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A trace amount of metal carbonate, acetate or borate

significantly boosts gold nanocatalysts in selective aerobic

oxidation of alcohols under mild solvent-free conditions.

Supported gold nanoparticles have been recently extensively

studied as catalysts for a wide range of oxidation reactions

including low-temperature CO oxidation,1–4 alkene epoxidation,5,6

aldehyde oxidation,7–9 and aerobic oxidation of alcohols in both

gas- and liquid-phase under relatively mild conditions.9–23 Among

noble metal nanoparticle catalysts used in the liquid-phase aerobic

oxidation of alcohols, properly sized supported gold nanoparticles

are the most selective catalysts, the least prone to leaching due to

over-oxidation of the metal active sites, and not easily poisoned

through ligand chelating.11,20,23

The application of supported gold nanoparticles in liquid-phase

alcohol oxidation under mild conditions typically requires an

aqueous alkaline reaction medium (e.g., excess NaOH, K2CO3),

which results in carboxylate products.11–13 The catalytic activity by

oxide-supported gold nanoparticles under solvent-free conditions

at temperatures less than 100 uC has been demonstrated but is still

limited.14–16 Furthermore, the catalytic performance of oxide-

supported gold nanoparticles is very sensitive to the size of the gold

nanoparticles and also the physical and chemical nature of the

metal oxide support.15–18

Here we report a methodology to promote oxide-supported

gold nanocatalysts in solvent-free selective aerobic oxidation of

alcohols. The significant promotional effect is achieved by a

catalytic amount of low-cost promoters such as metal carbonates,

acetates or borate, which is applicable to all oxide-supported gold

nanoparticles. A turnover-frequency (TOF) as high as 25030 h21

has been obtained in the aerobic selective oxidation of alcohols

under solvent-free conditions at 100 uC. By choosing appropriate

promoters, product selectivity and alcohol conversion have been

simultaneously improved.

Oxide-supported gold nanoparticle catalysts were prepared by

the general strategy that we have recently developed.22 In the

absence of a base (e.g., K2CO3, Na2CO3), these oxide-supported

gold nanoparticles do not efficiently catalyze the selective oxidation

of alcohols under mild solvent-free conditions (Table 1, entry 1),

which is consistent with previous reports.14–16 At 100 uC and 2 atm

O2, the conversion of benzyl alcohol (10 mL) is only 2.5%. A

dramatic improvement in the alcohol conversion is observed,

however, when a small amount of K2CO3/Na2CO3 (see below) is

added (Table 1, entries 2 and 3). For example, the addition of

K2CO3 increases the conversion of benzyl alcohol from 2.5 to

76.6% with benzaldehyde selectivity of 50.9%.

Carbonates (e.g., K2CO3, Na2CO3) are widely applied as weak

bases in many organic syntheses, particularly in reactions involving

proton extraction. In most of these syntheses, a stoichiometric

excess of carbonate is required to achieve high reaction efficiencies.

In the gold-nanoparticle-catalyzed oxidation reactions where we

use a carbonate, the molar ratios of carbonate/alcohol were,

however, much lower. The promotional effect is effective even if a

trace amount of carbonate, with a K2CO3/alcohol molar ratio of

1 6 1023, is used. Increasing the amount of K2CO3 does not

linearly increase the alcohol conversion (Fig. 1).

Fig. 2 shows the aerobic oxidation of benzyl alcohol as a

function of time with the additions of K2CO3 promoter. The

promotional effect by carbonates is maximized at the beginning of

promoter additions (i.e., at 0 and 75 h) and decays with reaction

time. The first addition of K2CO3 (1 mol% to alcohol) leads to

alcohol conversion up to y38% within 2 h. Since the produced

benzaldehyde can be further oxidized to form benzoic acid by-

product which reacts with K2CO3, a decay of reaction rate is

observed. However, a further increase in the alcohol conversion is

observed when the second K2CO3 addition is applied. In addition,

it is worth noting that aldehyde is still the key product for the

reactions promoted by a small amount of carbonates.

