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A series of lanthanide coordination polymers have been synthesized

through the hydrothermal reaction of 2,5-piperazinedione-1,4-diac-

etic acid (H2PODC) and Ln(NO3)3 (Ln ¼ La, 1; Pr, 2; Sm, 3; Ho,

4 and Er, 5). Crystal structure analysis reveals that their structural

variations are attributed to the effect of lanthanide contraction.
Scheme 1 The coordination mode of PODC2� ligand in 1–5.
Lanthanide coordination polymers are of contemporary interest

because of their fascinating structural diversity and unique proper-

ties.1–7 Up to now, a great many lanthanide coordination polymers

with interesting architectures and topologies have been obtained by

selecting the appropriate ligands and controlling the reaction condi-

tions.1–7 However, the design of lanthanide coordination polymers

with desired structures still remains a great challenge, not only

because the assembly of the framework is frequently influenced by

external physical or chemical stimuli, but also because of the high

coordination number as well as the flexible coordination geometry of

lanthanide ions.1–7 In addition, less attention was paid to the influ-

ences of lanthanide contraction on the topological structure of

lanthanide coordination polymers.8,9

Recently, we have found that the multifunctional ligand of 2,5-

piperazinedione-1,4-diacetic acid (H2PODC) can be obtained from

the iminodiacetic acid with high yield under hydrothermal in situ

reaction.10 Based on the H2PODC ligand (Scheme 1), we report the

synthesis and characterization of five 3D structure lanthanide coor-

dination polymers, [Ln(PODC)1.5(H2O)]$nH2O (Ln¼ La (1), n¼ 2;

Ln ¼ Pr (2), n ¼ 1; Ln ¼ Sm (3), n ¼ 4; Ln ¼ Ho (4) and Er (5),

n ¼ 2). Although possessing same formula of [Ln(PODC)1.5(H2O)],

complexes 1–5 exhibit four distinct structural types. Their structural

diversity reveals that lanthanide contraction plays an important role

in the assembly of lanthanide coordination polymers.

Crystal analysis reveals that the asymmetric units of complexes 1–5

consists of one Ln(III) ion, one and half PODC2� ligands and one

terminal aqua ligand.‡ It is noted that only the PODC2� ligand

containing N3 atom in each unit cell of 2 and 3 lies on a crystallo-

graphic inversion centre, while all the PODC2� ligands in 1, 4 and 5 lie

on crystallographic inversion centres. Complex 1 crystallizes in space

group P�1 of triclinic system. As shown in Fig.1a, the central La(III)

ion locates in the center of a monocapped square antiprism geometry

and is coordinated by one oxygen atom from terminal aqua molecule,

one carbonylic oxygen atom from one PODC2� ligand, and seven
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carboxylic oxygen atoms from other six different PODC2� ligands, in

which five carboxylic groups in unidentate fashion and one carbox-

ylic group in chelating bidentate fashion. So, each La(III) ion bridges

seven PODC2� ligands. The bond lengths of La–O range from 2.479

to 2.825(2) �A, comparable to those in the reported nonacoordinated

La-complex.11 Adjacent La(III) ions are linked by two carboxylic

groups in m2:h
1:h1 and one carboxylic group in m2:h

2:h1 mode,

generating a 1D {La-(COO)3} chain along a axis (Fig.1b). Connec-

tion of adjacent chains through the PODC2� ligands produces 2D

layer structure (Fig.1b). Adjacent 2D layers are linked via the

carbonyl and carboxylic groups from different PODC2� ligands,

alternately, extending into the 3D framework (Fig. 1c). The PODC2�

ligands display two types of coordination modes (Scheme 1a and 1b),

bridging five and four lanthanide ions, respectively.

As shown in Fig. 2a, each Pr central in complex 2 is coordinated by

one aqua ligand and six PODC2� ligands, in which two PODC2�

ligands provide two carboxylate groups in chelating mode, three

PODC2� ligands afford three carboxylate oxygen atoms in unidentate

mode and one PODC2� ligand supply one carbonyl group. The bond

length of Pr–O is range from 2.3896(19) to 2.631(2) �A, comparable to

those value of the nonacoordinated Pr-complex.12 Adjacent Pr(III)

ions are linked by two carboxylic groups in m2:h
2:h1 mode, generating

a 1D {Pr-(COO)2}n along a axis (Fig. 2b), which is different from that

in 1. The 2D structure of 2 is similar to those of 1, except that both of

the two carboxylic groups adopt m2:h
2:h1 mode to link the adjacent

Pr(III) ions. The 3D supramolecular architectures can be viewed as the

2D layer linked by two opposite carbonyl groups of PODC2�, as

shown in Fig. 2c. The PODC2� ligands in 2 act as m5- and m4-bridges

(Scheme 1c and 1d), connecting five and four lanthanide ions,

respectively.

