 于是 $W(m+k_1pe_1) = V(m+k_1pe_1)$.

最后证 $\forall r \in \text{rad}(f)$, W(n+r) = V(n+r). 设 $r = k_1 p e_1 + k_2 p e_2$, 若 $k_1 k_2 = 0$, 则由上述结论可得 W(n+r) = V(n+r). 若 $k_1 k_2 \neq 0$, 则有 $n + \alpha + k_1 p e_1 \neq 0$ 或 $n + \alpha + k_2 p e_2 \neq 0$, 从而可得到 W(n+r) = V(n+r).

此外,由(3.10)可以直接验证下述结论.

引**理 3.14** 若 V 为 2 维不可约 sl_2 - 模,则有 $\forall D(u,r) \in L$, $D(u,r) \mathcal{W}_n \subset \mathcal{W}_n$, 且有当 $\alpha \in \Gamma$ 时, $D(u,r)\widetilde{\mathcal{W}}_{-\alpha} \subset \mathcal{W}_{-\alpha}$.

最后,我们研究 V 为一维不可约 sl_2 - 模时, L- 模 $F_g^\alpha(V)$ 的子模 W 在 L 中外导子作用下的性质. 由定义 1.3 可知 L 中外导子在 $F_g^\alpha(V)$ 上的作用如下:

$$D(u,r)v(n) = (u,n+\alpha)v(n+r), \quad \forall D(u,r) \in L, n \in \Gamma, v \in v.$$
(3.15)

引理 3.16 若 V 为一维不可约 sl_2 - 模, W 为 $F_g^{\alpha}(V)$ 的子模,且 $W(n) \neq 0$,则有 $\forall r \in rad(f)$,

- (1) $\stackrel{.}{=}$ $n+\alpha=0$ $\stackrel{.}{=}$ $n+\alpha+r=0$ $\stackrel{.}{=}$ $n+\alpha+r=0$ $\stackrel{.}{=}$ $n+\alpha=0$ $\stackrel{$
- (2) 当 $n+\alpha \neq 0$ 且 $n+\alpha+r\neq 0$ 时, W(n+r)=V(n+r).

证明 (1) 显然成立.

(2) 因为 $\dim V=1$, 又 $W(n)\neq 0$, 故 W(n)=V(n). 若 $n+\alpha$ 与 r 线性无关,则可选取 $u\in \mathcal{U}$, 使 (u,r)=0 且 $(u,n+\alpha)=1$, 因而 $D(u,r)\in L$ 且有 $D(u,r)v(n)=v(n+r)\in W(n+r)(\forall v\in V)$. 若 $n+\alpha$ 与 r 线性相关,则可选取 pe_i 使 $n+\alpha$ 与 pe_i 线性无关,于是 $n+\alpha$ 与 $r+pe_i$ 线性无关,故可选取 $u,u'\in \mathcal{U}$,使 $(u,n+\alpha)=(u',n+\alpha+pe_i+r)=1$ 且 $(u,r+pe_i)=(u',-pe_i)=0$,因而有 $\forall v\in V$ $D(u',-pe_i)D(u,pe_i+r)v(n)=v(n+r)\in W(n+r)$.

4 L- 模 $F_a^{\alpha}(V)$ 的结构

我们首先回顾在第 2,3 节定义的一些概念,然后证明一些引理,最后证明在引言中给出的本文主要结论: 定理 A 至定理 D. $\forall n \in \Gamma, \, \bar{n} = n + \Gamma_n, \, \Gamma^* = \Gamma/\sim, \, \mathcal{W}(n) = \langle (n+\alpha)(n) \rangle, \, \mathcal{W}_n = \oplus_{r \in \Gamma_n} \mathcal{W}(n+r), \, \mathcal{U}_n = \oplus_{r \in \Gamma_n} V(n+r). \, \forall n \in \Gamma, \, \tilde{\mathcal{W}}_{-\alpha} = \mathcal{W}_{-\alpha} \oplus V(-\alpha).$

引理 4.1 若 V 为有限维不可约 sl_2 - 模,则 $F_g^{\alpha}(V)=\oplus_{n\in\Gamma^*}\mathcal{U}_n$, 其中 \mathcal{U}_n 为 L- 模 $F_g^{\alpha}(V)$ 的子模.

