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Abstract

In this paper we concern the inverse problem of constructing the n-by-n real symmetric
tridiagonal matrices C and K so that the monic quadratic pencil Q(λ) := λ2I + λC + K
(where I is the identity matrix) possesses the given partial eigendata. We first provide
the sufficient and necessary conditions for the existence of an exact solution to the inverse
problem from the self-conjugate set of prescribed four eigenpairs. To find a physical solution
for the inverse problem where the matrices C and K are weakly diagonally dominant and
have positive diagonal elements and negative off-diagonal elements, we consider the inverse
problem from the partial measured noisy eigendata. We propose a regularized smoothing
Newton method for solving the inverse problem. The global and quadratic convergence of
our approach is established under some mild assumptions. Some numerical examples and a
practical engineering application in vibrations show the efficiency of our method.

Keywords. Quadratic pencil, symmetric tridiagonal matrix, inverse quadratic eigenvalue
problem, Newton’s method.

AMS subject classifications. 15A22, 15A18, 65F18, 65K10, 90C33

1 Introduction

In the vibration analysis of many structural engineering problems, we often need to solve a
second-order differential equation

Mü(t) + Cu̇(t) + Ku(t) = f(t), (1)

where the n-by-n matrices M , C, and K are known as the mass, damping and stiffness matrices,
respectively, u(t) is an n-vector, and f(t) is a time-dependent external force vector. By the
separation of variables u(t) = x eλt, where x is a constant vector, we can get the general solution
to the homogeneous equation of (1) and this solution is given in terms of the solution of the
following quadratic eigenvalue problem (QEP):

Q(λ)x := (λ2M + λC + K) x = 0. (2)
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The scalar λ and the associated nonzero vector x are, respectively, called the eigenvalue and the
eigenvector of the quadratic pencil Q(λ). QEPs arise in a remarkable variety of applications,
including, for example, the vibrating analysis of structural mechanical and acoustic system, the
electrical circuit simulation, fluid mechanics, the modeling microelectronic mechanical systems,
and signal processing. A good survey on the applications, mathematical properties and numerical
methods of QEPs is included in [47] by Tisseur and Meerbergen.

In this paper, we consider the inverse problem of constructing the matrices M , C, and K
such that the quadratic pencil Q(λ) (defined in (2)) has the prescribed partial eigendata. In
particular, we focus on the symmetric tridiagonal inverse quadratic eigenvalue problem (IQEP).
The problem is stated as follows:

TriIQEP. Construct a nontrivial quadratic pencil

Q(λ) = λ2I + λC + K

from a set of prescribed eigendata {(λi, x
i)}p

i=1, where C and K are both n-by-n symmetric and
tridiagonal matrices defined by

C =




a1 −b2

−b2 a2 −b3

. . . . . . . . .
−bn−1 an−1 −bn

−bn an




(3)

and

K =




c1 −d2

−d2 c2 −d3

. . . . . . . . .
−dn−1 cn−1 −dn

−dn cn




, (4)

where the real numbers {ai}n
1 , {bi}n

2 , {ci}n
1 , and {di}n

2 are unknown parameters.

Inverse eigenvalue problems have been of great value for many applications, see for instance
[10, 23]. Recent developments include the finite model updating problems in structural dynamics
(e.g., [11, 21]) and the partial eigenstructure assignment problems in control theory (e.g., [14,
15, 40, 49]).

In general, an IQEP is very difficult to solve because of the additional physical structure
constraints, which are the inherent properties of the original model. In particular, the solution
matrices should preserve the exploitable structure properties such as symmetry, definiteness,
bandedness, and sparsity etc.. For the computation purpose, many numerical methods were
developed to solve various simplified versions of the IQEP, see for instance [13, 14, 20, 21, 34,
39, 49]. However, these methods may fail to generate a physically realizable solution, which is
of great importance in applications. Recently, Chu, Kuo, and Lin [11] constructed a physical
quadratic pencil Q(λ) = λ2M +λC+K, where the matrices M , C and K are real and symmetric
with the matrices M and K being positive definite and positive semidefinite, respectively. Given
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complete information on eigenvalues and eigenvectors with all eigenvalues being simple and
complex, Lancaster and Prells [31] got a quadratic pencil Q(λ) = λ2M + λC + K, where M ,
C and K are real symmetric matrices with both M and K being positive definite and C being
positive semi-definite. Bai, Chu, and Sun [3] proposed an optimization method for constructing
a quadratic pencil Q(λ) = λ2M + λC + K such that the updated matrices M , C, and K are all
real and symmetric with the matrices M and K being positive definite and positive semidefinite,
respectively. However, all these methods may not preserve the inherent structure connectivity.

The tridiagonal inverse problem arises in the vibrations, see for instance [10, 23, 35, 39].
We should point out that the given eigendata is often measured from a physically realizable
structure and the number of available eigendata is much smaller than the problem dimension
(i.e., p ¿ n) [21]. Moreover, the matrices C and K denote the physical damping and stiffness
matrices, respectively, which should be weakly diagonally dominant and have positive diagonal
elements and negative off-diagonal elements [39, 47].

In this paper, we consider the TriIQEP with the matrices C and K defined as in (3) and
(4), respectively. We first discuss the solvability of the TriIQEP from the self-conjugate set of
specific four eigenvalues and the self-conjugate set of associated four eigenvectors and provide
the sufficient and necessary conditions for the existence of an exact solution to the TriIQEP.

Because the solution matrices C and K should be weakly diagonally dominant and the
corresponding parameters {ai}n

1 , {bi}n
2 , {ci}n

1 , and {di}n
2 should be real and positive, we discuss

the TriIQEP in a new way. In this paper, we will reformulate the TriIQEP with the noisy
eigendata {(λi, x

i)}p
i=1 as a box constrained variational inequality (BVI) (i.e., a well-known

nonlinear complementary problem (NCP)). Then, a regularized smoothing Newton algorithm
is proposed for solving the BVI. Our method is motivated by the recent development of the
numerical computation for structured IQEPs and the BVI/NCP. Burak and Ram [4] constructed
the structured pencil Q(λ) = λ2M + K with

M = diag(m1, . . . , mn), K =




k1 + k2 −k2

−k2 k2 + k3 −k3

· · · · · · · · · · · · · · ·
−kn kn


 (5)

from a single natural frequency, two mode shapes and a static deflection due to a unit load for
the undamped case (i.e., C = 0) and expressed the solution parameters in terms of a certain
generalized eigenvalue problem. However, the positiveness of the parameters determined by (5)
is not guaranteed. Bai [2] determined the structured quadratic pencil Q(λ) = λ2M + λC + K
with K defined in (5) and





M =




2m1 + 2m2 m2

m2 2m2 + 2m3 m3

· · · · · · · · · · · · · · ·
mn 2mn


 ,

C =




c1 + c2 −c2

−c2 c2 + c3 −c3

· · · · · · · · · · · · · · ·
−cn cn




(6)
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from the following two situations: (i) two real eigenvalues and three real eigenvectors or (ii) a
real eigenvector and a self-conjugate set of two complex eigenpairs. The solvability conditions
were provided. Chu, Del Buono, and Yu [9] discussed the IQEP for the quadratic pencil Q(λ) =
λ2M + λC + K with M and K defined in (5) and C defined in (6). Given two real eigenpairs
or a self-conjugate set of two complex eigenpairs, they showed the solvability of the IQEP is
equivalent to the consistency of a certain system of inequalities. The BVI/NCP is a fundamental
problem in mathematical programming. Recently, the regularized/smoothing and nonsmoothing
Newton methods for the BVI/NCP have been discussed in a large literature, see for instance [6,
8, 16, 27, 28, 29, 36, 37, 45, 46]. Given the estimate of the analytic model and the measured noisy
eigendata, we reformulate the TriIQEP as a quadratically constrained quadratic programming
problem, and then convert the optimization problem into a nonsmooth BVI. We show that the
BVI is monotone. To prevent the singularity of the BVI, by using the well-known Tikhonov
regularization techniques as in [36], we present a regularized smoothing approach for solving
the BVI. Under some mild conditions, the global and quadratic convergence is established.
Numerical examples and an engineering application in vibrations demonstrate the efficiency of
our method.

