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Influence of hydrothermal synthesis temperature on the structures
of two 3D coordination polymers
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Abstract

Two 3D coordination polymers [Zn(l4-dmbdc)]n, 1 and [Zn5(l3-OH)4(l5-dmbdc)2(l4-dmbdc)]n, 2 (H2dmbdc = 2,5-dimethylbenzen-
edicarboxylic acid) have been prepared by hydrothermal syntheses with temperature as the only variable. The structure feature is the
presence of monoatomic coordination bridges, i.e. l3-OH and l2-O (from l3-COO� of l5-dmbdc) in 2 synthesized at higher temperature.
The coordination number of zinc ion and the bridging number of the carboxyl group increase with the increasing synthesis temperature,
resulting in the formation of the more stable and condensed phase.
� 2007 Elsevier B.V. All rights reserved.
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There is an extensive interest in the design and synthe-
sis of functional inorganic/organic hybrid materials owing
to their intriguing topologies and applications [1–19].
Hydrothermal synthesis is widely used in the preparation
of such materials [6–19]. However, the control over the
structures of the products in hydrothermal reactions is
still a challenge. We and others have synthesized coordi-
nation polymers by hydrothermal reactions and found
that temperature is a vital factor in determining the struc-
tures. The carboxyl groups of the benzene polycarboxy-
late ligands tend to combine more metal ions at
elevated synthesis temperature, and the metal ions
undergo hydrolysis during the reactions [12–19]. However,
to the best of our knowledge, systematic studies on the
role of hydrothermal synthesis temperature are rare [6–
10]. Here, we report two 3D coordination polymers
[Zn(l4-dmbdc)]n, 1 and [Zn5(l3-OH)4(l5-dmbdc)2(l4-
dmbdc)]n, 2 (H2dmbdc = 2,5-dimethylbenzenedicarboxylic
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acid) prepared by hydrothermal syntheses with tempera-
ture as the only variable.

In the structure of 1 prepared at the temperature below
150 �C [20,21], zinc ion is in slightly distorted tetrahedral
coordination environment, being coordinated by four oxy-
gen atoms from four l4-dmbdc ligands. Each l4-dmbdc
connects four zinc ions with both of its two carboxyl
groups in syn–anti bridging mode [22]. The discrete ZnO4

polyhedron is bridged by two pairs of l2 carboxyl groups
to two adjacent polyhedra to form a chain along c-axis
(Fig. 1a). The ZnO4 chain is further connected to four adja-
cent chains by l4-dmbdc to form the 3D structure of 1

(Fig. 1b).
While prepared at the temperature higher than 170 �C,

the structure of 2 is definitely different from that of 1.
The structure of 2 contains three crystallographically
independent Zn2+ ions (Fig. 2): Zn1 is in slightly dis-
torted octahedral coordination environment, being coor-
dinated by two l3-OH and four carboxyl oxygen
atoms; Zn2 is also in slightly distorted octahedral envi-
ronment, being coordinated by four l3-OH and two car-
boxyl oxygen atoms; Zn3 is in distorted tetrahedral
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Fig. 1. (a) Polyhedron representation of the ZnO4 chain bridged by
carboxyls in 1. (b) A perspective view of the 3D structure of 1 along c-axis
(hydrogen atoms are omitted for clarity).

Fig. 3. (a) Polyhedron representation of ZnO6, ZnO4 combined chain in 2.
(b) A perspective view of the 3D structure of 2 along a-axis (hydrogen
atoms are omitted for clarity).
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environment, being coordinated by two l3-OH and two
carboxyl oxygen atoms. The ZnO6 octahedra and ZnO4

tetrahedra are joined together by l3-OH, l3-COO� and
l2-COO� to form a combined edge-sharing or corner-
sharing ZnOn chain extending along the a-axis
(Fig. 3a). The ZnOn chain is further connected to six
adjacent chains to form the 3D structure of 2 (Fig. 3b).

X-ray powder diffraction measurements show that pure
phases of 1 or 2 are obtained, respectively, with the same
starting reaction mixture by changing only the hydrother-
mal synthesis temperature from 150 to 170 �C (Fig. 4).
The structures of 1 and 2 are obviously determined by
the synthesis temperature. The most significant change
in the structure features is the presence of monoatomic
coordination bridges, i.e. l3-OH and l2-O (from l3-COO�

of l5-dmbdc) in 2 synthesized at higher temperature. Con-
Fig. 2. ORTEP plot showing the coordination environments of zinc ions in 2. (
y � 1/2,�z + 3/2; (b)�x + 1,�y + 1,�z + 1; (c)�x,�y + 1,�z + 1; (d) x � 1
(h) �x, y + 1/2, �z + 3/2.
sequently, the average coordination numbers of zinc ions
increase from 4 to 5.33, and the average bridging numbers
of COO� also increase from 2 to 2.33. As a result, 2, the
more stable and condensed phase is formed with the num-
bers of Zn2+/103 Å3 increasing from 4.08 to 6.00, and the
densities increasing from 1.745 to 1.935 g/cm3 (Table 1).

In summary, we have successfully synthesized two 3 D
coordination polymers [Zn(l4-dmbdc)]n, 1 and [Zn5(l3-
OH)4(l5-dmbdc)2(l4-dmbdc)]n, 2 at different hydrothermal
synthesis temperatures. At higher temperature, mono-
atomic coordination bridges such as l3-OH and l3-COO�
C–H hydrogen atoms are omitted for clarity). Symmetry codes: (a) �x + 1,
, y, z; (e)�x, y � 1/2,�z + 3/2; (f) x + 1, y, z; (g)�x + 1, y + 1/2,�z + 3/2;



Fig. 4. Experimental and simulated X-ray powder diffraction patterns for
1 (a) and 2 (b).

Table 1
Data for the structure features of 1 and 2

Coordination polymer Synthesis
temperature

Monoatomic
bridge

Coordination
number/Zn2+

Zn2+/COO� Zn2+/
103 Å3

Dcalcd

(g/cm3)

1, [Zn(l4-dmbdc)]n 150 �C 0 4 2 4.08 1.745
2, [Zn5(l3-OH)4(l5-dmbdc)2(l4-dmbdc)]n 170 �C 6 6, 6, 4 3, 2, 2 6.00 1.935
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combine metal ions and result in the increase of coordina-
tion number of metal ions and COO� and the formation of
the more condensed phase.
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[22] Selected bond lengths (Å) and angles (�) for 1: Zn–O 1.927(3), 1.942(3),
O–Zn–O: 99.33(17), 109.71(13), 117.73(11), 103.37(18). 2: Zn1–O1
2.124(1), Zn1–O6 2.055(2), Zn1–O7 2.058(1), Zn1–O8 2.036(1), Zn1–
O1b 2.170(1), Zn1–O3a 2.056(1), Zn2–O7 2.073(1), Zn2–O2b 2.140(1),
Zn2–O8b 2.130(1), Zn3–O5 1.922(2), Zn3–O7 1.967(1), Zn3–O4e
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