证明 由定义 1.3, 引理 2.1, 定义 2.3 及 $rad(f) + \Gamma_n = \Gamma_n$ 直接得到.

引理 4.2 若 q 为 p 次本原单位根,V 为有限维不可约 sl_2 - 模,且 $\dim V \geq 3$, 则有 $\forall n \in \Gamma$, U_n 是不可约 L- 模.

证明 由引理 4.1 我们只须证 U_n 是不可约的. 假设 T 为 U_n 的一个非零子模,则存在 $r \in \Gamma_n$ 使 $T(n+r) \neq 0$,于是由引理 3.9 可得 $\forall m \in \mathrm{rad}(f)$,有 T(n+r+m) = V(n+r+m). 因 而 $\forall v \in V$ 有 $v(n+r) \in T(n+r)$,由引理 2.1 可得 $\forall s \in \Gamma^1_{n+r} \cup \Gamma^2_{n+r}$,有 $v(n+r+s) \in T(n+r+s)$. 于是 T(n+r+s) = V(n+r+s). 因而 $T \supset U_{n+r}$. 又 $r \in \Gamma_n$,则由引理 2.2 可知 $\overline{n+r} = \overline{n}$,于是 $U_{n+r} = U_n$,所以 $T = U_n$.

引理 4.3 若 q 为 p 次本原单位根, V 为 2 维不可约 sl_2 - 模,则有 $\forall n \in \Gamma$,

- (1) 当 $\Gamma_n^1 \cup \Gamma_n^2 \neq \emptyset$ 时, U_n 是不可约 L- 模.
- (2) 当 $\Gamma_n^1 \cup \Gamma_n^2 = \emptyset$ 时, W_n 是 U_n 的不可约子模,且有
- (i) 若 $-\alpha \notin \bar{n}$, 则 W_n 是 U_n 的唯一非零真子模,
- (ii) 若 $-\alpha \in \bar{n}$, 则 $U_{-\alpha} = U_n$, $\tilde{W}_{-\alpha}/W_{-\alpha}$ 是平凡模,且 $\tilde{W}_{-\alpha}$ 是 $U_{-\alpha}$ 的唯一极大真子模.

证明 (1) 设 T 为 U_n 的任一非零子模,则存在 $r \in \Gamma_n$ 使 $T(n+r) \neq 0$. 于是由引理 3.11, 3.12 可得 $\forall s \in \text{rad}(f)$, $W(n+r+s) \subset T(n+r+s)$.

由于 $\Gamma_n^1 \cup \Gamma_n^2 \neq \emptyset$ 且 $r \in \Gamma_n$,故由引理 2.2 可知 $\Gamma_{n+r}^1 \cup \Gamma_{n+r}^2 \neq \emptyset$ 且 $\forall s \in \operatorname{rad}(f)$,有 $\Gamma_{n+r+s}^1 \cup \Gamma_{n+r+s}^2 = \Gamma_{n+r}^1 \cup \Gamma_{n+r}^2 \neq \emptyset$. 取定 $m \in \Gamma_{n+r}^1 \cup \Gamma_{n+r}^2$,则可选取 $s \in \operatorname{rad}(f)$ 使 $n+r+s+\alpha$ 与 $n+r+s+m+\alpha$ 线性无关. 由引理 2.1 得

$$(n+r+s+\alpha)(n+r+s+m) \in T(n+r+s+m).$$

且有

$$(n+r+s+\alpha)(n+r+s+m) \notin \mathcal{W}(n+r+s+m), n+r+s+m+\alpha \neq 0.$$

于是由引理 3.12 可知 $\forall \beta \in \operatorname{rad}(f)$ 有 $T(n+r+s+m+\beta) = V(n+r+s+m+\beta)$. 利用引理 2.1 则可推出 $\forall \beta \in \Gamma_{n+r+s+m}$ 有 $T(n+r+s+m+\beta) = V(n+r+s+m+\beta)$. 最后由引理 2.2 有 $n+r+s+m+\Gamma_{n+r+s+m}=n+\Gamma_n$, 于是 $T=\mathcal{U}_n$.