Throughout the paper, we use the following notations. Let AT denote the transpose of a
matrix A ∈ Rm×n. Let Rn be a real vector space of dimension n with the Euclidean inner
product 〈·, ·〉 and its induced norm ‖ · ‖. If x ∈ Rn, diag(x) denotes the diagonal matrix whose
ith diagonal element is xi. Let Rn

+ and Rn
++ stand for the nonnegative orthant of Rn and the

strictly positive orthant of Rn, respectively. Let N := {1, . . . , n}. If I and J are index sets such
that I,J ⊆ N , we use AIJ to denote the |I| × |J | submatrix of an n× n matrix A consisting
of entries Aij , i ∈ I, j ∈ J . If AII is nonsingular, we denote by A/AII the Schur complement
of AII in A, i.e.,

A/AII = AJJ −AJIA−1
IIAIJ

where J = N\I. We denote by xI the subvector of an n-vector with entries xi, i ∈ I. Finally,
a set is described as self-conjugate if the complex conjugate of each of its members is contained
in the set.

The paper is organized as follows. In the next section, we discuss the existence of a solution to
the TriIQEP from a self-conjugate set of prescribed four eigenpairs. In Section 3 we reformulate
the TriIQEP as a BVI. In Section 4 we provide our regularized smoothing Newton algorithm
for solving the TriIQEP. In Section 5 we establish the global and quadratic convergence of our
method. In Section 6, numerical examples and a practical application in vibrations are presented
to illustrate the efficiency of our proposed method. Finally, the concluding remarks are given in
Section 7.

2 Solvability of TriIQEP from Four Eigenpairs

In this section, we consider the TriIQEP such that the corresponding quadratic pencil has the
given four eigenpairs {(λi, x

i)}4
1 exactly. For real symmetric matrices M, C,K, it follows from

(2) that if λ and x are the eigenvalue and the associated eigenvector of Q(λ), then their complex
conjugates are also one eigenpair of Q(λ). Therefore, the TriIQEP can be described as the
following three subproblems:
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Problem A1. Construct the parameters {aj}n
1 , {bj}n

2 , {cj}n
1 , {dj}n

2 from the prescribed four
real eigenpairs.

Problem A2. Construct the parameters {aj}n
1 , {bj}n

2 , {cj}n
1 , {dj}n

2 from the given two real
eigenpairs and the self-conjugate set of specific two complex eigenpairs.

Problem A3. Construct the parameters {aj}n
1 , {bj}n

2 , {cj}n
1 , {dj}n

2 from the self-conjugate
set of prescribed four complex eigenpairs.

We first investigate the solvability of Problem A2. Let {(λi, x
i)}4

1 be the given eigenpairs of
the quadratic pencil Q(λ), i.e.,

(λ2
i I + λiC + K)xi = 0, i = 1, 2, 3, 4. (7)

For the sake of simplicity, we assume the two eigenpairs {(λi, x
i)}2

1 are real and the two
complex eigenpairs {(λi, x

i)}4
3 are complex conjugate to each other, i.e.,

{
λ3 = α + ıβ, x3 = xR + ıxI

λ4 = α− ıβ, x4 = xR − ıxI ,

where α, β ∈ R with ı :=
√−1, xR and xI are real n-vectors.

Let xiR denote the ith component of the vector xR. Then, (7) can be expressed in a system
of 4n real equations:




λ1x
1
1a1 + x1

1c1 − λ1x
1
2b2 − x1

2d2 = −λ2
1x

1
1,

λ2x
2
1a1 + x2

1c1 − λ2x
2
2b2 − x2

2d2 = −λ2
2x

2
1,

(αx1R − βx1I)a1 + x1Rc1 − (αx2R − βx2I)b2 − x2Rd2 = −[(α2 − β2)x1R − 2αβx1I ],

(βx1R + αx1I)a1 + x1Ic1 − (βx1R + αx1I)b2 − x2Id2 = −[2αβx1R + (α2 − β2)x1I ],

(8)





λ1x
1
i ai − λ1x

1
i−1bi + x1

i ci − x1
i−1di − λ1x

1
i+1bi+1 − x1

i+1di+1 = −λ2
1x

1
i ,

λ2x
2
i ai − λ2x

2
i−1bi + x2

i ci − x
(2)
i−1di − λ2x

2
i+1bi+1 − x2

i+1di+1 = −λ2
2x

2
i ,

(αxiR − βxiI)ai − (αxi−1,R − βxi−1,I)bi + xiRci − xi−1,Rdi

−(αxi+1,R − βxi+1,I)bi+1 − xi+1,Rdi+1 = −[(α2 − β2)xiR − 2αβxiI ],

(βxiR + αxiI)ai − (βxi−1,R + αxi−1,I)bi + xiIci − xi−1,Idi

−(βxi+1,R + αxi+1,I)bi+1 − xi+1,Idi+1 = −[2αβxiR + (α2 − β2)xiI ]

(9)

for i = 2, 3, . . . , n− 1, and




λ1x1
nan − λ1x1

n−1bn + x1
ncn − x1

n−1dn = −λ2
1x1

n,

λ2x2
nan − λ2x2

n−1bn + x2
ncn − x2

n−1dn = −λ2
2x2

n,

(αxnR − βxnI)an − (αxn−1,R − βxn−1,I)bn + xnRcn − xn−1,Rdn = −[(α2 − β2)xnR − 2αβxnI ],

(βxnR + αxnI)an − (βxn−1,R + αxn−1,I)bn + xnIcn − xn−1,Idn = −[2αβxnR + (α2 − β2)xnI ].

(10)
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To show our main results, we let

y =




y1

y2

...
yn


 ∈ R4n−2 with y1 =

(
a1

c1

)
∈ R2 and yi =




ai

bi

ci

di


 ∈ R4 for 2 ≤ i ≤ n, (11)

g =




g1

g2

...
gn


 ∈ R4n with gi = −




λ2
1x

1
i

λ2
2x

2
i

(α2 − β2)xiR − 2αβxiI

2αβxiR + (α2 − β2)xiI


 ∈ R4 for 1 ≤ i ≤ n,

Aii =




λ1x
1
i −λ1x

1
i−1 x1

i −x1
i−1

λ2x
2
i −λ2x

2
i−1 x2

i −x2
i−1

αxiR − βxiI −(αxi−1,R − βxi−1,I) xiR −xi−1,R

βxiR + αxiI −(βxi−1,R + αxi−1,I) xiI −xi−1,I


 for 2 ≤ i ≤ n,

Bii = −




0 λ1x
1
i 0 x1

i

0 λ2x
2
i 0 x2

i

0 αxi,R − βxi,I 0 xi,R

0 βxi,R + αxi,I 0 xi,I


 for 2 ≤ i ≤ n,

A =




A11 B22

A22 B33

. . . . . .
An−1,n−1 Bnn

Ann




with A11 =




λ1x
1
1 x1

1

λ2x
2
1 x2

1

αx1R − βx1I x1R

βx1R + αx1I x1I


 .

Expressions (8), (9), and (10) can be rewritten as the following linear system:

Ay = g. (12)

Therefore, the solvability of Problem A2 is equivalent to that of equation (12). On the
existence and uniqueness of the solution to Problem A2, we have the following results.

Theorem 2.1 Problem A2 has a solution if and only if the following conditions are satisfied:

(1) rank(Ann) = rank([Ann, gn]);

(2) rank(Aii) = rank([Aii, g
i −Bi+1,i+1y

i+1]) for some vector yi+1 ∈ R4, i = n− 1, . . . , 1.

