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Abstract

In this paper, we survey some of the latest development in using inexact Newton-like
methods for solving inverse eigenvalue problems. These methods require the solutions
of nonsymmetric and large linear systems. One can solve the approximate Jacobian
equation by iterative methods. However, iterative methods usually oversolve the prob-
lem in the sense that they require far more (inner) iterations than is required for the
convergence of the Newton-like (outer) iterations. The inexact methods can reduce or
minimize the oversolving problem and improve the efficiency. The convergence rates
of the inexact methods are superlinear and a good tradeoff between the required inner
and outer iterations can be obtained.

AMS Subject Classifications. 65F18, 65F10, 65F15.

1 Introduction

Let {Ak}n
k=1 be n real symmetric n×n matrices. For any c = (c1, . . . , cn)T ∈ Rn, we define

A(c) ≡
n∑

i=1

ciAi, (1)

and denote the eigenvalues of A(c) by {λi(c)}n
i=1, where λ1(c) ≤ λ2(c) ≤ · · · ≤ λn(c). The

Inverse Eigenvalue Problem (IEP) is defined as follows:

(IEP) Given n real numbers λ∗1 ≤ · · · ≤ λ∗n, find c∗ ∈ Rn such that λi(c∗) = λ∗i for
i = 1, . . . , n.

There is a large literature on conditions for the solvability, perturbation analysis and
computational methods to the IEP, see for instance [8, 12, 13] and the references therein.
Recently Friedland, Nocedal, and Overton [8] have surveyed four fast locally convergent
numerical methods for solving the IEP.

For a general nonlinear system g(x) = 0, the classical locally convergent iterative pro-
cedure is as follows:

xk+1 = xk + sk, where Bksk = −g(xk), x0 given.

The process is a Newton method if Bk = g′(xk), and a Newton-like method if Bk is an
approximation to g′(xk), see for instance [5, 9, 10].
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The Newton and Newton-like Methods are attractive because of their rapid conver-
gence from any sufficiently good initial guess x0. However, in each Newton or Newton-like
iteration, we have to solve exactly the Jacobian or approximate Jacobian equation

Bksk = −g(xk). (2)

Computing the exact solution using a direct method such as Gaussian elimination can be
expensive if the number of unknowns is large and may not justified when xk is far from a
solution. Thus we can use an iterative method and solve (2) only approximately, i.e. by
the inexact Newton or Newton-like method:

xk+1 = xk + sk, where Bksk = −g(xk) + rk, ‖rk‖/‖g(xk)‖ ≤ ηk,

where ‖ · ‖ denotes the Euclidean vector norm or its corresponding induced matrix norm.
In general, the nonnegative forcing term ηk is given in terms of g(xk), see for instance
[4, 6, 7, 9].

When n is large, solving the Jacobian or approximate Jacobian equation will be costly.
The cost can be reduced by using iterative methods (the inner iterations). However, if
ηk is too small, an iterative method may oversolve the Jacobian or approximate Jacobian
equation in the sense that the last tens or hundreds inner iterations before convergence
may not improve the convergence of the outer Newton or Newton-like iterations. That
is, additional accuracy in solving the Jacobian or approximate Jacobian equation requires
additional expense, but results in little or no progress toward a solution [6].

In this paper, we discuss the use of inexact methods to two Newton-like methods, i.e.
Method II and Method III in [8], for solving the IEP. Our inexact methods solve the approx-
imate Jacobian equation inexactly by stopping the inner iterations before convergence, and
thereby alleviate or minimize the oversolving problem. We will show that the convergence
rates of our methods are superlinear. However, by stopping the inner iterations earlier, we
can reduce the total cost of the inner-outer iterations.

This paper is organized as follows. In §2, we give some background knowledge about
the Newton method for the IEP. Then we investigate the inexact method to Method II and
Method III of [8] in §3–§4 respectively. We give the convergence analysis of the inexact
methods with illustrative numerical tests.

2 The Newton Method

In this section, we briefly recall the Newton method for solving the IEP. For details, see
[2, 8, 13]. For any c = (c1, . . . , cn)T ∈ Rn, define f : Rn → Rn by

f(c) ≡ (λ1(c)− λ∗1, . . . , λn(c)− λ∗n)T = 0. (3)

Clearly, c∗ is a solution to the IEP if and only if f(c∗) = 0. Therefore, we can formulate
the IEP as a system of nonlinear equations f(c) = 0.