- (2) 因为 $\Gamma_n^1 \cup \Gamma_n^2 = \emptyset$, 故由引理 2.1, 3.14 可知 W_n 为 U_n 的子模. 任取 W_n 的非零子模 T, 因 $\Gamma_n^1 \cup \Gamma_n^2 = \emptyset$, 故存在 $r \in \text{rad}(f)$ 使 $T(n+r) \neq 0$, 于是由引理 3.11 可得 $W_n = T$.
- (i) 因为 $-\alpha \notin \bar{n}$ 且 $\Gamma_n^1 \cup \Gamma_n^2 = \emptyset$, 故 $\forall r \in \operatorname{rad}(f)$ 有 $n+r \neq -\alpha$ 且 $\mathcal{U}_n = \bigoplus_{r \in \operatorname{rad}(f)} V(n+r)$. 设 T 为 \mathcal{U}_n 中异于 \mathcal{W}_n 的非零真子模, 则存在 $r \in \operatorname{rad}(f)$, $v \in V$, 使 $0 \neq v(n+r) \in T(n+r) \setminus \mathcal{W}(n+r)$. 于是由引理 3.12 可得 $T = \mathcal{U}_n$, 故 \mathcal{W}_n 是 \mathcal{U}_n 的唯一非零真子模.
- (ii) 因为 $-\alpha \in \bar{n}$, 故由定义 2.3 得 $\overline{-\alpha} = \bar{n}$, 所以 $U_{-\alpha} = U_n$. 由引理 3.14 可知 $\widetilde{W}_{-\alpha}/W_{-\alpha}$ 是平凡模,根据引理 3.12 可知 $\widetilde{W}_{-\alpha}$ 是 $U_{-\alpha}$ 的唯一极大真子模.

引理 4.4 若 q 为 p 次本原单位根, V 为一维不可约 sl_2 - 模, 则有 $\forall n \in \Gamma$,

(1) 当 $-\alpha \notin \bar{n}$ 或 $\Gamma_n^1 \cup \Gamma_n^2 \neq \emptyset$ 时, U_n 是不可约 L- 模;

(2) 当 $-\alpha \in \bar{n}$ 且 $\Gamma_n^1 \cup \Gamma_n^2 = \emptyset$ 时, $\mathcal{U}_n = V(-\alpha) \oplus \mathcal{W}_{-\alpha}$,其中 $V(-\alpha)$ 和 $\mathcal{W}_{-\alpha}$ 都是不可约 L- 模.

证明 (1) 设 T 为 U_n 的任意非零子模,则存在 $r \in \Gamma_n$ 使 T(n+r) = V(n+r). 由引理 2.2 可得 $\overline{n+r} = \overline{n}$. 且若 $\Gamma_n^1 \cup \Gamma_n^2 \neq \emptyset$,则 $\Gamma_{n+r}^1 \cup \Gamma_{n+r}^2 \neq \emptyset$.

若 $-\alpha \notin \bar{n}$, 则 $\forall s \in \text{rad}(f)$ 有 $n+r+s \neq -\alpha$, 于是由引理 3.16, 引理 2.1 可得 $\forall m \in \Gamma_{n+r}$ 有 T(n+r+m) = V(n+r+m), 故 $T = U_n$.

若 $-\alpha \in \bar{n}$ 且 $\Gamma_n^1 \cup \Gamma_n^2 \neq \emptyset$, 如果 $\forall s \in \operatorname{rad}(f)$ 有 $n+r+s \neq -\alpha$, 那么与上同理可得 $T = \mathcal{U}_n$. 如果存在 $s \in \operatorname{rad}(f)$ 使 $n+r+s = -\alpha$, 任意选取 $m \in \Gamma_{n+r}^1 \cup \Gamma_{n+r}^2$, 由引理 2.1 可得 T(n+r+m) = V(n+r+m) 且有 $\forall s' \in \operatorname{rad}(f)$, $n+r+m+s' \neq -\alpha$, 同理可得 $T = \mathcal{U}_n$.