Proof: Problem A2 has a solution if and only if equation (12) has a solution. Equation (12)
has a solution if and only if conditions (1) and (2) of Theorem 2.1 are satisfied.

Theorem 2.2 Problem A2 has a unique solution if and only if the following conditions are
satisfied:
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(1) det(Aii) 6= 0, (i = 2, . . . , n);

(2) rank(A11) = rank([A11, g
1 −B22y

2]) = 2 for some vector y2 ∈ R4.

Proof: Problem A2 has a unique solution if and only if equation (12) has a unique solution.
Equation (12) has a unique solution if and only if conditions (1) and (2) of Theorem 2.2 are
satisfied.

Remark 2.3 As Theorems 2.1 and 2.2, we can establish the sufficient and necessary conditions
for the solvability of Problems A1 and A3.

Next, under the conditions of Theorem 2.1 or Theorem 2.2, we can find a solution to Problem
A2. If the given eigendata satisfies the conditions (1) and (2) in Theorem 2.1, the general solution
to Problem A2 is given as follows:

Suppose the singular value decomposition (SVD) [24] of Aii is given by

Aii = Uii

[
Σii 0
0 0

]
V T

ii

for i = 1, . . . , n, where Σii = diag(σi
1, . . . , σ

i
ri

), σi
1 ≥ σ2 ≥ . . . ≥ σi

ri
> 0, ri = rank(Aii), and Uii

and Vii are both orthogonal matrices with appropriate dimensions. Then, the Moore-Penrose
generalized inverse A+

ii of Aii has the form

A+
ii = Vii

[
Σ−1

ii 0
0 0

]
UT

ii .

Therefore, by (12) (or (8), (9) and (10)), we can obtain the solution as follows:

1. yn = A+
nngn +

∑4
k=rn+1 skvk, where sk is an arbitrary real scalar and vk denotes the kth

column of the matrix Vnn.

2. yi = A+
ii (g

i − Bi+1,i+1y
i+1) +

∑4
k=rj+1 skvk, (i = n − 1, . . . , 2), where sk is an arbitrary

real scalar and vk denotes the kth column of the matrix Vii.

3. y1 = A+
11(g

1 −B22y
2) +

∑2
k=r1+1 skvk, where sk is an arbitrary real scalar and vk denotes

the kth column of the matrix V11.

On the other hand, if the given eigendata satisfies the conditions (1) and (2) in Theorem
2.2, we can find the unique solution to Problem A2 as follows:

Expression (10) gives

Ann




an

bn

cn

dn


 = gn,

which uniquely determines the parameters an, bn, cn, and dn since det(Ann) 6= 0.
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Next, expression (9) yields

Aii




ai

bi

ci

di


 = gi −Bi+1,i+1




ai+1

bi+1

ci+1

di+1


 , i = n− 1, . . . , 2. (13)

Therefore, we can successively find the unique ai, bi, ci, and di by solving equation (13) for
i = n− 1, . . . , 2 under the condition det(Aii) 6= 0.

Finally, expression (8) gives rise to

A11

[
a1

c1

]
= g1 −B22




a2

b2

c2

d2


 ,

the unique a1 and b1 are determined by the above equation under the condition (2) of Theorem
2.2.

Remark 2.4 We point out that, in practice, we may not find a physical solution by the above
procedure. That is, some of the parameters {aj}n

1 , {bj}n
2 , {cj}n

1 , {dj}n
2 may not be positive and

so the corresponding symmetric tridiagonal matrices C and K may not be diagonally dominant.
Therefore, it needs further study to determine the necessary and sufficient condition on the
eigendata so that the constructed solution is physically feasible.

For the purpose of demonstration we present the following example.
Let n = 5 and we randomly generate two real eigenpairs {(λi, x

i)}2
1 and the self-conjugate

set of two complex eigenpairs {(λ3 = α + ıβ, x3 = xR + ıxI), (λ4 = α− ıβ, x4 = xR − ıxI)}) as
follows: 




λ1 = −1.9254, λ2 = −3.8372, α = −2.0531, β = 2.6361,

x1 = (−0.4558,−0.0601,−0.0272,−0.0187,−0.0033)T ,

x2 = (0.1611, 0.1822,−0.0607, 0.0122,−0.0250)T ,

xR = (−0.0946,−0.1039,−0.0945,−0.0748,−0.0335)T ,

xI = (−0.0249,−0.0725,−0.1213,−0.1098,−0.1191)T .

Then we can easily check that these data satisfies the conditions of Theorem 2.2. The constructed
damping and stiffness matrices are as follows:

C =




13.3506 −7.4981 0 0 0
−7.4981 19.7065 −7.8325 0 0

0 −7.8325 13.4431 −4.2948 0
0 0 −4.2948 15.7152 −7.6594
0 0 0 −7.6594 11.6351
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and

K =




22.2242 −16.1481 0 0 0
−16.1481 51.5355 −24.6453 0 0

0 −24.6453 52.1586 −21.1986 0
0 0 −21.1986 45.9344 −17.7634
0 0 0 −17.7634 35.6038




.

From this example we observe that, by our procedure, we find a physical realizable solution
for Problem A2 from the prescribed eigendata.

3 Problem Reformulation

In this section, we shall first rewrite the TriIQEP as a constrained optimization problem and then
consider the corresponding BVI. As in [3, 11], we assume that the set of prescribed eigendata
{(λi, x

i)}p
i=1 is self-conjugate. Without loss of generality, for i = 1, 2, . . . , s (2s ≤ p), let

{
λ2i−1 = αi + ıβi, x2i−1 = xi

R + ıxi
I ,

λ2i = αi − ıβi, x2i = xi
R − ıxi

I .
,

where αi, βi ∈ R with βi 6= 0 and xi
R, xi

I ∈ Rn and let λ2s+1, . . . , λp ∈ R and x2s+1, . . . , xp ∈ Rn.
To simplify the discussion, we will describe the given eigendata in the real matrix form (Λ, X) ∈
Rp×p × Rn×p with

Λ = diag(λ[2]
1 , . . . , λ[2]

s , λ2s+1, . . . , λp)

and
X = [x1

R, x1
I , . . . , x

s
R, xs

I , x
2s+1, . . . , xp],

where

λ
[2]
i =

[
αi βi

−βi αi

]
∈ R2×2, βi 6= 0, for i = 1, . . . , s.

Let the matrices Co and Ko be some a-priori estimates for the unknown matrices C and K and
have the structure as in (3) and (4) with the corresponding parameters {ao

i }n
1 , {bo

i }n
2 , {co

i }n
1 ,

and {do
i }n

2 . We point out that such a-priori estimates Co and Ko are, respectively, called the
estimated analytic damping and stiffness matrices in the finite element model updating [21]. As
in [3], the TriIQEP is to find the n× n real symmetric matrices C and K such that





inf 1
2(‖C − Co‖2 + ‖K −Ko‖2)

s.t. XΛ2 + CXΛ + KX = 0,

C, K ∈ WDD,

(14)

where WDD is the set of all n-by-n symmetric tridiagonal and weakly diagonally dominant
matrices with positive diagonal and negative off-diagonal.

