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Endohedral metallofullerenes (EMFs) with a trapped cluster size larger than four are rather

scarce. Inspired by a recent experimental observation, we explored the possibility of encapsulating

an unusual Sc3NC unit in three representative fullerene cages, namely, C68, C78 and C80, by

means of density functional computations. The geometries, electronic and electrochemical redox

properties of the corresponding EMFs, Sc3NC@C2n (2n = 68, 78 and 80), were investigated.

These novel EMFs all have very favorable binding energies, implying a considerable possibility

for experimental realization. The recently observed m/z = 1121 peak in the mass spectroscopy

was characterized as Sc3NC@C80. Notably the lowest-energy isomer of Sc3NC@C78 has a

non-IPR C78 outer cage, the possibility to accommodate five atoms inside a fullerene as small as

C68 is also intriguing. Moreover, the intracluster and metal-cage covalent interactions were revealed

by a quantum theory of atoms in molecules study. Infrared absorption spectra and 13C nuclear

magnetic resonance spectra were also computed to assist future experimental characterization.

1. Introduction

Endohedral metallofullerenes (EMFs) are novel materials

enclosing metal atoms or metal-containing clusters in fullerene

cages.1 A unique feature of EMFs is the existence of substantial

charge transfer from the encased species to the outer frame-

works. The transferred electrons will not only change the

electronic properties of fullerenes, but also, more significantly,

can stabilize the otherwise unstable fullerene cages. Some

such examples are Sc2@C66,
2 Sc3N@C68,

3 Sc2C2@C68,
4

Sc3N@C70,
5 La@C72,

6 La2@C72,
7 Ce2@C72,

8 DySc2N@C76,
9

Dy3N@C78(II),
10 Gd3N@C82,

11 M3N@C84 (M = Tb,12 Tm

and Gd13), in which carbon frameworks violate the well-known

isolated pentagon rule (IPR)14 themselves and thus have not

been observed as empty-cage fullerenes in the experiments.

The EMF family was considerably enriched since the

discovery of trimetallic nitride template (TNT) EMFs, as

exemplified by Sc3N@C80 in 1999.15 Since then, a large

number of homogeneous metal nitride clusterfullerenes

(NCFs) such as Sc3N@C68,
3 Sc3N@C70,

5 Sc3N@C78,
16

Gd3N@C2n (2n = 80–88),17 Dy3N@C2n (2n = 78–88),18

Tm3N@C2n (2n = 76–88)19 or mixed metal NCFs such as

MSc2N@C80 (M = Y, Ce, Gd, Tb, Er),20–27 DySc2N@C76
9

and Lu2ScN@C68
28 have been synthesized, characterized or

isolated. So far, all cages with even carbon atoms ranging from

C68 to C98 (with the ‘‘missing’’ C72 and C74) can form

endohedral nitride cluster structures.1f The TNT EMFs have

become the largest member of the endohedral fullerene family

containing non-IPR cages.

In the meantime, metal-carbide EMFs were also studied

extensively from the first scandium-carbide metallofullerene,

Sc2C2@C84.
29 During the recent years, several of this kind of

compounds such as Sc2C2@C68,
4 Sc3C2@C80,

30 Sc4C2@C80,
31

Sc2C2@C82,
32 Y2C2@C82

33 and Ti2C2@C78
34 have been

reported. Other intriguing EMFs include the first non-scandium

mixed metal NCF, LuxY3�xN@C80 (I) (x = 1, 2),35

triple-metal-mixed NCF ScYErN@C80,
36 scandium oxide

clusterfullerene Sc4(m3-O)2@C80,
37 and the first hydrocarbon-

containing EMF Sc3CH@C80.
38 All these promise an exciting

future for fullerene chemistry.