(2) 因为 $\Gamma_n^1 \cup \Gamma_n^2 = \emptyset$, 所以 $\Gamma_n = \text{rad}(f)$. 由定义 2.3 有 $\tilde{n} = \overline{-\alpha}$, 由引理 2.1, 引理 3.16 可知结论成立.

记 $\theta = -\mu e_1 + \lambda e_2$, $\mathcal{U}' = \bigoplus_{r \in \mathrm{rad}(f)} V(\theta + r)$, $\mathcal{W} = \bigoplus_{r \in \mathrm{rad}(f)} \langle (\theta + r + \alpha)(\theta + r) \rangle$. 当 $\alpha \in \Gamma$ 时, $\tilde{\mathcal{W}} = V(-\alpha) \oplus \mathcal{W}$, 并且当 $q \neq 1$ 时, $\mathcal{U}'' = \bigoplus_{r \notin \mathrm{rad}(f)} V(\theta + r)$, 当 q = 1 时, $\mathcal{U}'' = 0$. 最后,由引理 1.2, 4.1, 4.2 及推论 2.5, 定理 A 得证.由引理 1.2, 4.1, 4.3 及推论 2.5, 定理 B 得证.由引理 1.2, 4.1, 4.4 及推论 2.5 定理 C 得证.由引理 4.1, 2.4, 及推论 2.5 和定义 1.3 定理 D 得证.

5 L- 模 $F_g^{lpha}(V)$ 的同构

当 q 为 p 次本原单位根时,本节我们给出 L- 模 $F_{g_1}^{\alpha}(V)$ 与 $F_{g_2}^{\beta}(W)$ 同构的一个充分必要条件.

引理 5.1 对任意 sl_2 - 模 V 与 W, 若存在 L- 模 $F_{g_1}^{\alpha}(V)$ 到 $F_{g_2}^{\beta}(W)$ 的同构映射 φ , 则 $\alpha-\beta\in\Gamma$ 且存在 $V\times\Gamma$ 到 W 的映射 ψ 满足如下条件: $\forall v\in V, n\in\Gamma$ 有 $\psi|_{V\times\{n\}}$ 是线性空间 V(n) 到 W 的同构映射且 $\varphi(v(n))=\psi(v,n)(n+\alpha-\beta)$.

证明 $\forall v \in V, n \in \Gamma$, 假设 $\varphi(v(n)) = w^1(n^1) + w^2(n^2) + \cdots + w^l(n^l)$, 其中 $w^1, \dots, w^l \in W$; $n^1, \dots, n^l \in \Gamma$ 且 $n^i \neq n^j (i \neq j)$.

因为 $\forall u \in \mathcal{U}$, 有 $D(u,0) \in L$, 故 $D(u,0)\varphi(v(n)) = \varphi(D(u,0)v(n))$, 即 $(u,n^1+\beta)w^1(n^1) + \cdots + (u,n^l+\beta)w^l(n^l) = (u,n+\alpha)(w^1(n^1)+\cdots+w^l(n^l))$. 故 $(u,n^i+\beta) = (u,n+\alpha)(1 \leq i \leq l)$, 所以 $n^i-n=\alpha-\beta$, 因此有 l=1, $\alpha-\beta\in\Gamma$ 且 $\varphi(v(n))=w^1(n+\alpha-\beta)$. 由于 φ 是 L 模 $F^{\alpha}_{\mathfrak{g}_{\mathfrak{g}}}(V)$ 到 $F^{\beta}_{\mathfrak{g}_{\mathfrak{g}}}(W)$ 的同构映射,故存在 $V\times\Gamma$ 到 W 的映射 ψ 满足所要条件.

引理 5.2 若 q=1,W 为 sl_2 - 模且 V 为不可约 sl_2 - 模,则 L- 模 $F^{\alpha}_{g_1}(V)$ 与 $F^{\beta}_{g_2}(W)$ 同构 的充要条件是 $\alpha-\beta\in\Gamma$, $g_2(s)=f(\alpha-\beta,s)g_1(s)$, 且 V 与 W 同构.

证明 充分性 令 φ 为 $F_{g_1}^{\alpha}(V)$ 到 $F_{g_2}^{\beta}(W)$ 的线性映射,使 $\varphi(v(n))=v(n+\alpha-\beta)$,则可直接验证它是 L- 模同构.