We remark that it is not easy to find the positive parameters {ai}n
1 , {bi}n

2 , {ci}n
1 , and {di}n

2

such that the corresponding n× n matrices C, K ∈ WDD satisfy the system

XΛ2 + CXΛ + KX = 0,
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see [2, 4, 9, 39] for the exploration of the physical solvability of the structured quadratic pencils.
Moreover, we note that the eigendata {(λi, xi)}p

i=1 is experimentally obtained and it is inevitably
corrupted by noise [1, 21]. Thus the reconstructed matrices C and K need not satisfy exactly
the equality constrains in (14). To reduce the sensitivity, instead of solving (14), we consider
the following quadratically constrained quadratic programming problem (QCQP):





inf 1
2(‖C − Co‖2 + ‖K −Ko‖2)

s.t. ‖XΛ2 + CXΛ + KX‖ ≤ δn,

C, K ∈ WDD,

(15)

where δn is a small positive number which depends on the noise level of the measured eigendata
[1]. We note that Problem (14) is recovered as δn → 0. Without causing any confusion, we refer
to Problem (15) as our TriIQEP.

Since the matrices C and K are defined by (3)-(4), respectively, we can rewrite the quadrati-
cal constraint in (15) in terms of the parameters {ai}n

1 , {bi}n
2 , {ci}n

1 , and {di}n
2 . To achieve this,

let the vector y be defined as in (11). To simplify the notations, in what follows, we let

g =




g1

g2

...
gn


 ∈ R4n with gi = −




(α2
1 − β2

1)x1
iR − 2α1β1x

1
iI

2α1β1x
1
iR + (α2

1 − β2
1)x1

iI
...

(α2
s − β2

s )xs
iR − 2αsβsx

s
iI

2αsβsx
s
iR + (α2

s − β2
s )xs

iI

λ2
s+1x

s+1
i

...
λ2

px
p
i




∈ R4 for 1 ≤ i ≤ n,

yo =




y1
o

y2
o
...

yn
o


 ∈ R4n−2 with y1

o =
(

ao
1

co
1

)
∈ R2 and yi

0 =




ao
i

bo
i

co
i

do
i


 ∈ R4 for 2 ≤ i ≤ n,

Aii =




α1x
1
iR − β1x

1
iI −(α1x

1
i−1,R − β1x

1
i−1,I) x1

iR −x1
i−1,R

β1x
1
iR + α1x

1
iI −(β1x

1
i−1,R + α1x

1
i−1,I) x1

iI −x1
i−1,I

...
...

...
...

αsx
s
iR − βsx

s
iI −(αsx

s
i−1,R − βsx

s
i−1,I) xs

iR −xs
i−1,R

βsx
s
iR + αsx

s
iI −(βsx

s
i−1,R + αsx

s
i−1,I) xs

iI −xs
i−1,I

λs+1x
s+1
i −λs+1x

s+1
i−1 xs+1

i −xs+1
i−1

...
...

...
...

λpx
p
i −λpx

p
i−1 xp

i −xp
i−1




for 2 ≤ i ≤ n,
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Bii = −




0 α1x
1
i,R − β1x

1
i,I 0 x1

i,R

0 β1x
1
i,R + α1x

1
i,I 0 x1

i,I
...

...
...

0 αsx
s
i,R − βsx

s
i,I 0 xs

i,R

0 βsx
s
i,R + αsx

s
i,I 0 xs

i,I

0 λs+1x
s+1
i 0 xs+1

i
...

...
...

0 λpx
p
i 0 xp

i




for 2 ≤ i ≤ n,

and

A =




A11 B22 0
A22 B33

. . . . . .
An−1,n−1 Bnn

0 Ann




with A11 =




α1x
1
1R − β1x

1
1I x1

1R

β1x
1
1R + α1x

1
1I x1

1I
...

...
αsx

s
1R − βsx

s
1I xs

1R

βsx
s
1R + αsx

s
1I xs

1I

λs+1x
s+1
1 xs+1

1
...

...
λpx

p
1 xp

1




.

Then the quadratic constraint in (15) becomes

‖Ay − g‖ ≤ δn.

Therefore, the QCQP (15) is reduced to the following form:




inf 1
2‖y − yo‖2

s.t. ‖Ay − g‖ ≤ δn,

By ≥ 0,

y ∈ R4n−2
++ ,

(16)

where B ∈ R2n×(4n−2), whose entries are all zeros except that
{ B1,1 = 1, B1,4 = −1,
B2,2 = 1, B2,6 = −1,

{ B2i−1,4(i−1)−2+1 = 1, B2i−1,4(i−1)−2+2 = B2i−1,4(i−1)−2+6 = −1,

B2i,4(i−1)−2+3 = 1, B2i,4(i−1)−2+4 = B2i,4(i−1)−2+8 = −1

for i = 2, 3, . . . , n− 1, and
{ B2n−1,4(n−1)−2+1 = 1, B2n−1,4(n−1)−2+2 = −1,

B2n,4(n−1)−2+3 = 1, B2n,4(n−1)−2+4 = −1.

We note that the inequality constraint By ≥ 0 corresponds to the constraint that the solution
matrices C and K defined in (3) and (4) should be weakly diagonally dominant.
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For the convenience of numerical computation, we shall consider the following relaxed form:




inf f0(y) := 1
2‖y − yo‖2

s.t. f1(y) := ‖Ay − g‖2 − δ2
n ≤ 0,

f2(y) := By ≥ 0,

y ∈ R4n−2
+ .

(17)

We observe that Problem (17) admits a strictly feasible solution, i.e., there exists a point
y0 ∈ R4n−2

++ such that f1(y0) < 0 and f2(y0) > 0. Thus the strong Slater constraint qualification
[26] holds for the problem. Thus solving Problem (17) is equivalent to finding y ∈ R4n−2

+ , ξ ∈ R+,
and ζ ∈ R2n

+ such that



∇f0(y) + ξ∇f1(y)−∇f2(y)T ζ = 0,
ξ ≥ 0, ζ ≥ 0, −f1(y) ≥ 0, f2(y) ≥ 0,
ξf1(y) = 0, f2(y)T ζ = 0.

(18)

where ∇fi(y) is the gradient of fi(y) at y ∈ R4n−2, i = 0, 1, 2. We point out that a solution of
(18) is a KKT point of Problem (17).

Let
G := R4n−2

+ × R+ × R2n
+ = Rm

+ with m := 6n− 1

and

z := (y, ξ, ζ), F (z) :=



∇f0(y) + ξ∇f1(y)−∇f2(y)T ζ

−f1(y)
f2(y)


 . (19)

It is well-known that solving Problem (18) is equivalent to the solution of the BVI defined as
follows: Find z∗ ∈ G such that

F (z)T (z − z∗) ≥ 0, for all z ∈ G. (20)

Let ΠG(·) denote the Euclidean projection onto G. Then, solving (20) is reduced to solving the
following Robinson’s normal equation:

E(z) := F (ΠG(z)) + z −ΠG(z) = 0 (21)

in the sense that if ẑ∗ is a solution of (21), then

z∗ := ΠG(ẑ∗)

is a solution of (20). Conversely if z∗ is a solution of (20), then

ẑ∗ := z∗ − F (z∗)

is a solution of (21) [41]. We note that (21) is a nonsmooth equation since ΠG(·) is not differen-
tiable everywhere.
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By using the Chen-Harker-Kanzow-Smale (CHKS) smoothing function [5, 30, 43] for ΠG(·),
we can approximate E(·) by

G̃(ε, z) := F (φ(ε, z)) + z − φ(ε, z), (ε, z) ∈ R× Rm,

where φ(ε, z) is defined by

φi(ε, z) := ϕ(ε, zi), i ∈M := {1, 2, . . . , m}. (22)

Here the function ϕ : R2 → R is the CHKS smoothing function defined by

ϕ(a, b) :=
1
2

(
b +

√
b2 + 4a2

)
, ∀ (a, b) ∈ R× R (23)

We point out that the function ϕ is continuously differentiable everywhere but the origin and

ϕ′(a, b) =
(

2a√
b2 + 4a2

,
1
2
(
1 +

b√
b2 + 4a2

))
. (24)

For all b ∈ R and a 6= 0, ϕ′b(a, b) ∈ [0, 1], see also [6, 7].
Let w := (ε, z) ∈ R × Rm. Then, it is easy to see that G̃ is continuously differentiable for

any w ∈ R++ × Rm.
To prevent the singularity of the derivative of the mapping F , we can use the regularization

technique. The simplest regularization technique is the well-known Tikhonov regularization, i.e.,
the function F is replaced by Fε, where

Fε(z) := F (z) + εz, ε ∈ R++,

see for instance [16, 45] for regularization techniques for NCP. For the BVI (20), we define a
regularized function H : Rm+1 → Rm+1 by

H(w) :=
(

ε
G(w)

)
, w := (ε, z) ∈ R× Rm, (25)

where
G(w) := G̃(w) + εz.