In a recent study, Dorn et al. detected a peak with a

mass-to-charge ratio of 1121 in the mass spectrum.39 Chemical

intuition tells us that very likely it is Sc3NC@C80 containing a

NC unit (electronic state (Sc3+)3(NC)3�@C80
6�), which is

isoelectronic to the stable monoanion of Sc3C2@C80.
30 With

an otherwise unstable Sc3NC cluster trapped inside, this would

be a totally new type of EMF. However, some basic questions

regarding this novel EMF are still pending: What is the

structure of the observed m/z = 1121 peak? Is it Sc3NC@C80

as we intuitively guess? If yes, what is the charge state of the

trapped NC unit? Can other carbon cages with a size smaller

than 80 (such as C68 and C78) encapsulate the Sc3NC cluster

too? How about their intracluster bonding natures as well as

cluster-cage ones? How about their electronic and redox

properties? In this work, we performed detailed density

functional theory (DFT) computations to address these issues.
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2. Computational methods

Full geometry optimizations with symmetry constraints were

carried out using the PBE functional40 with a double

numerical plus polarization (DNP) basis set without frozen

core. Several different locations and orientations of the

endohedral Sc3NC clusters inside the fullerene cages were

considered to survey the potential energy surface of the EMFs

under investigation. Harmonic frequency analyses, at the same

theoretical level, were performed to characterize the nature of

the obtained stationary points. When a saddle point was

found, the mode following from the first imaginary frequency

was employed to locate the local minimum. All the reported

structures in this work are true local minima. The computed

vibrational spectra using such a scheme well reproduced the

experimentally measured data of various EMFs, 1f,g which

validates the reliability of our computational methods.

Electron affinities and ionization potentials were computed

at the PBE/DNP theoretical level for the lowest-energy

isomers.

To evaluate the feasibility for the experimental realization of

Sc3NC@C2n (2n = 68, 78 and 80), we computed their binding

energies (Eb). Eb is defined as the difference between the total

energy of an endofullerene and the sum of the total energies of

the separated ground-state C2n cage and encapsulated cluster

(i.e., Eb = [Etot(C2n) + Etot(M)] � Etot(M@C2n)).

The geometries were further reoptimized at the B3LYP/

6-31G* theoretical level for the 13C NMR computations, by

using the Gaussian 03 package.41 A gauge-independent atomic

orbital method42 was employed to compute the NMR spectra,

in which the chemical shifts were first evaluated relative to

C60, then were referenced to the tetramethylsilane (TMS)

(d (C60) 143.15 ppm vs. TMS).43

To gain more insight into the nature of intracluster inter-

actions as well as those between the inner clusters and the

cages, we performed a quantum theory of atoms in molecules

(QTAIM) study on the above B3LYP/6-31G* geometries and

wavefunctions using AIM2000 software.44

To derive theoretically their electrochemical redox

potentials, we computed the geometries and total energies of

[Sc3NC@C2n]
q (q = 0, �1, �2) in 1, 2-dichlorobenzene

(ODCB) solvent (dielectric constant 10.12). To describe

solvent effects, the conductor-like screening model (COSMO)45

was employed. For a given redox reaction in solvent, reduced

form (solvent) - oxidized form (solvent) + e, the computed

redox potential E0 is defined by the equation

E0 = DG � 4.98

in which DG is the free energy change of the reaction and is

approximated by the total electronic energy change of the

reaction, and �4.98 (unit: eV) is the free energy change

associated with the reference ferrocene/ferrocenium (Fc/Fc+)

redox couple.46 The first two reduction and the first two

oxidation potentials of Sc3NC@C2n in ODCB can thus be

derived.

Dmol3 code, if not mentioned otherwise, was employed for

all DFT computations.47 The 3D molecular orbitals were

visualized with the aid of gOpenmol program.48

3. Results and discussion

3.1 Geometries and electronic structures

Sc3NC@C80. Up to now, most of the reported cluster-

fullerenes are based on C80 fullerene. Due to the closed-shell

electronic configuration as well as large highest occupied

molecular orbital and lowest unoccupied molecular orbital

gap (HOMO–LUMO) of its hexaanion,49 the IPR C80 cage

(Ih: 31924) has a remarkable stability and is thus employed

here to encase the Sc3NC cluster. Various possible isomers

were explored by placing the Sc3NC cluster at different

locations and with different orientations within the cage

(see ESI,w only coordinates of local minima are listed). An

isomer with C2v symmetry (Fig. 1a, Table 1) is energetically

the most favorable and thus has the ground-state structure.