必要性 由引理 5.1 可知 $\alpha-\beta\in\Gamma$ 且 $\dim V=\dim W$. 而由定义 1.3 可知 $g_2(s)=1=f(\alpha-\beta,s)g_1(s)$, 又由 L- 模的结构定理 A, B 可知 W 是不可约 sl_2 - 模,故 V 与 W 同构.

引理 5.3 若 q 为 p 次本原单位根,且 $q \neq 1$, V,W 为 sl_{2} - 模,且 V 为有限维不可约的,则 L- 模 $F_{g_1}^{\alpha}(V)$ 与 $F_{g_2}^{\beta}(W)$ 同构的充要条件是 $\alpha - \beta \in \Gamma$, $g_2(s) = f(\alpha - \beta, s)g_1(s)$, 且 V 与 W 同构.

证明 充分性 取 V 与 W 的同构映射 φ , 定义 $F_{g_1}^{\alpha}(V)$ 到 $F_{g_2}^{\beta}(W)$ 的线性映射 φ : $\forall v \in V$, $n \in \Gamma$, $\varphi(v(n)) = \sigma(n, \alpha - \beta) f(\alpha - \beta, n) \bar{\varphi}(v) (n + \alpha - \beta)$. 容易验证 φ 为 $F_{g_1}^{\alpha}(V)$ 到 $F_{g_2}^{\beta}(W)$ 的 L- 模同构.

必要性 设 φ 为 L 模 $F_{g_1}^{\alpha}(V)$ 到 $F_{g_2}^{\beta}(W)$ 的同构映射,则由引理 5.1 可知存在 $V \times \Gamma$

到 W 的映射 ψ , 满足, $\forall v \in V, n \in \Gamma$, 有 $\psi|_{V \times \{n\}}$ 是线性空间 V(n) 到 W 的同构映射,且 $\varphi(v(n)) = \psi(v, n)(n + \alpha - \beta)$,并且 $\alpha - \beta \in \Gamma$.

记 $K = \{n \in \Gamma | \forall s \notin \operatorname{rad}(f), g_1(s) = f(n,s), g_2(s) = f(n-\beta+\alpha,s) \}$. 因为 $q \neq 1$, 故 $K \neq \Gamma$. 下证 V 与 W 同构,为此只须证 $\forall n \notin K$ 有 $\psi|_{V \times \{n\}}$ 为 V(n) 到 W 的 sl_2 - 模同态.将证明分成两步.第一步证明 $\forall r \in \operatorname{rad}(f), v \in V$ 有 $\psi(v,n+r) = \psi(v,n)$,第二步证明 $\psi|_{V \times \{n\}}$ 是 sl_2 - 模同态.

第一步 因为 $q \neq 1$ 且 $n \notin K$, 故可选取 $s \notin rad(f)$ 使 $g_1(s) \neq f(n,s)$ 或 $g_2(s) \neq f(n-\beta+\alpha,s)$, 于是 $s+r \notin rad(f)$, 考虑

$$adx^{r+s}(\varphi(v(n-s)))$$

$$=\sigma(r+s,n-s+\alpha-\beta)(g_2(r+s)-f(n-s+\alpha-\beta,r+s))\psi(v,n-s)(n+\alpha-\beta+r),$$

$$\varphi(adx^{r+s}(v(n-s))) = \sigma(r+s, n-s)(g_1(r+s) - f(n-s, r+s))\psi(v, r+n)(n+\alpha-\beta+r),$$

由于 φ 为 L- 模同构, $r \in rad(f)$, 故由 s 的取法可得

$$\psi(v,r+n) = \frac{\sigma(s,\alpha-\beta)(g_2(s) - f(n+\alpha-\beta,s))\psi(v,n-s)}{g_1(s) - f(n,s)}.$$

注意到上式右边与 r 无关,故 $\forall v \in V, r \in rad(f)$,有 $\psi(v, r+n) = \psi(v, n)$.