Without the promoter, the catalytic performance of oxide-

supported gold nanoparticles is highly dependent on the metal

oxide support. To study the effect of metal-oxide supports with the

use of K2CO3, we deposited the same-sized (6.3 nm) gold

nanoparticles on different metal oxides ranging from semiconduct-

ing (i.e., TiO2, ZnO), acidic (i.e., SiO2, zeolite), to basic (i.e., Co3O4,

ZnO, MgO) oxides. With the help of a small amount of promoter

(e.g., K2CO3), all of the prepared oxide-supported gold nanopar-

ticles efficiently catalyze the oxidation of alcohols under mild

conditions (Table 1, entries 10–15).

Recently, Hutchings and co-workers demonstrated that Au/Pd-

TiO2 catalysts exhibit very high activity of alcohol oxidation under

mild solvent-less conditions.14 For solvent-free oxidation of benzyl

alcohol, the reported Au/Pd-TiO2 catalyst gives a TOF of 6440 h21

(measured from the first 0.5 h of reaction) at 100 uC and 2 atm O2.

With the use of low-cost promoting agent (i.e., K2CO3) instead of

Pd and under similar catalysis conditions, we have found that

oxide-supported pure gold nanoparticles (e.g., Au–TiO2) can

catalyze the oxidation of alcohols even more efficiently (Table 1,

entry 16) with a TOF of 7851 h21 (based on a 5 h reaction) at

100 uC. It should be pointed out that a TOF of 25030 h21 is
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obtained for our reaction when the calculation is based on the 0.5 h

reaction that the Hutchings group used.14 In contrast to the more

complicated Au/Pd–TiO2 catalysts which are inactive for the

oxidation of 2-octanol, pure supported gold nanoparticles are

highly active with the help of a small amount of K2CO3 (Table 1,

entry 23).

In addition to alkaline carbonates, we found that incorporation

of a small amount of acetate (i.e., NaCH3COO, KCH3COO,

Table 1, entries 6–7) and borate (i.e., Na2B4O7?10H2O,

K2B4O7?10H2O, Table 1, entries 8 and 9) also significantly

promote the reactions under mild conditions. In comparison, the

substitution of carbonates with stronger (i.e., NaOH) or organic

(i.e., triethylamine) bases (Table 1, entries 4 and 5) does not lead to

the promotional effect as prominent as that from carbonates,

acetates and borates. The result suggests that basicity is necessary

and the nature of applied bases is critical in promoting alcohol

conversion.

For the oxidation of secondary alcohols by supported gold

nanoparticles, the only products are ketones (Table 1, entries 22

and 23). The catalytic oxidation of primary alcohols produces the

corresponding aldehydes or/and esters. The selectivity of the

primary alcohol oxidation depends largely on the oxidative

stability of produced aldehydes. For example, esters are the only

products from the oxidation of ethanol, 1-propanol, 1-butanol at

Table 1 Selected catalytic results of selective oxidation of alcohols by using supported gold nanoparticles as catalysts

Entrya Alcohol Catalystb
Au/alcoholc

(6 1026) Promoter
Promoter/
alcohol

Conversion
(%)