The five atoms of the Sc3NC cluster within the C80 cage form a

perfect plane with the inner C atom locating at the center of

the Sc3 plane, which is in strong contrast to Sc3N@C80 in

which N is situated at the Sc3 plane center. Detailed analyses

of its Kohn–Sham molecular orbitals reveal that a valence

state of (Sc3+)3(NC)3�@C80
6� can be assigned to the

Sc3NC@C80. One of the Sc3+ cations is close to one hexagon

passing through the C2 axis of the cage, while each of the other

two cations resides near one 5–6 bond (bond shared by

pentagon and hexagon). The nearest Sc–C distance (RSc–C),

Sc–N distance (RSc–N) of the Sc3NC moiety and the nearest

Sc-cage separation are 2.08, 2.10 and 2.22 Å, respectively.

Thus, the covalent interaction between the Sc3+ ions and the

NC unit is stronger than that between the Sc3+ cations and the

C80
6� cage (see next section for detailed bonding analysis).

The computed N–C bond length (RN–C) of the trapped Sc3NC

unit is 1.27 Å, suggesting the formation of a NQC double

bond with an electronic state of (NQC)3�.

Theoretically there is another possible structure,

Sc3C2@C79N, corresponding to the mass experiment signal

of 1121. However, among the several different isomers we

searched, the lowest-energy configuration of Sc3C2@C79N is

more than 50 kcal mol�1 higher in energy than the above

C2v Sc3NC@C80 (Fig. 2, ESIw).

Sc3NC@C78. C78 cage can encapsulate several four-atom

clusters, such as Sc3N
16 and Ti2C2.

34 The IPR C78 (D3h: 24 109)

isomer is not only the parent cage of Sc3N@C78, but also

energetically the most stable isomer of C78 hexaanion.10,16

However, when encapsulating larger clusters such as Y3N and

Lu3N, the EMFs based on the non-IPR isomer (C2: 22 010,

two adjacent pentagon pairs (APPs)) are energetically the

most favorable.10 To search stable isomers of Sc3NC@C78,

we considered several isomers using both of the two fullerene

cages and followed the same computational procedure as that

of Sc3NC@C80. After optimization, a C2 symmetrical isomer

with the C2: 22 010 cage holds the lowest energy (Fig. 1b,

Table 1). In comparison, the isomers based on the D3h: 24 109

cage are all higher in energy (>6 kcal mol�1) due to the

unsuitable cavity. Note that many similarities are found between

Sc3NC@C78 and Sc3NC@C80. First, the electron configuration

of the former, namely, (Sc3+)3(NC)3�@C78
6�, resembles that of

the latter. Second, the inner C atom also locates at the planar Sc3
cluster center with the whole Sc3NC moiety exhibiting a T shape.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 12442–12449 | 12443
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One Sc3+ cation locates near the top hexagon, while the other

two are situated near the two APPs. Last, the RSc–C and RSc–N of

the Sc3NC moiety are 2.06 and 2.08 Å, respectively, also shorter

than the RSc-cage (2.26 Å). The RN–C of the Sc3NC unit is 1.24 Å.

Thus, same valence state and double bond type as that of

Sc3NC@C80 can be also assigned to this NC unit.

Sc3NC@C68. Thus far several metal-containing clusters,

such as Sc3N,3 DySc2N, LuSc2N, Lu2ScN,28 have been

trapped by non-IPR C68 (D3: 6140) cage. For the inner moiety,

an atom number larger than four has never been reported,

which is apparently due to the limited cavity of the carbon

cage. Since its hexaanion is energetically the most favorable49

and has been proven to be the outer framework of the famous

Sc3N@C68,
3 the non-IPR C68 (D3: 6140) cage was chosen as

the parent fullerene in this work. The C2v: 6073 cage isomer

was also considered to trap the Sc3NC cluster, since its

hexaanion is almost isoenergetic to that of the D3: 6140.
49

However, the computed Sc3N@C68 isomers based on the

C2v: 6073 outer cage are all energetically unfavorable

(by at least 68.9 kcal mol�1, see ESI).w
The non-IPR C68 (D3: 6140) cage has three isolated APPs. A

C2 isomer has the lowest relative energy and is the ground-

state structure of Sc3NC@C68 (Fig. 1c). In the lowest-energy

isomer, the Sc3NC cluster inside the C68 cavity is perfectly

planar with the inner C atom sitting at the center of the Sc3
plane. Each Sc3+ cation coordinates to one APP. Clearly, this

pattern is thermodynamically more stable, since the charges

transferred from the metal cluster to the APPs formally

convert the 8p antiaromatic pentalenes into 10p aromatic

pentalene dianions.50 The RSc–C and RSc–N of the Sc3NC

moiety are 2.05 and 1.95 Å, respectively, which are much

shorter than the RSc-cage (2.21 Å) (Table 1). The computed

RN–C of the trapped Sc3NC unit is 1.26 Å. Thus, similar to the

above two cases, a valence state of (Sc3+)3(NC)3�@C68
6� can

be assigned to Sc3NC@C68.