It follows that the function H is continuously differentiable at any point w = (ε, z) ∈ R++×Rm

(see the next section for detail). Moreover, z∗ = (y∗, ξ∗, ζ∗) ∈ R4n−2 × R × R2n solves (21) if
and only if w∗ := (0, z∗) ∈ R × Rm solves H(w) = 0. In this case, the projection ΠG(z∗) of z∗

on the set G is a solution of the BVI (20). We point out that these results hold only under the
assumption that the solution set of the BVI (20) is nonempty (See Section 5 for detail).

The following definitions related to F will be used in this paper.

Definition 3.1 [6] Let Ω be a nonempty subset of Rn. A function F : Rn → Rn is said to be a

• P0-function over the set Ω if there exists a index i such that

xi 6= yi, and (xi − yi)[Fi(x)− Fi(y)] ≥ 0 for all x, y ∈ Ω and x 6= y;
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• uniform P -function over the set Ω if, for some µ > 0,

max
1≤i≤n

(xi − yi)[Fi(x)− Fi(y)] ≥ µ‖x− y‖2 for all x, y ∈ Ω;

• monotone function over the set Ω if

(x− y)T [F (x)− F (y)] ≥ 0 for all x, y ∈ Ω;

• strongly monotone function over the set Ω if, for some µ > 0,

(x− y)T [F (x)− F (y)] ≥ µ‖x− y‖2 for all x, y ∈ Ω.

It is obvious that every monotone function is a P0-function, every strongly monotone function
is a uniform P -function.

We now show the monotonicity of the function F defined in (19) over the set G.

Proposition 3.2 The function F : Rm → Rm defined in (19) is a monotone function over the
set G, i.e., (

F (z1)− F (z2)
)T (z1 − z2) ≥ 0, for all z1, z2 ∈ G.

Proof: From (19), we have for any z1, z2 ∈ G,

F (z1)− F (z2)

=




(y1 − y2) + 2(ξ1ATAy1 − ξ2ATAy2)− 2(ξ1 − ξ2)AT g − BT (ζ1 − ζ2)
−(

(y1)TATAy1 − (y2)TATAy2
)

+ 2gTA(y1 − y2)
B(y1 − y2)




=




(y1 − y2) + 2(ξ1 − ξ2)ATAy1 + 2ξ2ATA(y1 − y2)− 2(ξ1 − ξ2)AT g − BT (ζ1 − ζ2)
−(y1 − y2)TATAy1 − (y2)TATA(y1 − y2) + 2gTA(y1 − y2)

B(y1 − y2)


 .

Thus we have that, for any z1, z2 ∈ G,

(F (z1)− F (z2))T (z1 − z2)

= ‖y1 − y2‖2 + 2(ξ1 − ξ2)(y1)TATA(y1 − y2) + 2ξ2(y1 − y2)TATA(y1 − y2)

−(ξ1 − ξ2)(y1)TATA(y1 − y2)− (ξ1 − ξ2)(y1 − y2)TATAy2

= ‖y1 − y2‖2 + (ξ1 + ξ2)(y1 − y2)TATA(y1 − y2) ≥ 0.

The proof is completed.

We note that F is a continuously differentiable function. This, together with the monotonic-
ity of F over the set G, shows that F ′(x) is positive semidefinite for all x ∈ G, see for instance
[22].
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4 A Regularized Smoothing Newton Method

In this section, we propose a regularized smoothing Newton-type algorithm for solving the
equation H(w) = 0, where H is defined by (25). This is motivated by the super numerical
performance of the regularized/smoothing Newton’s methods, see for instance [8, 28, 36, 37, 45].
For example, Chen, Qi, and Sun [8] designed the first globally and superlinearly convergent
smoothing Newton-type method by exploiting the Jacobian consistency and applying the infinite
sequence of smoothing approximation functions.

Noticing that F is a monotone function over the set G, we have the following result on the
nonsingularity of the Jacobian of H.

Proposition 4.1 a) The function H defined in (25) is continuously differentiable for all
w = (ε, z) ∈ R++ × Rm and

H ′(w) =
[

1 0
G′

ε(w) G′
z(w)

]
, (26)

where
G′

ε(w) := (F ′(φ(w))− I) q(ε) + z,
G′

z(w) := F ′(φ(w))D(z) + (1 + ε)I −D(z)

with D(z) = diag(di(z), i ∈ M), di(z) = ∂φi(ε, z)/∂zi, qi(ε) = ∂φi(ε, z)/∂ε, and di(z) ∈
[0, 1], i ∈M.

b) For any w ∈ R++ × Rm, the matrix H ′(w) is nonsingular.

Proof: a) Since the CHKS function ϕ defined in (23) is continuously differentiable for all
(a, b) ∈ R2 but (a, b) = (0, 0), it is obvious that the function H(·) is continuously differentiable
for any w = (ε, z) ∈ R++ ×Rm. By direct computation, we have (26). It follows from (24) that
di(z) ∈ [0, 1].

b) Since F is a monotone function over G, we obtain that F ′(z) is positive semidefinite for
all z ∈ G. Let w := (ε, z) ∈ R++ × Rm. Then we know that φ(w) ∈ G and F ′(φ(w)) is positive
semidefinite. Now, suppose that there exists h ∈ Rm such that

G′
z(w)h =

(
F ′(φ(w))D(z) + (1 + ε)I −D(z)

)
h = 0. (27)

We claim that D(z)h = 0. Otherwise, if D(z)h 6= 0, then there exists a index j ∈ M such that
[D(z)h]j = djhj 6= 0. By noting that di(z) ∈ [0, 1] for all i ∈M, we have

(D(z)h)T F ′(u(w))(D(z)h) = −(D(z)h)T [((1 + ε)I −D(z))h]

= −hT (1 + ε)D(z)h + hT D2(z)h =
m∑

i=1
(−1− ε + di)dih

2
i ≤ (−1− ε + dj)djh

2
j < 0,

which contradicts the fact that F ′(φ(w) is positive semidefinite. Hence D(z)h = 0. Also, it
follows from (27) that

(1 + ε)h = 0,
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which implies that h = 0 since ε ∈ R++. This shows that G′
z(w) is nonsingular. Therefore,

H ′(w) is nonsingular for any w = (ε, z) ∈ R++ × Rm.

Now, we propose a regularized smoothing Newton method for solving H(w) = 0. Given
ε̄ ∈ R++ and τ ∈ (0, 1) such that τ ε̄ < 1. Let w̄ := (ε̄, 0) ∈ R× Rm. Define the merit function
ψ : Rm+1 → R+ by

ψ(w) := ‖H(w)‖2

and define γ : Rm+1 → R+ by
γ(w) := τ min{1, ψ(w)}.

Let
V := {w = (ε, z) ∈ R× Rm| ε > γ(w) ε̄}.

Then, for any w ∈ Rm+1, γ(w) ≤ τ < 1. Thus for any z ∈ Rm, we have

(ε̄, z) ∈ V.

Next, we state our regularized smoothing Newton’s method as follows.