The coordination environment of Sm(III) ion in 3 is shown in

Fig. 3a. There are also six PODC2� ligands coordinated to one

Sm(III) ion. Each Sm(III) ion is nonacoordinated, featuring coordi-

nation by four oxygen atoms from two carboxylate groups in
CrystEngComm, 2010, 12, 2691–2694 | 2691
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Fig. 1 (a) Coordination environment of the La3+ ion in 1; (b) ball and stick view of the 2D structure of 1 along the ab face; (c) ball and stick plot showing

the 3D structure of 1 (guest water molecules and hydrogen atoms are omitted for clarity).

Table 1 Crystal data and details of data collection and refinement for complexes 1–4

Complex 1 2 3 4 5

Formula C12H18O12N3La C12H16O11N3Pr C12H22O14N3Sm C12H18O12N3Ho C12H18O12N3Er
Mr 535.20 519.19 582.68 561.22 563.55
Crystal system Triclinic Triclinic Monoclinic Triclinic Triclinic
Space group P�1 P�1 P21/n P�1 P�1
a/�A 4.5588(2) 8.5017(3) 7.80280(10) 7.8133(3) 7.8393(16)
b/�A 11.9018(5) 9.4822(3) 19.2619(3) 10.7254(4) 10.837(2)
c/�A 15.8005(6) 10.8767(5) 12.6700(2) 11.9085(4) 11.905(2)
a/� 85.912(4) 106.740(4) 90 64.815(4) 64.88(3)
b/� 84.811(3) 101.306(4) 98.9750(10) 70.883(3) 71.67(3)
g/� 83.249(3) 92.424(3) 90 72.769(3) 73.68(3)
V/�A3 846.27(6) 818.80(5) 1880.94(5) 838.79(5) 856.4(3)
Z 2 2 4 2 2
Dc/g cm�3 2.100 2.106 2.058 2.222 2.185
m/mm�1 2.599 3.045 3.204 4.792 4.974
Data/parameters 3276/253 3200/244 3675/271 3281/248 3234/253
q/� 3.89–25.99 2.26–26.00 3.26–26.00 2.30–25.99 3.01–26.00
Observed reflections 2822 2858 3088 3120 3348
R1[I > 2s(I)]a 0.0220 0.0194 0.0232 0.0147 0.0361
wR2 (all data)b 0.0505 0.0485 0.0836 0.0369 0.0983

a R1 ¼
P

||Fo| � |Fc||/
P

|Fo|. b wR2 ¼ {
P

[w(Fo
2 � Fc

2)2]/
P

[w(Fo
2)2]}1/2.

Fig. 2 (a) Ball and stick view of coordination environment of Pr3+ ion in 2; (b) ball and stick view of the 2D structure of 2 along the bc face; (c) ball and

stick view of the 3D structure of 2 (guest water molecules and hydrogen atoms are omitted for clarity).
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chelating mode, four oxygen atoms from four carboxylate groups in

unidentate mode and one aqua ligand. The bond length for Sm(III)–O

is range from 2.349(4) to 2.635(3) �A, comparable to those of the

nona-coordinated Sm-complex.13 It is noted that the carbonyl group

of PODC2� ligand does not bond with the Sm(III) ions, which is
2692 | CrystEngComm, 2010, 12, 2691–2694
different to those of 1 and 2. Adjacent Sm(III) ions are linked by two

carboxylate groups in m2:h
2:h1 fashions and two carboxylate groups

in m2:h
1:h1 fashions, forming a dinuclear unit. Connection of the

adjacent dinuclear units by two carboxylate groups in m2:h
2:h1 fash-

ions generate 1D {Sm-(COO)4-Sm-(COO)2}n chain along
This journal is ª The Royal Society of Chemistry 2010
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Fig. 3 (a) Coordination environment of Sm3+ in 3; (b) ball and stick view of the 2D structure in 3 along the ac face; (c) ball and stick plot showing the 3D

structure of 3 (guest water molecules and hydrogen atoms are omitted for clarity).
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a axis(Fig. 3b). The 3D framework can be viewed as the 2D structure,

which formed by connecting of adjacent chain along b axes via the

two opposite carboxylate groups of PODC2�, are linked by the

PODC2� ligand (Fig. 3c). The PODC2� ligand shows two distinct

coordination modes as shown in Scheme 1c and 1e.