Note that the isolated planar (Sc3NC)6+ cluster is not a

local minimum according to our computation and thus can

not exist by itself. Apparently, the interactions between the

Sc3NC moiety and the carbon frameworks simultaneously

stabilize both the otherwise unstable five-atom cluster and

the non-IPR cages. Moreover, for the above structures, the

trapped Sc3NC units are all planar. Initially we also

considered structures trapping trifoliate Sc3NC cluster, as in

the case of Sc3C2@C80.
30b Interestingly, either the corres-

ponding isomers are energetically unfavorable or the inner

clusters turn to planar, after full optimizations. Moreover, all

initial isomers with N atom instead of C atom residing at the

center of the Sc3 plane are all energetically unfavorable

(see ESI).w
Further, the three ground-state structures all have very

favorable binding energies (786.1 (717.7), 804.1 (742.2) and

817.2 (756.2) kcal mol�1 for Sc3NC@C68, Sc3NC@C78 and

Sc3NC@C80, respectively) at the PBE/DNP (B3LYP/6-31G*)

theoretical level. These predicted binding energies reveal that

encapsulating Sc3NC cluster into fullerene cages is highly

exothermic, which in turn shows that both the carbon cage

and the encapsulated moiety are significantly stabilized in the

endohedral form, and suggest a remarkable possibility to

experimentally realize these EMFs. However, note that the

binding energies (or encapsulation energies) are only used to

theoretically evaluate the stabilities of EMFs, while in the

experiments EMFs are typically generated by the high-

temperature arc discharge method in which the encapsulated

cluster is encaged during the formation process, not through

the encapsulation process.

Table 1 Computed geometric parameters (Å) and HOMO–LUMO
gap energies (eV) of the three lowest-energy Sc3NC@C2n (2n = 68, 78
and 80) isomers at the PBE/DNP level of theorya

Species Symmetry RSc–C RSc–N RN–C RSc-cage Gap

Sc3NC@C80 C2v 2.08 2.10 1.27 2.22 1.13 (2.29)
Sc3NC@C78 C2 2.06 2.08 1.24 2.26 1.23 (2.23)
Sc3NC@C68 C2 2.05 1.95 1.26 2.21 1.24 (2.12)

a B3LYP/6-31G* computed gap energies are listed in parentheses for

reference.

Fig. 2 The lowest-energy Sc3C2@C79N (C1) isomer (two views)

optimized at the PBE/DNP level of theory.

Fig. 1 (a) Sc3NC@C80 (C2v), (b) Sc3NC@C78 (C2) and (c) Sc3NC@C68

(C2) isomers optimized at the PBE/DNP level of theory. The APPs are

highlighted in red, Sc atoms in orange and N atoms in blue.

12444 | Phys. Chem. Chem. Phys., 2010, 12, 12442–12449 This journal is �c the Owner Societies 2010
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In addition, all these three EMFs have sizable HOMO–

LUMO gap energies (1.24 (2.12) eV for Sc3NC@C68, 1.23

(2.23) eV for Sc3NC@C78, and 1.13 (2.29) eV for Sc3NC@C80,

respectively) at the PBE/DNP (B3LYP/6-31G*) level of theory

(Table 1), implying their substantial kinetic stabilities. For

comparison, the experimentally available Sc2C2@C68 has a

HOMO–LUMO energy gap of 0.68 eV at the PBE/DNP level

of theory,51 the experimentally well characterized Sc3N@C68,

Sc3N@C78 and Sc3N@C80 species, which differ from the

Sc3NC doped fullerenes by only one endohedral C atom,

have HOMO–LUMO gap energies of 2.11, 2.28 and 2.21 eV,

respectively, at the B3LYP/6-31G* level of theory.