第二步 $\forall \lambda, \mu \in \mathbb{Z}$. 令 $u = \mu e_1 - \lambda e_2, r = \lambda p e_1 + \mu p e_2$, 则 $D(u, r) \in L$. 由于

$$D(u,r)(\varphi(v(n))) = (u,n+\alpha)\psi(v,n)(n+\alpha-\beta+r) + A(u,r)\psi(v,n)(n+\alpha-\beta+r),$$

$$\varphi(D(u,r)v(n)) = (u,n+\alpha)\psi(v,n+r)(n+r+\alpha-\beta) + \psi(A(u,r)v,n+r)(n+\alpha-\beta+r),$$

可得 $A(u,r)\psi(v,n) = \psi(A(u,r)v,n)$. 分别取 $\lambda = 0$, $\mu = 1$; $\lambda = 1$, $\mu = 0$ 和 $\lambda = \mu = 1$, 则有 $x_-(\psi(v,n)) = \psi(x_-v,n)$, $x_+(\psi(v,n)) = \psi(x_+v,n)$, $(h-x_++x_-)(\psi(v,n)) = \psi((h-x_++x_-)v,n)$, 故 $\psi|_{V\times\{n\}}$ 为 sl_2 - 模同态.

最后证明 $\forall s \in \Gamma, g_2(s) = f(\alpha - \beta, s)g_1(s)$. 当 $K \neq \phi$ 时,命题显然成立. 当 $K = \emptyset$ 时,由上述结论可知 $\forall n \in \Gamma$ 有 $\psi|_{V \times \{n\}}$ 为 sl_2 - 模 V(n) 到 W 的同构映射. 令 $\bar{\varphi}$ 为 sl_2 - 模 V 到 W 的一个同构映射,因为 V 是不可约 sl_2 - 模,故由 Schur 引理可设 $\psi|_{V \times \{n\}} = \rho(n)\bar{\varphi}$,其中 ρ 为 Γ 到 $\mathbb{C} \setminus \{0\}$ 的函数. $\forall s \notin \mathrm{rad}(f), v \in V, n \in \Gamma$, 考虑

$$adx^{s}(\varphi(v(n))) = \rho(n)\sigma(s, n + \alpha - \beta)(g_{2}(s) - f(n + \alpha - \beta, s)\bar{\varphi}(v)(s + n + \alpha - \beta),$$

$$\varphi(adx^s(v(n))) = \sigma(s,n)(g_1(s) - f(n,s))\rho(n+s)\bar{\varphi}(v)(n+s+\alpha-\beta),$$

因此有

$$\rho(n)\sigma(s,\alpha-\beta)(g_2(s) - f(n+\alpha-\beta,s)) = (g_1(s) - f(n,s))\rho(n+s).$$
 (5.4)

在上式中分别令 n=0 和 n=-s 可得

$$\rho(0)\sigma(s, \alpha - \beta)(g_2(s) - f(\alpha - \beta, s)) = (g_1(s) - 1)\rho(s), \tag{5.5}$$

$$\rho(-s)\sigma(s,\alpha-\beta)(g_2(s) - f(\alpha-\beta,s)) = (g_1(s) - 1)\rho(0). \tag{5.6}$$

因为 $s \notin \operatorname{rad}(f)$, 故 $-s \notin \operatorname{rad}(f)$. 于是在(5.5) 中可用-s 替换s 得

$$\rho(0)\sigma(-s,\alpha-\beta)(g_2(-s)-f(\alpha-\beta,-s)) = (g_1(-s)-1)\rho(-s). \tag{5.7}$$

情形 1 若 $g_1(s) = 1$, 则得 $g_2(s) = f(\alpha - \beta, s)$, 于是 $g_2(s) = f(\alpha - \beta, s)g_1(s)$.

情形 2 若 $g_1(s) \neq 1$, 则由 (5.5), (5.6) 可得 $\rho(-s)\rho(s) = \rho(0)^2$, 于是由 (5.5), (5.7) 可得 $(g_2(s) - f(\alpha - \beta, s))(g_2(-s) - f(\alpha - \beta, -s)) = (g_1(s) - 1)(g_1(-s) - 1)$. 由此得 $g_2(s) = f(\alpha - \beta, s)g_1(s)$ 或 $g_2(s) = f(\alpha - \beta, s)(g_1(-s))$.