Selectivityd

(%) TOFe/h21

1 Benzyl alcohol 2.5% on TiO2 262 None NA 2.5 .99.9 19
2 Benzyl alcohol 2.5% on TiO2 262 K2CO3 0.10 76.6 50.9 584
3 Benzyl alcohol 2.5% on TiO2 262 Na2CO3 0.10 75.3 51.6 574
4 Benzyl alcohol 2.5% on TiO2 131 NaOH 0.02 9.3 58.1 142
5 Benzyl alcohol 2.5% on TiO2 131 NEt3 0.02 8.7 90.5 137
6 Benzyl alcohol 2.5% on TiO2 131 NaCH3COO 0.01 42.5 74.6 648
7 Benzyl alcohol 2.5% on TiO2 131 KCH3COO 0.01 40.7 72.9 620
8 Benzyl alcohol 2.5% on TiO2 131 Na2B4O7 0.005 38.3 80.4 584
9 Benzyl alcohol 2.5% on TiO2 131 K2B4O7 0.005 39.6 82.1 604
10 Benzyl alcohol 2.5% on TiO2 131 K2CO3 0.01 35.0 55.0 534
11 Benzyl alcohol 2.5% on ZnO 131 K2CO3 0.01 38.1 81.5 581
12 Benzyl alcohol 2.5% on Zeolite f 131 K2CO3 0.01 31.8 65.8 485
13 Benzyl alcohol 2.5% on SiO2 131 K2CO3 0.01 33.6 59.3 512
14 Benzyl alcohol 2.5% on Co3O4 131 K2CO3 0.01 65.8 55.7 1003
15 Benzyl alcohol 2.5% on MgO 131 K2CO3 0.01 47.4 58.0 723
16 Benzyl alcohol 2.5% on TiO2 2.6 K2CO3 0.002 10.3 78.7 7851
17 Benzyl alcohol 2.5% on TiO2 262 Co(CH3COO)2 0.01 46.2 93.8 352
18 Benzyl alcohol 2.5% on TiO2 262 CoCl2 0.01 3.8 .99.9 29
19 Ethanol 2.5% on TiO2 74 K2CO3 0.1 38.0 .99.9 1026
20 1-Propanol 2.5% on TiO2 95 K2CO3 0.1 35.1 .99.9 739
21 1-Butanol 2.5% on TiO2 116 K2CO3 0.1 58.9 .99.9 1014
22 2-Propanol 2.5% on TiO2 97 K2CO3 0.1 15.3 .99.9 315
23 2-Octanol 2.5% on TiO2 202 K2CO3 0.1 64.8 .99.9 643
a Catalysis conditions: solvent-free reactions; 100 uC for entries 1–18, and 80 uC for entries 19–23; 2 atm oxygen; 5 h. b All are based on 6.3 nm
gold nanoparticles. c Calculated for all gold atoms, both on the surface and in the core of the nanoparticles. d Selectivity to benzaldehyde for
entries 1–18, ethyl acetate for entry 19, propyl propionate for entry 20, butyl butanoate for entry 21, acetone for entry 22, and 2-octanone for
entry 23. e TOF calculations were based on the analysis at the end of 5 h reactions. f CBV-600 Zeolite from Zeolyst International.

Fig. 1 The effect of amount of K2CO3 on the gold-catalyzed aerobic

oxidation of benzyl alcohol. Catalysis conditions: 0.200 g of 2.5% 6.3 nm

Au on TiO2; 20 mL benzyl alcohol; 2 atm O2; 5 h.

Fig. 2 The catalytic kinetics of benzyl alcohol oxidation with the

additions of K2CO3. Catalysis conditions: 0.250 g of 2.5% 6.3 nm Au on

TiO2; 20 mL benzyl alcohol; 2 atm O2; 0.280 g K2CO3 were added at 0 and

75 h.
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80 uC (Table 1, entries 19–21). The selective oxidation of benzyl

alcohol gives both benzaldehyde and benzyl benzoate. For

example, the use of NaCH3COO gives a benzaldehyde selectivity

of 74.6% (Table 1, entry 6). With the use of Co(CH3COO)2?4H2O

instead of NaCH3COO, however, a much higher selectivity to

aldehyde (93.8%) has been achieved together with the high

efficiency (TOF = 353 h21) at 100 uC (Table 1, entry 17). Such

an improvement in both alcohol conversion and product selectivity

is not achievable by CH3COO2 or Co2+ alone (Table 1, entries 6

and 18).

In conclusion, we have discovered that low-cost and non-toxic

promoters dramatically boost the catalytic activity of gold

nanocatalysts in the selective oxidation of alcohols by using

oxygen as the ultimate oxidant under mild solvent-free conditions.

The promoted gold catalysis is an environmentally and economic-

ally viable process for producing a wide range of useful chemicals

from alcohols. Further spectroscopic studies are needed for a

complete elucidation of the role of promotors in the oxidative

process.
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