As in [8], we assume that the given eigenvalues {λ∗i }n
i=1 are distinct. Then the eigenvalues

of A(c) are distinct too in some neighborhood of c∗. It follows that the function f(c) is
analytic in the same neighborhood and that the Jacobian of f is given by

[
J(c)

]
ij

=
∂[f(c)]i

∂cj
=

∂λi(c)
∂cj

= qi(c)T ∂A(c)
∂cj

qi(c), 1 ≤ i, j ≤ n,
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where qi(c) are the normalized eigenvectors of A(c) corresponding to the eigenvalues λi(c),
see [13, Eq. (4.6.2)] or [2, 3]. Hence by (1),

[
J(c)

]
ij

= qi(c)T Ajqi(c), 1 ≤ i, j ≤ n. (4)

Thus by (1) again, we have

[J(c)c]i =
n∑

j=1

cjqi(c)T Ajqi(c) = qi(c)T A(c)qi(c) = λi(c), 1 ≤ i, j ≤ n,

i.e. J(c)c = (λ1(c), · · · , λn(c))T . By (3), this becomes

J(c)c = f(c) + λ∗, (5)

where λ∗ ≡ (λ∗1, · · · , λ∗n)T .
Recall that the Newton method for f(c) = 0 is given by J(ck)(ck+1− ck) = −f(ck). By

(5), this can be rewritten as

J(ck)ck+1 = J(ck)ck − f(ck) = λ∗.

To summarize, we have the following Newton method for solving the IEP.

Algorithm 1: The Newton Method

For k = 0 until convergence, do:

1. Compute the eigen-decomposition of A(ck):

Q(ck)T A(ck)Q(ck) = diag(λ1(ck), · · · , λn(ck)),

where Q(ck) = [q1(ck), · · · ,qn(ck)] is orthogonal.

2. Form the Jacobian matrix: [J(ck)]ij = qi(ck)T Ajqi(ck).

3. Solve ck+1 from the Jacobian equation: J(ck)ck+1 = λ∗.

Notice that in Step 1, we have to compute all the eigenvalues and eigenvectors of A(ck)
exactly. This method converges Q-quadratically, see for instance [8, Theorem 3.2] and [13,
Theorem 4.6.1]. Here, we recall the definition of two kind of convergence rates, see [4] and
[10, Chap. 9].

Definition 1 Let {xk} be a sequence which converges to x∗. Then

1. xk → x∗ with Q-convergence rate at least q (q > 1) if

‖xk+1 − x∗‖ = O(‖xk − x∗‖q) as k →∞; (6)

2. xk → x∗ with R-convergence rate at least q (q > 1) if

lim sup
k→∞

‖xk − x∗‖1/qk
< 1 as k →∞. (7)
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3 The Inexact Newton-like Method

In this section, we first recall Method II in [8], and then give the inexact version.

3.1 The Inexact Newton-like Method

In Algorithm 1 all the eigenvectors of A(c) have to be computed exactly per step, which
is very time consuming. Therefore, we consider approximating these eigenvectors. Suppose
that we have determined an estimate ck of c∗ and an approximation Qk = [qk

1, . . . ,q
k
n] to

the orthogonal matrix of eigenvectors Q(ck). Then we compute a new estimate ck+1 by
solving

Jkck+1 = λ∗, (8)

where
Jk = [(qk

i )
T Ajqk

i ].

To update our approximations to the eigenvectors, we apply one step inverse iteration; that
is, we compute wi, i = 1, . . . , n by solving

(A(ck+1)− λiI)wi = qk
i , i = 1, . . . , n. (9)

We then define Qk+1 = [qk+1
1 , . . . ,qk+1

n ] by

qk+1
i =

wi

‖wi‖ , i = 1, . . . , n. (10)

It is showed that Method II is Q-quadratically convergent under the assumption that
the systems (9) and (8) are solved exactly, see [8, 3] and [13, Theorem 4.6.2]. In Method II,
there are two inner iterations: the one-step inverse power method (9) and the approximate
Jacobian equation (8). In order to avoid the oversolving of the inner iterations, we have
to look for suitable tolerances small enough to guarantee the convergence of the outer
iterations, but large enough to reduce the oversolving problem of the inner iterations.

Nonetheless, we find that the tolerance for the inverse power method (9) can be set very
large (to 1/4), whereas the tolerance for the approximate Jacobian equation (8) has to be
small in order to have a superlinear convergence for the outer iteration. The tolerance for
(8) will be in terms of a computable quantity in our inexact algorithm. Below we give our
algorithm.

Algorithm 2: The Inexact Newton-Like Method

1. Given c0, iterate Algorithm 1 once to obtain c1 and write P0 = [p0
1, · · · ,p0

n] =
[q1(c0) · · · ,qn(c0)].