Algorithm 4.2 (A regularized smoothing Newton’s method)

Step 0. Give δ, τ ∈ (0, 1), σ ∈ (0, 1/2), and ε̄ ∈ R++ such that τ ε̄ < 1. Let w0 := (ε0, z0) with
ε0 := ε̄ and z0 ∈ Rm being arbitrary. Let w̄ := (ε̄, 0) and k := 0.

Step 1. If ‖H(wk)‖ = 0, then stop. Otherwise, let γk := γ(wk).

Step 2. Compute
∆wk := (∆εk,∆zk) ∈ R× Rm

by
H(wk) + H ′(wk)∆wk = γk(wk)w̄. (28)

Step 3. Let lk be the smallest nonnegative integer l such that

ψ(wk + δl∆wk) ≤ [1− 2σ(1− τ ε̄)δl]ψ(wk)

Step 4. Define
wk+1 := wk + δlk∆wk.

Then replace k by k + 1 and go to Step 1.

This algorithm is based on regularized/smoothing Newton’s method in [36, 37] for the
BVI/NCP. By Proposition 4.1, H(·) is continuously differentiable for any wk ∈ R++ × Rm,
and H ′(wk) is nonsingular for any wk ∈ R++×Rm. By following the similar proof of Lemma 5,
Propositions 5 and 6 in [37], we can obtain the following results for Algorithm 4.2.

Proposition 4.3 The followings are the properties of Algorithm 4.2.

(a) Algorithm 4.2 is well-defined.

(b) Algorithm 4.2 generates an infinite sequence {wk = (εk, zk)}.
(c) εk ∈ R++ and wk ∈ V for all k ≥ 0.
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5 Convergence Analysis

In this section, we shall establish the global and quadratic convergence of Algorithm 4.2. In
particular, we shall prove that Algorithm 4.2 generates an infinite sequence {wk} such that the
sequence {ψ(wk)} converges to zero, and the projection of any accumulation point on G is a
solution to the BVI (20) (i.e., Problem (17)). For any given ε ∈ R++, we define the merit
function θε(z) : Rm → R+ by

θε(z) := ‖G(ε, z)‖2. (29)

It is obvious that for any ε ∈ R++, θε(z) is continuously differentiable and

∇θε(z) = 2GT (ε, z)G′
z(ε, z),

where G′
z(ε, z) = F ′(φ(w))D(z)+ (1+ ε)I −D(z) and D(z) is given as in Proposition 4.1. From

the proof of a) of Proposition 4.1 we see that for any (ε, z) ∈ R++×Rm, G′
z(ε, z) is nonsingular.

We note that
θ0(z) = ‖E(z)‖2,

where E(z) is defined in (21) and for any w = (ε, z) ∈ R× Rm,

ψ(w) = ε2 + θε(z).

We note from Proposition 4.1 and Proposition 4.3 that, for every k ≥ 0, if εk ∈ R++ and
wk ∈ V, then H ′(wk) is nonsingular. Also, for any accumulation point w∗ = (ε∗, z∗) of {wk}, if
ε∗ ∈ R++ and w∗ ∈ V, then H ′(w∗) is nonsingular. Therefore, following the similar proof of [37,
Theorem 4], we can show the following result on Algorithm 4.2.

Lemma 5.1 Algorithm 4.2 generates an infinite sequence {wk} with limk→∞ ψ(wk) = 0 and
any accumulation point w∗ of {wk} is a solution of H(w) = 0.

We note that Lemma 5.1 only shows that any accumulation point of the sequence {wk},
if exists, is a solution of H(w) = 0. The following result ensures the existence of such an
accumulation point. Our result can be seen as a generalization of [22, Theorem 3.8] or [36,
Lemma 4.2].

Theorem 5.2 Suppose that ε̃1 and ε̃2 are given two positive numbers such that ε̃1 < ε̃2. Let
the level set L(w0) be defined by

L(w0) := {w = (ε, z) ∈ [ε̃1, ε̃2]× Rm : ψ(w) ≤ ψ(w0)}.
Then L(w0) is bounded.

Proof: For the sake of contradiction, suppose that there exists a sequence {wk = (εk, zk) ∈
R× Rm} such that

εk ∈ [ε̃1, ε̃2], ψ(wk) ≤ ψ(w0) and ‖wk‖ → ∞. (30)

Obviously, ‖zk‖ → ∞. Then, it is easy to show that

max{0, zk
i } → ∞ =⇒ zk

i → +∞ and |zk
i −max{0, zk

i }| → 0, i ∈M. (31)
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Notice that for any i ∈ M, φi(wk) defined in (22) is Lipschitz continuous with the Lipschitz
constant 1 [6] and satisfies

0 ≤ φi(wk)−max{0, zk
i } ≤ εk, i ∈M. (32)

By (31) and (32), it follows that for all sufficiently large k,

max{0, zk
i } → ∞ =⇒ |φi(wk)− zk

i | ≤ 2εk, i ∈M.

Define the index set J by J := {i|φi(wk) is unbounded, i ∈ M}. Then the set J is nonempty
because otherwise

‖G(wk)‖ = ‖F (φ(wk)) + (1 + εk)zk − φ(wk)‖ → ∞.

Let ŵk = (ε̂k, ẑk) ∈ R++ × Rm be defined by

ε̂k =
{

εk if i /∈ J ,
0 if i ∈ J ,

i ∈M

and

ẑk =
{

zk if i /∈ J ,
0 if i ∈ J ,

i ∈M.

Then

φi(ŵk) =
{

φi(wk) if i /∈ J ,
0 if i ∈ J ,

i ∈M.

Hence {‖φ(ŵk)‖} is bounded. By using the monotonicity of F over the set G, we get

0 ≤ (φ(wk)− φ(ŵk))T [F (φ(wk))− F (φ(ŵk))]

=
m∑

i=1
(φi(wk)− φi(ŵk))[Fi(φ(wk))− Fi(φ(ŵk))]

=
∑

i∈J φi(wk)[Fi(φ(wk))− Fi(φ(ŵk))]

(33)

Since {‖φ(ŵk)‖} is bounded and F is continuous, {‖F (φ(ŵk))‖} remains bounded. Since for any
i ∈ J , φi(wk) → +∞, (33) implies that, for any i ∈ J , Fi(φ(wk)) does not tend to −∞. This,
together with the boundedness of |φi(wk)− zk

i |, i ∈M, in turn implies that, for any i ∈ J ,

‖Gi(wk)‖ = ‖Fi(φ(wk)) + (1 + εk)zk
i − φi(wk)‖ → ∞

since εkzk
i → +∞. This contradicts (30) because ‖H(wk)‖ ≥ ‖G(wk)‖. This completes our

proof.

Corollary 5.3 For any ε ∈ R++, the function θε(z) defined in (29) is coercive, i.e.,

lim
‖z‖→∞

θε(z) = ∞.
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Assumption 5.4 The solution set S of (21) is nonempty1.

Remark 5.5 By [36, Lemma 4.1], Assumption 5.4 is equivalent to that the solution set of (20)
is nonempty.

To establish the global convergence, we need the following lemma.

Lemma 5.6 Let C ⊂ Rm be a compact set. Then, for any η > 0, there exists a scalar ε̃ ∈ R++

such that
|θε(z)− θ0(z)| ≤ η

for all z ∈ C and ε ∈ [0, ε̃].

Proof: It easily follows from the continuity of θε(z) on the compact set C×[0, ε̃] and the uniform
continuity of θε(z) there.

Now, we state the global convergence result for our algorithm.

Theorem 5.7 Suppose that Assumption 5.4 is satisfied. Then the infinite sequence {wk} gen-
erated by Algorithm 4.2 is bounded and any accumulation point w∗ of {wk} is a solution of
H(w) = 0.