For Sc3NC@C68, its HOMO � 1 mainly locates on the

Sc3NC cluster, whereas the HOMO, LUMO and LUMO + 1

are mostly contributed by the C68 cage (Fig. 3). While for

Sc3NC@C78 and Sc3NC@C80, all four orbitals of the former

and the HOMO � 1, HOMO and LUMO+ 1 of the latter can

be mainly attributed to the outer carbon frameworks, whereas

the LUMO of Sc3NC@C80 prefers to be localized around the

Sc3NC moiety.

We further computed their vertical electron affinity (VEA),

vertical ionization potential (VIP) as well as adiabatic electron

affinity (AEA) and adiabatic ionization potential (AIP) to

assist future experimental assignments. The calculated EA

(VEA 2.76 eV, AEA 2.81 eV for Sc3NC@C68, VEA 2.91 eV,

AEA 2.94 eV for Sc3NC@C78, VEA 3.31 eV, AEA 3.36 eV for

Sc3NC@C80) and the IP (VIP 6.68 eV, AIP 6.63 eV for

Sc3NC@C68, VIP 6.96 eV, AIP 6.89 eV for Sc3NC@C78,

VIP 7.12 eV, AIP 7.09 eV for Sc3NC@C80) suggest that these

three endofullerenes all have good electron-accepting capacity

and are also rather stable against oxidation.

3.2 Bonding natures

Up to now, only in few studies has QTAIM been employed

to disclose the bonding features of EMFs.52–54 In a very

recent work, Popov and Dunsch performed a thorough

QTAIM analysis for four typical classes of EMFs and

suggested that all types of bonding have a substantial covalent

character.54

Here, we first focus on the intracluster interactions of the

Sc3NC unit. For the three EMFs, no metal–metal bond critical

point (BCP) is found. In Sc3NC@C68, BCPs are found

between Sc1 atom and the inner C atom, between Sc2 or Sc3

and N atom, as well as between N and C atom, respectively

(Fig. 4), leading to four bond paths in the Sc3NC cluster in

total. The small electron density rbcp (0.09 and 0.12 a.u. for

Sc1–C and Sc2/Sc3–N, respectively) and the negative Laplacian

r2rbcp (�0.07 and �0.10 a.u. for Sc1–C and Sc2/Sc3–N,

respectively) suggest weak covalent interactions between

metal atoms and the carbon or nitrogen atom (Table 2).

The covalent nature is further confirmed by their small

positive normalized kinetic energy density Gbcp/rbcpvalues
(o1 a.u.), negative normalized energy density Hbcp/rbcpvalues
as well as the large ratio of absolute value of potential

energy density to kinetic energy density |Vbcp|/Gbcp (>2).

Although a small positive r2rbcp(0.10 a.u.) and relatively

large Gbcp/rbcp value (1.65 a.u.) are computed for the BCP

between the N and C atoms, the large rbcp value (0.39 a.u.),

the negative Hbcp/rbcp value (�1.586 a.u.) as well as the

|Vbcp|/Gbcp ratio (1.961) indicate strong covalent bonding of

the N–C unit.

Similar covalent interactions are present for the metal

clusters inside Sc3NC@C78 and Sc3NC@C80 as well

(Table 2). In the latter, however, additional BCPs are also

located between Sc2/Sc3 atoms and the carbon atom.

Accordingly, six bond paths exist for the Sc3NC moiety of

Sc3NC@C80. Besides, Sc2/Sc3–C BCP in Sc3NC@C80 has a

large bond ellipticity, e (2.82).
From the above, we can conclude that the Sc3NC cluster has

a covalent bonding nature, which is independent of the

outer cages.

Fig. 3 Frontier orbitals of (a) Sc3NC@C80 (C2v), (b) the Sc3NC@C78 (C2) and (c) the Sc3NC@C68 (C2) isomers.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 12442–12449 | 12445
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More intriguing bonding features are found with regard to

interactions between the inner clusters and the outer cages.