2. For k = 1 until convergence, do:

(a) Solve wk
i inexactly in the one-step inverse power method

(A(ck)− λ∗i I)wk
i = pk−1

i + tk
i , 1 ≤ i ≤ n, (11)

until the residual tk
i satisfies

‖tk
i ‖ ≤

1
4
. (12)
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(b) Normalize wk
i to obtain an approximate eigenvector pk

i of A(ck):

pk
i =

wk
i

‖wk
i ‖

, 1 ≤ i ≤ n. (13)

(c) Form the approximate Jacobian matrix:

[Jk]ij = (pk
i )

T Ajpk
i , 1 ≤ i, j ≤ n. (14)

(d) Solve ck+1 inexactly from the approximate Jacobian equation

Jkck+1 = λ∗ + rk, (15)

until the residual rk satisfies

‖rk‖ ≤
(

max
1≤i≤n

1
‖vk

i ‖
)β

, 1 < β ≤ 2. (16)

Note that the main difference between Algorithm 2 and Method II is that we solve (11)
and (15) approximately rather than exactly as in (9) and (8).

3.2 Rate of Convergence

In this subsection, we will show that the Q-convergence rate of Algorithm 2 is β.
As in [8], we assume that the given eigenvalues {λ∗i }n

i=1 are distinct and that the Jacobian
J(c∗) defined in (4) is nonsingular. Then we have the following theorem on the rate of
convergence.

Theorem 1 [2] Let the given eigenvalues {λ∗i }n
i=1 be distinct and the Jacobian J(c∗) be

nonsingular. Then Algorithm 2 is locally convergent with Q-convergence rate β.

For numerical examples, we refer to [2].

4 The Inexact Cayley Transform Method

In this section, we briefly recall Method III in [8], and then give the inexact version, i.e.
the inexact Cayley transform method.

4.1 The Inexact Cayley Transform Method

Method III in [8] is based on Cayley transforms. A solution to the IEP can be described
by c and U , where U is an orthogonal matrix and

UT A(c)U = Λ∗, Λ∗ = diag(λ∗1, . . . , λ
∗
n). (17)

Suppose that an orthogonal matrix Uk is the current approximations of U . Define eZk ≡
UT

k U . Then Zk is a skew-symmetric matrix and (17) can be written as

UT
k A(c)Uk = eZkΛ∗e−Zk = Λ∗ + ZkΛ∗ − Λ∗Zk + O(‖Zk‖2). (18)
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In Method III, we define a new estimate of ck+1 by neglecting the second order terms
in Zk, and equating the diagonal elements in (18), i.e. ck+1 is given by

(uk
i )

T A(ck+1)uk
i = λ∗i , i = 1, . . . , n, (19)

where {uk
i }n

i=1 are the column vectors of Uk. By (1), (19) can be rewritten as

Jkck+1 = λ∗, (20)

where λ∗ ≡ (λ∗1, . . . , λ
∗
n)T and Jk is the approximate Jacobian matrix with entries

[Jk]ij = (uk
i )

T Ajuk
i , i, j = 1, . . . , n. (21)

Once we get ck+1 from (20), we obtain Zk by neglecting the second order terms in Zk,
and equating the off-diagonal elements in (18), i.e.

[Zk]ij =
(uk

i )
T A(ck+1)uk

j

λ∗j − λ∗i
, 1 ≤ i 6= j ≤ n. (22)

Finally we update Uk by setting Uk+1 = UkSk, where Sk is an orthogonal matrix constructed
by the Cayley transform

Sk = (I +
1
2
Zk)(I − 1

2
Zk)−1.

The Q-quadratic convergence of Method III was proven under the assumption that the
approximated Jacobian equation (20) is solved exactly, see [8]. To reduce the oversolving
of the inner iterations, we have to look for suitable tolerances to improve the efficiency.

For the nonlinear system f(c) = 0, the stopping criterion is usually given in terms of
f(c). By (3), this will involve computing λi(ck) of A(ck) which are costly to compute. Our
idea is to replace them by Rayleigh quotients, see (25) and (27) below. Thus we have the
following algorithm.

Algorithm 3: Inexact Cayley Transform Method

1. Given c0, compute the orthonormal eigenvectors {qi(c0)}n
i=1 and the eigenvalues

{λi(c0)}n
i=1 of A(c0). Let V0 = [v0

1, . . . ,v
0
n] = [q1(c0), . . . ,qn(c0)], and

ρ0 = (λ1(c0), . . . , λn(c0))T .

2. For k = 0, 1, 2, . . ., until convergence, do:

(a) Form the approximate Jacobian matrix:

[Jk]ij = (vk
i )T Ajvk

i , 1 ≤ i, j ≤ n. (23)

(b) Solve ck+1 inexactly from the approximate Jacobian equation:

Jkck+1 = λ∗ + rk, (24)

until the residual rk satisfies

‖rk‖ ≤ ‖ρk − λ∗‖β, β ∈ (1, 2]. (25)
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(c) Form the skew-symmetric matrix Yk:

[Yk]i j =
(vk

i )T A(ck+1)vk
j

λ∗j − λ∗i
, 1 ≤ i 6= j ≤ n.