子情形 1 若 $g_2(s) = f(\alpha - \beta, s)g_1(s)$, 则由 (5.5) 可得 $\rho(s) = \rho(0)\sigma(s, \alpha - \beta)f(\alpha - \beta, s)$.

子情形 2 若 $g_2(s) = f(\alpha - \beta, s)g_1(-s)$, 则由 (5.5) 可得 $\rho(s) = -\rho(0)\sigma(s, \alpha - \beta)f(\alpha - \beta, s)g_1(-s)$.

代入 (5.4) 可得 $\forall n \in \Gamma$, 有

$$\rho(n)\sigma(s,\alpha-\beta)f(\alpha-\beta,s)(g_1(-s)-f(n,s))=(g_1(s)-f(n,s))\rho(n+s).$$

在上式中取 n=s, 则 $-\rho(0)\sigma(2s,\alpha-\beta)f(\alpha-\beta,2s)g_1(-2s)(1-g_1(s))=(g_1(s)-1)\rho(2s)$. 故 $\rho(2s)=\rho(0)\sigma(2s,\alpha-\beta)f(\alpha-\beta,2s)g_1(-2s)$. 若 $g_1(2s)\neq 1$ 则 $2s\not\in \operatorname{rad}(f)$, 且 $\rho(2s)$ 的表达式既非子情形 1 的形式亦非子情形 2 的形式,矛盾。故 $g_1(2s)=1$, 于是 $g_1(s)=-1=g_1(-s)$, 因而有 $g_2(s)=f(\alpha-\beta,s)g_1(-s)=f(\alpha-\beta,s)g_1(s)$.

最后,由引理 1.4, 引理 5.2 及引理 5.3, 定理 E 得证.

参考文献

- [BGK] Berman S, Gao Y, Krylyuk Y S. Quantum tori and the structure of elliptic quasi-simple Lie algebras [J]. J. Funct. Anal., 1996, 135: 339-389.
 - [E1] Eswara Rao S. Representations of Witt algebras, Publ. Res. Inst. Math. Sci. 30(1994), 191-201.
 - [E2] Eswara Rao S. Irreducible representations of the Lie algebra of the diffeomorphisms of a d-dimensional torus
 [J]. J. Algebra, 1996, 182: 401-421.
- [EM] Eswara Rao S, Moody R V. Vertex representations for N-toroidal Lie algebras and a generalization of the Virasoro algebra [J]. Commun. Math. Phys., 1994, 159: 239-264.
- [EZ] Eswara Rao S, K. Zhao. Highest weight irreducible representations of quantum tori [C]. Preprint, 2002.
- [H] Humphreys J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag, Berlin/Heidelberg/New York, 1972.
- [LT] Lin W, Tan S. Representations of the Lie algebra of derivations for quantum torus [C]. Preprint, 2002.
- [MP] McConnell J C, Pettit J J. Crossed products and multiplicative analogues of Weyl algebras [J]. J. London Math. Soc., 1988, 38: 47-55.
 - [S] Shen G. Gradraded modules of graded Lie algebras of Cartan type(I) [J]. Scientia Sinica, Series A, 1986, 29: 570-581.
 - [Z] Zhao K. Weyl type algebra from quantum tori [C]. Preprint, 2001.

Representations of the Lie Algebra of Skew Derivations on Quantum Torus

LIN Wei-qiang^{1,2}, TAN Shao-bin¹

(1. Dept. of Math., Xiamen University, Xiamen, Fujian, 361005, P. R. China; 2. Dept. of Math., Zhangzhou Teachers College, Zhangzhou, Fujian, 363000, P. R. China)

Abstract: In this paper, we first recall the definition of the Lie algebra L of skew derivations on quantum torus, then construct a class of functors F_g^{α} from sl_2 -modules to L-modules. We study the structure of L-modules $F_g^{\alpha}(V)$, and give a necessary and sufficient condition of isomorphism between the L-modules $F_{g_1}^{\alpha}(V)$ and $F_{g_2}^{\beta}(W)$.

Key words: Lie algebra; skew derivation; representation; quantum torus