The three Sc atoms in Sc3NC@C68 mainly bond to the 5–5

bonds of the cage. As discussed above, these are an ubiquitous

feature for EMFs with non-IPR cages. Furthermore, an

additional bond path is also found between Sc2 or Sc3 atom

and one carbon atom of the related APP (Fig. 4, Ca). The

N atom has two bond paths to the carbon atoms of a 6–6 bond

at the bottom of the cage. For Sc3NC@C78, its Sc1 bonds to a

hexagon with four bond paths, whereas each of Sc2 and Sc3

atoms bonds to a 5–6 edge; N atom di-coordinates to a near

6–6 bond, while in Sc3NC@C80, Sc1 has six bond paths to the

carbon atoms of a cage hexagon, which can be grouped to two

types (Ca and Cb) due to the C2v symmetry. Sc2/Sc3 exhibits

two equivalent bond paths to the carbon atoms of a 5–6 bond.

Last, no BCP, thus no bond path was found between N atom

and the carbon cage.

Although some differences exist among the molecular

graphs of the three EMFs, QTAIM indicators suggest that

they essentially have similar metal-cage interactions (Table 3).

At all the Sc-cage BCPs, except their bond ellipticity e, which
can vary in a large range, they all exhibit small rbcp values

(o0.1 a.u.), negativer2rbcp, small positive Gbcp/rbcp(o1a.u.),

negative Hbcp/rbcp values as well as a large |Vbcp|/Gbcp ratio.

Thus, according to ref. 54, the bonding between metal clusters

and the cages can be classified as covalent interactions with

large polarity. The large e values of certain BCPs (for instance,

9.49 for Sc1–Ca in Sc3NC@C80) indicate the Sc3NC clusters

within the fullerene cages are flexible and new BCPs are easy to

be formed between them and the cages due to their tumble.

3.3 Electrochemical redox properties

The computed two oxidation potentials (+0.46 and +1.73 V

for Sc3NC@C68, +0.76 and +1.62 V for Sc3NC@C78, +0.97

and +1.72 V for Sc3NC@C80) as well as the two reduction

potentials (�1.19 and �1.91 V for Sc3NC@C68, �1.10 and

�1.86 V for Sc3NC@C78, �0.80 and �1.94 V for

Sc3NC@C80) in ODCB solvent are summarized in Table 4.

The predicted electrochemical band gaps (1.65, 1.86 and 1.77 eV,

respectively, for Sc3NC@C68, Sc3NC@C78 and Sc3NC@C80)

are larger than many experimentally available EMFs such as

Sc4C2@C80 (1.56 eV, BLYP-DFT predicted value 1.65 eV).31b

This indicates that these EMFs are very stable.

For Sc3NC@C68, its HOMO, LUMO and LUMO + 1 are

mainly contributed by the C68 cage. As a result, its first

oxidation state and the first two reduction states are

predominantly related to the change of the carbon cage charge

state. Thus for these reduction and oxidation states, the

encapsulated cluster maintains its charge state as

(Sc3+)3(NC)3�, and the NC moiety keeps its double bond

(bond length around 1.26 Å). While a formal valence states

(Sc3+)3(NC)�@C68
6� can be assigned for its second oxidation

state, since the HOMO � 1 orbital mainly locates on the

Sc3NC cluster.

Similarly, the four frontier orbitals of Sc3NC@C78, are

mainly localized on the carbon cages, thus the endocluster

keeps its (Sc3+)3(NC)3� charge state in Sc3NC@C78 with a

negligible change of its NC bond length for the first and

second reduction and oxidation states. Similar results are

found in the two oxidation states of Sc3NC@C80.

Fig. 4 Molecular graphs of the three EMFs (C black, Sc gray, N blue, BCP red). Ring and cage BCPs are omitted for clarity.

Table 2 QTAIM parameters for the trapped Sc3NC clustersa

Species A–B RA–B/Å rbcp r2r bcp e Gbcp/rbcp Hbcp/rbcp |Vbcp|/Gbcp

Sc3NC@C68 Sc1–C 2.043 0.09 �0.07 0.40 0.586 �0.781 2.332
Sc2/Sc3–N 1.943 0.12 �0.10 0.06 0.625 �0.833 2.333
N–C 1.257 0.39 0.10 0.24 1.650 �1.586 1.961

Sc3NC@C78 Sc1–C 2.059 0.09 �0.07 0.40 0.554 �0.748 2.351
Sc2/Sc3–N 2.072 0.09 �0.07 0.02 0.484 �0.678 2.402
N–C 1.243 0.40 0.11 0.11 1.679 �1.611 1.959