As shown in Fig. 4a, the coordination environment of Ho(III) ion

in 4 is similar to those of the Sm(III) in 3, except for only one

carboxylate groups in chelating mode coordinated to Ho(III) ion. The

bond length for Ho–O range from 2.2410(18) to 2.5366(18) �A,

comparable to those of the octa-coordinated Ho(III)-complex.14

Adjacent Ho(III) ions are alternately linked by four carboxylate

groups in m2:h
1:h1 fashions and two carboxylate groups in m2:h

2:h1

fashions, forming a 1D {Ho-(COO)4-Ho(COO)2}n chain. As shown

in Fig. 4b and Fig. 4c, the 2D structure and 3D framework of 4 are

constructed by the {Ho-(COO)4-Ho(COO)2} chains, similar to those

of 3. The PODC2� ligand exhibits two different coordination modes

as shown in Scheme 1b and 1c. Complex 5 is isostructural to 4. The

bond length for Er–O range from 2.240(4) to 2.540(4) �A, comparable

to those of reported for Er-complex.10

Thermogravimetric analysis (TGA) studies were performed in a N2

atmosphere at a heating rate of 10 �C min�1 for complexes 1–5. As

shown in the ESI, Fig. S2,† the TGA diagram of 1 displays an initial

the weight loss of 9.8% between room temperature and 300 �C, which

correspond to the removal of two guest water molecules and one

aqua ligand (calcd 10.1%). Between 300 and 400 �C, 1 shows no

weight loss, which is an indication of its stability up to 400 �C. When

the temperature is higher than 400 �C, 1 rapidly decomposes.
Fig. 4 (a) Coordination environment of Ho3+ in 4; (b) ball and stick plot sho

showing the 3D structure of 4 (guest water molecules and hydrogen atoms a

This journal is ª The Royal Society of Chemistry 2010
Similarly, the TGA curve of 2–5 display the first weight loss of 7.7%

(calcd 7.0% for 2), 12.2% (calcd. 12.3% for 3), 9.6% (calcd. 9.7% for 4)

and 9.7% (calcd 9.6% for 5), respectively, for the loss of the guest

water molecules and aqua ligands. All the frameworks of 2–5 are

stable up to 300 �C.

It is interesting to observe that the five complexes exhibit five

different structures due to the different lanthanide ions, revealing that

the effect of lanthanide contraction play an important role in the

formation of complexes 1–5. Based on the structure analysis, we

found that lanthanide contraction has following influence on the

structures of 1–5. First, as the radii of the Ln ions decreases,

the ligand–ligand repulsion increases. As the result of the repulsion,

the numbers of ligands around the Ln ions decreases from seven (for

1) to six (for 2–5), and the coordination number also decreases from

nine (for 1–3) to eight (for 4 and 5). Second, the average bond length

of Ln–O decreases with decreasing the radii of the Ln ions. The

average distances of Ln–O for 1–5 are 2.590, 2.526, 2.461, 2.364 and

2.358 �A, respectively. Third, the Lewis acidity of the Ln(III) ions

increases as decreasing the radii of Ln(III) ions. Based on the theory of

HSAB (Hard and Soft Acids and Bases),15 carboxylate group tend to

bond with the Ln(III) ions with harder Lewis acidity. Thus, The La(III)

ions in 1 and Pr(III) ions in 2 coordinate to the carbonyl and

carboxylate group, while Sm(III) ions in 3, Ho(III) ions in 4 and Er(III)

ions in 5 only coordinate to carboxylate group. In addition, the

flexibility PODC2� ligands also affects the structures of the

complexes. As shown in Scheme 1, the PODC2� ligand exhibits five

distinct coordination modes. Their variable coordination modes also
wing the 2D structure in 4 viewed along the ac face; (c) ball and stick plot

re omitted for clarity).

CrystEngComm, 2010, 12, 2691–2694 | 2693
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induce the different topology frameworks, leading to the diversity of

the structures of 1–5.

In summary, we have reported a series of lanthanide coordination

polymers based on 2,5-piperazinedione-1,4-diacetic acid under

hydrothermal conditions. These coordination polymers crystallize in

four different structural types with different lanthanide ions. More-

over, we also discussed the role of lanthanide contraction in the

assembly of lanthanide-based coordination polymers.
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details of data collection and refinement for the complexes are summa-
rized in Table 1.
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