(d) Compute Vk+1 = [vk+1
1 , . . . ,vk+1

n ] by solving

(I +
1
2
Yk)V T

k+1 = (I − 1
2
Yk)V T

k . (26)

(e) Compute ρk+1 = (ρk+1
1 , . . . , ρk+1

n )T by

ρk+1
i = (vk+1

i )T A(ck+1)vk+1
i , i = 1, . . . , n. (27)

4.2 Rate of Convergence

In the following, we show that the R-convergence rate of Algorithm 3 is at least β.
As in [8], we assume that the given eigenvalues {λ∗i }n

i=1 are distinct and the Jacobian
J(c∗) is nonsingular. Then we have the following results on the rate of convergence.

Theorem 2 [1] Let the given eigenvalues {λ∗i }n
i=1 be distinct and J(c∗) be nonsingular.

Then the iterates {ck} generated by Algorithm 3 converges to c∗ with R-convergence rate at
least equal to β.

4.3 Numerical Experiments

In this subsection, we compare the numerical performance of Algorithm 3 with that of
Method III. Our aim is to illustrate the advantage of our method over Method III in terms
of the overall computational cost. We use Toeplitz matrices as our Ai in (1):

A1 = I, A2 =




0 1 0 · · · 0

1 0 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . 0 1

0 · · · 0 1 0




, · · · , An =




0 0 · · · 0 1

0
. . . . . . · · · 0

...
. . . . . . . . .

...

0 · · · . . . . . . 0
1 0 · · · 0 0




.

In particular, A(c) is symmetric Toeplitz matrix having c as its first column. For demon-
stration purposes, we consider two different problem sizes: n = 100 and 200. For both n,
the exact solutions c∗ are chosen randomly so that the exact Jacobian J(c∗) is nonsingular.
Then we compute the eigenvalues {λ∗i }n

i=1 of A(c∗) as the prescribed eigenvalues. Since
both algorithms are locally convergent only, the initial guess c0 is chosen reasonably close
to the true solution c∗.

The linear systems (20) and (24) are both solved by the Matlab-provided QMR method
[11, pp. 210–214]. We use ck, the iterant at the kth iteration, as the initial guess for the
QMR method in the (k + 1)th iteration. Moreover, we use 10−13 as the stopping tolerance
for (20), and the stopping criterion for (24) is given in (25). The outer iterations of Method
III and Algorithms 3 are stopped when

‖UT
k A(ck)Uk − Λ∗‖F ≤ 10−10 and ‖V T

k A(ck)Vk − Λ∗‖F ≤ 10−10
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respectively.
In Tables 1–2, we give the total numbers of outer iterations No averaged over ten tests

for different values of β. We also list the average numbers of inner iterations Ni required
for solving the approximate Jacobian equations (20) in Method III and (24) in Algorithm
3.

Method III Alg. 3
β 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
No 3.2 12 5.2 4 3.3 3.2 3.2 3.2 3.2 3.2 3.2
Ni 397 755 445 379 327 323 325 329 336 339 349

Table 1 : Averaged numbers of outer and inner iterations with dimension
n = 100.

Method III Alg. 3
β 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
No 3 10.9 6 4 3 3 3 3 3 3 3
Ni 818 1444 1144 855 684 719 725 732 738 747 763

Table 2 : Averaged numbers of outer and inner iterations with dimension
n = 200.

0 50 100 150 200 250 300 350 400 450 500
−12

−11

−10

−9

−8
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−5

−4

−3

log
10

||e
|| 

+ Method III
o  Algorithm 3 with β=2
*  Algorithm 3 with β=1.5

Figure 1: Convergence history of one of the test matrices with n = 100.

We observe from the tables that, in terms of the total number of outer iterations, for
β between 1.5 and 2.0, our method converges at the same rate as Method III. However,
in terms of the total numbers of inner iterations, we note that for β between 1.4 and 2.0,
Algorithm 3 is in fact more effective than Method III. The most effective β is between 1.4
and 1.5.

To further illustrate the oversolving problem, we investigate the convergence history of
the approximations to c∗ at the inner iterations. Specifically, at each inner iteration, we
computed the 2-norm error e between the current approximation and c∗. Figure 1 depicts
the logarithm of e versus the number of inner iterations for one of the test matrices of
dimension n = 100 solved by Method III and Algorithm 3 with β = 1.5 and 2. We mark the
error at the outer iterations with special symbols too. We can see that our method converges
faster than Method III. Moreover, for Method III, oversolving problem is significant (see
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the horizontal lines between iteration numbers 100 to 200, and 325 to 350) whereas there
is no oversolving for Algorithm 3 with β = 1.5.
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