Sc3NC@C80 Sc1–C 2.076 0.08 �0.07 0.40 0.566 �0.784 2.387
Sc2/Sc3–C 2.186 0.07 �0.07 2.82 0.461 �0.711 2.543
Sc2/Sc3–N 2.076 0.08 �0.08 0.21 0.544 �0.794 2.460
N–C 1.267 0.39 0.12 0.21 1.614 �1.537 1.952

a Topological properties at the BCPs are in a.u.
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On the contrary, the 1-electron reduction of Sc3NC@C80

induces reduction of the encapsulated cluster, the inner cluster

has a charge state of (Sc3+)3(NC)4�. Consequently, the NC

bond is enlongated from 1.27 to 1.31 Å upon 1-electron

reduction. More interesting is that the 2-electron reduction

state has a N–C bond length of B1.32 Å. Such a N–C bond

length suggests a charge state of (NC)4�. After checking the

wavefunction of HOMO for the 2e reduction state, we found

that this orbital is a hybrid of the cage and endocluster atomic

orbitals.

3.4 Infrared and NMR spectra

The infrared (IR) absorption spectra of the Sc3NC@C68,

Sc3NC@C78 and Sc3NC@C80 were computed at the

PBE/DNP level (Fig. 5 and ESI).w Similar to that of

Sc4C2@C80,
31 each of their spectra can be roughly partitioned

into three bands (from 1000 to 1700 cm�1, from 300 to

900 cm�1 and blow 200 cm�1). The first two bands are

contributed by the vibrations of the carbon cages with the

former having large absorption intensities. The third one

consists of weak vibrations of the encased Sc3+ cations.

The N–C stretching frequencies of the central NC units

(1645, 1723 and 1582 cm�1 for Sc3NC@C68, Sc3NC@C78

and the Sc3NC@C80, respectively) all have very weak

absorption intensities, which are also the highest vibrational

wavenumbers of our computed spectra. Moreover, all of the

strongest absorption peaks (1262, 1339 and 1342 cm�1 for

Sc3NC@C68, Sc3NC@C78 and the Sc3NC@C80, respectively)

correspond to the tangential vibrations of the carbon atoms

along the cage surfaces. Several other relatively strong peaks

(1360, 1374, 1428 cm�1 for Sc3NC@C68, 1340, 1360, 1378,

1392, 1398 cm�1 for Sc3NC@C78, 1307, 1309, 1366, 1381,

1423, 1522 cm�1 for Sc3NC@C80) may also help experimental

characterization.

Theoretically simulated 13C NMR spectra play an

important role in the structural characterization of fullerenes

Table 3 QTAIM parameters for the Sc3NC-cage interactionsa

Species A–B RA�B/Å rbcp r2rbcp e Gbcp/rbcp Hbcp/rbcp |Vbcp|/Gbcp

Sc3NC@C68 Sc1–C 2.220 0.07 �0.06 0.50 0.450 �0.664 2.476
Sc2/Sc3–Ca 2.342 0.05 �0.05 7.79 0.435 �0.685 2.575
Sc2/Sc3–Cb 2.209 0.07 �0.06 0.38 0.464 �0.679 2.462
Sc2/Sc3–Cc 2.219 0.07 �0.06 0.77 0.450 �0.664 2.476
N–C 2.624 0.02 �0.02 1.09 0.300 �0.550 2.833

Sc3NC@C78 Sc1–Ca’ 2.296 0.06 �0.05 2.89 0.381 �0.590 2.546
Sc1–Cb’ 2.279 0.06 �0.05 1.71 0.397 �0.605 2.525
Sc2/Sc3–Ca 2.258 0.06 �0.06 0.81 0.426 �0.676 2.587
Sc2/Sc3–Cb 2.273 0.06 �0.05 0.50 0.434 �0.643 2.480
N–C 2.600 0.02 �0.02 0.98 0.326 �0.576 2.767

Sc3NC@C80 Sc1–Ca 2.298 0.05 �0.05 9.49 0.455 �0.705 2.549
Sc1–Cb 2.281 0.06 �0.05 2.26 0.396 �0.604 2.526
Sc2/Sc3–C 2.213 0.07 �0.06 1.18 0.438 �0.650 2.492

a Topological properties at the BCPs are in a.u.