Proof: From Lemma 5.1, it follows that there exists an infinite sequence {wk} generated by
Algorithm 4.2 such that

lim
k→∞

ψ(wk) = 0 (34)

and any accumulation point of {wk} is a solution of H(w) = 0. It remains to show the bound-
edness of {wk}. For the sake of contradiction, suppose that the sequence {wk} is unbounded.
Then, by taking the subsequence if necessary, we get ‖wk‖ → ∞. Since {εk} is bounded, there
exists a compact set C ⊂ Rm such that S ⊂ intC, where “int” denotes the topological interior of
a given set, and for all k large enough,

zk /∈ C. (35)

Let z̃ ∈ S be an arbitrary solution of (21). Then

θ0(z̃) = 0 and ψ(w̃) = 0, w̃ := (0, z̃).

Notice that
c̃ := min

z∈∂C
θ0(z) > 0.

By Lemma 5.6, for η = c̃/3, we have that, for sufficiently large k ≥ 0,

θεk(z̃) ≤ 1
3
c̃ and θεk(z) ≥ 2

3
c̃. (36)

Also, (34) implies that
εk → 0 and θεk(zk) → 0 as k →∞

1This implies that the solution set S of (21) is nonempty and bounded since the function F is monotone over
G, see for instance [32].
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and so, for sufficiently large k ≥ 0,

θεk(zk) ≤ 1
3
c̃. (37)

Now, let an index k be fixed such that (35)-(37) hold. By using the well-known Mountain Pass
Theorem (see for instance [16, Theorem 5.3]), there exists a point ẑ ∈ Rm such that

∇θεk(ẑ) = 0 and θεk(ẑ) ≥ 2
3
c̃ > 0.

This means that the stationary point ẑ of θεk is not a global minimizer of θεk . This contradiction
shows that {wk} is bounded.

In the following, we establish the quadratic convergence of Algorithm 4.2. For this purpose,
we need the definition of semismoothness. Semismoothness was originally introduced by Mifflin
[33] for functionals and was extend to vector valued functions by Qi and Sun [38].

Definition 5.8 Suppose that Ψ : Rn1 → Rn2 is a locally Lipschitzian function and has a gener-
alized Jacobian ∂Ψ in the sense of Clarke [12]. Then

1) Ψ is said to be semismooth at x ∈ Rn1 if

lim
V ∈∂Ψ(x+th′)

h′→h,t↓0
{V h′}

exists for any h ∈ Rn1.

2) Ψ is said to be strongly semismooth at x if Ψ is semismooth at x and for any V ∈ ∂Ψ(x +
th), h → 0, it follows that

Ψ(x + h)−Ψ(x)− V h = O(‖h‖2).

We note that the function ϕ(·) defined in (23) is strongly semismooth for any (a, b) ∈ R2.
Then the function H defined by (25) is strongly semismooth everywhere [18]. By the strong
semismoothness of H, we have the following theorem on the quadratic convergence for Algorithm
4.2. Since the proof is similar as in [37, Theorem 8], we omit it here.

Theorem 5.9 Suppose that w∗ is an accumulation point of the sequence {wk} generated by
Algorithm 4.2. If all V ∈ ∂H(w∗) are nonsingular, then the sequence {wk} converges to w∗ with

‖wk+1 − w∗‖ = O(‖wk − w∗‖2) and εk+1 = O
(
(εk)2

)
.

Theorem 5.9 shows that Algorithm 4.2 is quadratically convergent under the nonsingularity
assumption of ∂H(w∗). We now discuss the nonsingularity of ∂H(w∗). For convenience, we
define three index associated with the solution w∗ = (ε∗, z∗) as follows:

I = {i : z∗i > 0}, J = {i : z∗i = 0 = [F (ΠG(z∗))]i}, K = {i : [F (ΠG(z∗))]i > 0}.
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The BVI (20) is said to be R-regular at z∗ if ∇FII(ΠG(z∗)) is nonsingular and the Schur
complement of ∇FII(ΠG(z∗)) in

[ ∇FII(ΠG(z∗)) ∇FIJ (ΠG(z∗))
∇FJI(ΠG(z∗)) ∇FJJ (ΠG(z∗))

]

is a P -matrix, i.e., all its principal minors are positive, see for instance [17].
Before discussing the nosningularity of any element in ∂H(w∗), we provide the estimate on

∂H(·) at the solution w∗ = (ε∗, z∗).

Proposition 5.10

∂H(w∗) ⊆
[

1 0
U(ε∗) U(z∗)

]
and U := (U(ε∗), U(z∗)) ∈ ∂G(w∗).

Here
U(ε∗) ∈ Rm and U(z∗) ∈ Rm×m

with
U(z∗) ⊆ ∇F (φ(ε∗, z∗)) D(z∗) + (1 + ε∗)I −D(z∗),

where D(z∗) := diag(di(z∗), i ∈M) with




di(z∗) = 1 if i ∈ I
di(z∗) ∈ [0, 1] if i ∈ J
di(z∗) = 0 if i ∈ K

.

Proof: The proof is similar to that of [17, Proposition 3.1].

Based on Proposition 5.10 and the R-regularity assumption of the solution z∗, we can show
the nonsingularity of all the elements in ∂H(w∗) in a way similar to that in [37, Proposition 9]
or [17, Proposition 3.2] .

Theorem 5.11 Suppose that
w∗ := (ε∗, z∗) ∈ R× Rm

is a solution of H(w) = 0. If the BVI (20) is R-regular at z∗, then all the matrices V ∈ ∂H(w∗)
are nonsingular.

6 Numerical Results

In this section, we report the numerical performance of Algorithm 4.2 for solving the TriIQEP
(16). All the numerical tests were done using MATLAB 7.0. As in [1], we set the measurement
noise level to be r = 0.08. An upper bound estimate for the noise parameter δn is given in terms
of the measured model data

δn = r(‖MoXΛ2‖+ ‖CoXΛ‖+ ‖KoX‖)
Throughout the numerical experiments, we set ε̄ = 0.1 and choose the starting point (SP.) as
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i) ε0 = ε̄, y0 = (0, . . . , 0)T ∈ R4n−2, ξ0 = 0 ∈ R, ζ0 = (0, . . . , 0)T ∈ R2n;

ii) ε0 = ε̄, y0 = (1, . . . , 1)T ∈ R4n−2, ξ0 = 1 ∈ R, ζ0 = (1, . . . , 1)T ∈ R2n.

The other parameters used in the algorithm are as follows:

δ = 0.5, σ = 0.5× 10−4, τ = 0.2×min(1, 1/ε̄).

The stopping criterion is set to be
‖H(wk)‖ ≤ 10−6

where the function H is defined in (25). To demonstrate the numerical performance of Algorithm
4.2, we solve the linear system (28) iteratively2. From Proposition (4.1), we observe that, in
general, the matrix H ′(wk) in Algorithm 4.2 is square and nonsingular but not necessarily
symmetric. Thus we can solve (28) by the iterative methods such as the QMR [19], the GMRES
[42], the BICG [48], and the CGS [44] methods. For simplicity of demonstration, we solve (28)
by the QMR method using the MATLAB-provided QMR function with the default tolerance.

Example 6.1 Suppose that the parameters {ao
i }n

1 , {bo
i }n

2 , {co
i }n

1 , and {do
i }n

2 are generated ran-
domly for different values of n and that the measured noisy eigendata (Λ, X) ∈ Rp×p × Rn×p is
also generated randomly for different values of p.

Our numerical results are given in Tables 1 and 2, where IT., NF., and VAL. stand for the
number of iterations, the number of function evaluations, and the value of ‖H(·)‖ at the final
iterate of our algorithm (the largest number of iterations in QMR is set to be max(2000, 6n)),
respectively. The numerical results in Tables 1 and 2 show that our proposed algorithm is very
efficient for solving the TriIQEP.

p = 15, s = 3
SP. n IT. NF. VAL.
i) 50 13 19 9.0× 10−13

100 13 19 6.5× 10−11

200 13 19 5.9× 10−10

300 13 18 5.2× 10−9

400 13 19 1.4× 10−8

500 13 20 4.6× 10−8

ii) 50 12 16 9.9× 10−9

100 13 19 7.4× 10−11

200 13 18 7.4× 10−10

300 13 19 5.6× 10−9

400 13 18 2.2× 10−8

500 13 18 6.1× 10−8

Table 1: Numerical results for Example 6.1

2As an anonymous referee pointed out, unless the dimension of the problem is very large (say, far beyond one
thousand), the linear system (28) should be solved by the direct methods since it is quite sparse.
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n = 100
SP. p s IT. NF. VAL.
i) 10 3 13 20 3.0× 10−11

20 6 13 18 1.4× 10−11

30 9 13 20 6.0× 10−11

40 12 14 22 2.5× 10−12

50 15 14 23 1.8× 10−11

ii) 10 3 12 15 4.1× 10−11

20 6 13 19 2.1× 10−11

30 9 13 19 1.8× 10−11

40 12 13 19 2.5× 10−11

50 15 13 19 1.3× 10−11

Table 2: Numerical results for Example 6.1

Example 6.2 In this example, we consider an engineering application as in [39]. The vibrations
of a simple connected, damped mass-spring system with masses of unit weight are governed by

Iü(t) + Cu̇(t) + Ku(t) = 0

with {
C = Pdiag(0, e1, e2, . . . , en−1)P T + diag(π1, π2, . . . , πn),
K = Pdiag(0, f1, f2, . . . , fn−1)P T + diag(κ1, κ2, . . . , κn),

where P = [δij−δi+1,j ] with δij the Kronecker delta. In consideration of physical realizability, all
the damping and stiffness constants {ei}n−1

1 , {πi}n
1 , {fi}n−1

1 , and {κi}n
1 should be positive. This

requires that the damping and stiffness matrices (i.e., C and K) are weakly diagonally dominant
and have positive diagonal entries and negative off-diagonal entries.

We first randomly generate the parameters {eo
i }n−1

1 , {πo
i }n

1 , {fo
i }n−1

1 , and {κo
i }n

1 with n = 5
by 




{eo
i }4

1 = {1.9010, 1.7347, 1.8652, 2.7087},
{πo

i }5
1 = {2.3015, 2.5923, 2.2725, 3.2452, 3.3226},

{fo
i }4

1 = {4.6148, 7.8653, 7.1597, 3.8038},
{κo

i }5
1 = {9.5716, 7.9270, 4.6954, 5.5770, 9.3244}.

The corresponding quadratic pencil Q(λ) := λ2I + λCo + Ko has 2 real eigenvalues and 4 pairs
of complex conjugate eigenvalues:





−7.3094
−2.5927
−4.1460± 3.2582ı,
−2.7996± 2.8901ı,
−1.6421± 2.8652ı,
−1.5378± 2.3032ı,

23



and the associated eigenvectors are given by



0.0011 0.0006 −0.0424∓ 0.0541ı −0.1076∓ 0.0401ı −0.1038∓ 0.1811ı 0.0418∓ 0.0949ı
−0.0044 −0.0197 0.1061± 0.0834ı 0.0725± 0.0575ı −0.0878∓ 0.0778ı −0.0344∓ 0.1152ı

0.0240 −0.0641 −0.0882∓ 0.0476ı 0.1029± 0.1062ı −0.0855± 0.0314ı −0.1003∓ 0.1502ı
−0.1086 −0.2809 −0.0063± 0.0249ı −0.0105∓ 0.0540ı −0.0119± 0.0975ı −0.1357∓ 0.1143ı

0.0773 0.2147 0.0326± 0.0001ı −0.0921∓ 0.0554ı 0.0073∓ 0.0930ı −0.1014∓ 0.1256ı


 .

We now perturb randomly the eigenvectors corresponding the real eigenvalue −2.5927 and
the pair of complex conjugate eigenvalues −1.5378± 2.3032ı and use the perturbed eigendata as
the measured noisy data {(λi, xi)}3

i=1 , where

λ1 = −2.5927, x1 =




−0.0519
−0.0106
−0.0346
−0.2307

0.2715




, λ2,3 = −1.5378± 2.3032ı, x2,3 =




−0.0157∓ 0.0713ı
−0.0467∓ 0.1616ı
−0.1312∓ 0.1142ı
−0.0950∓ 0.0701ı
−0.1448∓ 0.1823ı




.

We then use Algorithm 4.2 with any one of the prescribed starting points to reconstruct the
physical model. We find a physically realizable solution for the TriIQEP, which is determined
by the parameters as follows:





{ei}4
1 = {1.7823, 1.8607, 1.6389, 2.6919},

{πi}5
1 = {2.5823, 2.3289, 2.5823, 3.5158, 3.2211},

{fi}4
1 = {4.6364, 7.8503, 7.0908, 3.6905},

{κi}5
1 = {9.5229, 7.8932, 4.7126, 5.8491, 9.2809}.

In the following, let the estimated analytic parameters {eo
i }n−1

1 , {πo
i }n

1 , {fo
i }n−1

1 , and {κo
i }n

1

and the noisy eigendata {(λi, xi)}p
i=1 be generated randomly. Tables 3 and 4 list the numerical

results for various values of n and p. It is seen that our method still performs efficiently as
expected.

7 Concluding Remarks

In this paper we focus on the inverse eigenvalue problem for the symmetric tridiagonal monic
quadratic pencil Q(λ) := λ2I + λC + K. We first discuss the solvability of the inverse problem
from the self-conjugate set of prescribed four eigenpairs. The solvability conditions are pre-
sented. In many practical applications, both the matrices C and K should be weakly diagonally
dominant and have positive diagonal elements and negative off-diagonal elements. Thus, it is
difficult to find the condition on the eigendata to ensure the existence of an exact physical solu-
tion [39]. However, it is well-known that the eigendata is, in general, measured from the physical
structure and inevitably corrupted by noise [1, 21]. To preserve the structural connectivity and
overcome the erroneous estimate of C and K, Our problem is reformulated as a constrained
optimization problem which is then transformed into a new BVI. An important advantage of
the BVI is its monotonicity as shown. We propose a regularized smoothing Newton method for
solving the monotone BVI. The global and quadratic convergence is established under some mild
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p = 15, s = 3
SP. n IT. NF. VAL.
i) 50 10 16 7.8× 10−13

100 9 10 2.1× 10−12

200 10 16 2.0× 10−11

300 10 15 5.3× 10−10

400 8 9 1.4× 10−9

500 9 11 4.0× 10−9

ii) 50 11 17 1.6× 10−9

100 12 21 3.7× 10−12

200 12 21 1.2× 10−10

300 11 18 5.2× 10−7

400 11 18 3.0× 10−9

500 11 17 6.2× 10−7

Table 3: Numerical results for Example 6.2

n = 100
SP. p s IT. NF. VAL.
i) 10 3 8 9 5.3× 10−12

20 6 9 11 3.5× 10−12

30 9 9 11 1.2× 10−11

40 12 9 12 6.6× 10−12

50 15 9 12 7.1× 10−12

ii) 10 3 9 10 4.9× 10−12

20 6 11 19 1.5× 10−8

30 9 10 13 1.2× 10−11

40 12 12 22 7.0× 10−12

50 15 12 21 7.3× 10−12

Table 4: Numerical results for Example 6.2

assumptions, which essentially require the existence of a solution of the BVI, see Assumption
5.4. We demonstrate the efficiency of our algorithm by some numerical tests and a practical
engineering application in vibrations.

An interesting problem is whether our method can be extended to other structured IQEPs,
which arise in many applications. This needs further study.

Acknowledgments We are very grateful to the two anonymous referees for their valuable
comments on the paper, which have considerably improved the paper.
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