Table 4 Spin multiplicities (S), computed relative energies (Erel, eV), and redox potentials (E0, V) for [Sc3NC@C2n]
q (q = 0, �1, �2) in ODCB

solvent as well as the optimal N–C bond length (RN–C, Å) and derived formal charge (QN�C) for the encapsulated NC moiety

q

Sc3NC@C68 Sc3NC@C78 Sc3NC@C80

+2 +1 0 �1 �2 +2 +1 0 �1 �2 +2 +1 0 �1 �2

S 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1
Erel +12.15 +5.44 0.00 �3.79 �6.86 +12.34 +5.74 0.00 �3.88 �7.00 +12.65 +5.95 0.00 �4.18 �7.22
RN–C 1.24 1.25 1.26 1.26 1.26 1.23 1.22 1.24 1.24 1.24 1.26 1.27 1.27 1.31 1.32
QN–C �1 �3 �3 �3 �3 �3 �3 �3 �3 �3 �3 �3 �3 �4 �4
E0 +1.73 +0.46 �1.19 �1.91 +1.62 +0.76 �1.10 �1.86 +1.72 +0.97 �0.80 �1.94

Fig. 5 The calculated IR vibrational spectra.
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and their endohedral derivatives. According to their

symmetries, the Sc3NC@C68 and Sc3NC@C78 exhibit 35

and 40 lines, respectively (Fig. 6). The bands ranging from

132 to 160 ppm are attributed to the carbon atoms of the outer

cages. Far from the above bands, the chemical shifts of the

central C atoms are 326.8 and 282.4 ppm for Sc3NC@C68 and

Sc3NC@C78, respectively.

For Sc3NC@C80, the various isomers have rather small

relative energy differences (o13 kcal mol�1, ESIw). As a

comparison, the rotation barriers of the Sc3N unit inside the

Ih C80 cage were computed to be ca. 2–3 kcal mol�1 using

different theoretical methods.55,56 Apparently, the inner cluster

may tumble freely due to the large cavity and the smooth

potential surface, similar to La2@C80,
57 Sc3N@C80,

15

Sc3C2@C80
30 and Sc4C2@C80.

31 Accordingly, to simulate its

dynamic 13C NMR spectrum, we computed the average chemical

shifts for the triphenylenic sites (hexagon–hexagon–hexagon)

and the corannulenic sites (hexagon–pentagon–hexagon) in

Sc3NC@C80 separately. The calculated NMR chemical shifts

are 137.3 ppm (low intensity) and 144.1 ppm (high intensity) for

the triphenylenic sites and the corannulenic sites, respectively.

Thus, 13C NMR experiment on this molecule at room tempera-

ture would give 2 signals (137.3 and 144.1 ppm) for the C80 cage

atoms. Yet, the NC carbon atom (chemical shift 306.6 ppm) may

not be detectable due to spin-rotation interaction as well as its

low atomic ration compared to those of the C80 cage.

4. Conclusions

In summary, as new members of the TNT EMF family, three

typical fullerene cages trapping novel Sc3NC units, namely,

Sc3NC@C68, Sc3NC@C78 and Sc3NC@C80, were investigated

by means of DFT computations. The Sc3NC units all employ a

planar structure within the cages. We can assign formal charge

transfer of 6 e from the Sc3NC moiety to the carbon frame-

works, which stabilize both the otherwise unstable metal

cluster and the fullerene cages simultaneously. The geometries

with C centered at the Sc3 planes are all energetically favored.

All the lowest-energy EMFs hold very favorable binding

energies, implying their promise for experimental realization.

Our DFT computations characterized the recently observed

m/z = 1121 peak in the mass spectroscopy to be Sc3NC@C80.

Notably the lowest-energy isomer of Sc3NC@C78 has a non-IPR

C78 outer cage, the possibility to accommodate five atoms

inside a fullerene as small as C68 is also stimulating. Both

intracluster and the metal-cage interactions were characterized

as covalent by our detailed QTAIM analysis. The electronic,

electrochemical redox properties as well as spectra were

simulated to assist future experimental characterization. We

believe that efforts from experimental peers will lead to the

isolation of Sc3NC@C80 and its analogues, which will further

enrich the famous TNT EMF family.
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