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Abstract

The graphite arc-discharge in the atmosphere consisting of CCl4 40 Torr and increasing partial pressure of He from 0 to 300 Torr

produced, in addition to carbon species such as graphite and fullerenes C60 and C70, numerous chlorinated carbon clusters (CCCs).

The yields of some CCCs, including C6Cl6 (perchlorobenzene), C10Cl8 (perchloronaphthalene), C12Cl8 (perchloroacenaphthylene)

and C12Cl8 (isomer II), C14Cl8 (isomer I), C16Cl10 (perchlorofluoranthene), C18Cl10 (isomer I and II), and C20Cl10 (isomer I), cor-

respond well with C60 yields, which may imply these CCCs share the same growth mechanism with fullerenes. Such a yield cor-

relation can be used to distinguish the fullerene precursors from the irrelevant by-products, thus contributes to the mechanistic study

of fullerene formation.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

While the fullerene preparation by Kr€atschmer’s

method (i.e. graphite arc-discharge in He atmosphere)
[1] has been commercially applied for many years, the

formation mechanism for such kind of caged carbon

clusters is still not well understood owing to the lack of

viable evidences [2–12], notably the lack of the infor-

mation on possible intermediates. Upon this process

was established, efforts were primarily directed to

support the interpretations proposed by pioneers that

see a number of attempts [13–17] to trap intermediates
for the fullerene formation by the addition of various

agents to the inert gas buffer medium. For instance, (i)

the addition of cyanogen to the reaction medium re-

sults in polyyne rods capped by cyano groups [13,14],

(ii) that of either propene or methanol produces a
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series of polycyclic aromatic hydrocarbons (PAHs)

such as C12H8, CnH10 (n ¼ 14–18) and CnH12 (n ¼ 20,

22, 24) [15], and (iii) that of chlorine species generates a

number of chlorinated PAHs [13,16,17]. While these
experiments provided excellent information for under-

standing the mechanistic details on the fullerene for-

mation, the investigations have been stymied because

an authentic relationship between trapped compounds

and fullerenes could not be established [3]. In fact, the

cited trapped compounds [13–17] were a complex

mixture of a wide range of products that could be

considered as intermediates for different end products
such as fullerenes, carbon nanotubes and graphite etc.

A challenge at this stage is to identify the trapped

compounds and explore their relationship with fulle-

renes and, further, distinguish the authentic fullerenes

intermediates among the vast number of products.

Based on the yield correlation of fullerenes and their

intermediates, we have discovered a novel variation

pattern which may be used to distinguish the fullerene
precursors from the irrelevant side-products. We wish

to report the correlation trends and propose a rela-

tionship to the fullerene formation.
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Table 1

The compositions of the products analyzed under the two chromato-

graphic conditions

Formula (retention time, min)

detected under condition A

Formula (retention time, min)

detected under condition B

C6Cl6 (7.4) C6Cl6 (2.7)

C8Cl8 (6.8) C10Cl8 (3.0)

C10Cl8 (18.0) C12Cl8 (II) (4.2)

C11Cl10 (14.3) C14Cl8 (3.4)

C12Cl8 (I) (19.2) C14Cl8 (II) (5.0)

C12Cl8 (II) (40.8) C16Cl10 (I) (4.5)

C14Cl8 (I) (24.7) C16Cl10 (II) (6.7)

C14Cl8 (II) (63.0) C18Cl10 (II) (8.0)

C15Cl8O (28.7) C18Cl10 (I) (14.2)

C16Cl10 (I) (46.0) C20Cl10 (I) (4.8)

C16Cl10 (II) (73.7) C20Cl10 (II) (8.2)

C18Cl10 (II) (110.4) C22Cl10 (I) (4.9)

C18Cl10 (I) (161.7) C22Cl10 (II) (8.4)

C20Cl10 (I) (84.7) C28Cl10 (7.6)

C20Cl10 (II) (180) C32Cl8 (10.2)

C22Cl10 (43.1) C50Cl10 (13.6)

C32Cl12 (43.6) C60 (6.1)

C60 (174.8) C60O (10.6)

C60O (160.0) C60Cl8 (14.1)

C70 (223.3) C60Cl6 (56.6)

C70 (10.4)

C80O2 (51.2)

C84 (49.0)

C98 (66.4)

C101 (69.2)
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2. Experimental

The graphite arc-discharge was performed in a

stainless steel cylinder reactor equipped with two
graphite electrodes: a block of graphite (cathode, with

diameter of 130 mm and thickness of 15 mm) and a

graphite rod (anode, with 6 mm I.D. and 15 cm in

length). Before the discharge reaction, the chamber was

evacuated to a pressure of ca. 10�2 Torr using a rotary

pump, and then filled with CCl4 vapor at the partial

pressure of 40 Torr and He at appropriate pressure (we

performed 12 experiments with 12 different He partial
pressures ranging for 0 to 300 Torr). Discharge was

observed between the gap of the two electrodes when an

electrical source (24 V and 100 A) was supplied.

After discharge reaction for half an hour, about 3 g

soot was produced, and 0.9 g soot was weighed out for

extraction with 100 ml toluene in a Soxhlet extractor for

9 hour. The toluene solution was concentrated to 8 ml,

followed by filtration through a 0.45 lm pore membrane
to obtain a solution for high-performance liquid chro-

matography combined with mass spectrometry (HPLC-

MS) analysis.

The instrument used for the HPLC-MS analysis was

a TSP Model P2000 HPLC and a Finnigan LCQ mass

spectrometer equipped with atmospheric pressure

chemical ionization (APCI) interface. The APCI-MS

analytic conditions have been previously described [18].
To fully isolate the compounds in the product, the

HPLC separation was alternately performed under two

sets of chromatographic conditions as follows: (A)

Discovery C18 column (250 · 4.6 mm) of SUPELCO

was used, and a gradient solvent mixture of methanol/

ethanol/cyclohexane consisting of a linear increase in

cyclohexane concentration from 0 to 5% in 50 min and

from 5% to 35% in the next 200 min, against a linear
decrease in methanol from 84.6% to 80.4% in 50 min

and from 80.4% to 55% in the next 200 min, was used as

eluent at a flow rate of 1.0 ml/min. (B) 2,4,6-trinitro-

phenol-modified zirconia-alumina column (150 · 4.6
mm) [19,20] was employed, and a toluene-cyclohexane

eluent was flowed in 0.5 ml/min in a gradient mode:

100% cyclohexane eluted in the first 20 min and reduced

to 70% in the next 40 min, then kept 20 min. The former
HPLC procedure (i.e. condition A) was suitable for the

separation of the chlorinated carbon clusters (CCCs)

with lower molecular weight, while the later one was

effective for larger CCCs and fullerenes [19,20]. The

injection volume for the sample was 5 ll.
The yield of each component separated in the

HPLC-MS experiment could be estimated from the

corresponding peak area according to the proportion
relationship between peak area and its concentration in

analyte solution. The relative standard deviation (RSD)

for the peak area determination in the experiment was

about 15%. This error bar was not low, but it was
deemed satisfactory for the purpose of the discussion

below.
3. Results and discussion

As listed in Table 1, the compounds from the graphite

arc-discharge in the atmosphere with varying partial

pressure of He/CCl4 included different carbon species

such as graphite, fullerenes (e.g. C60, C70, C84, C98),

chlorinated fullerenes (e.g. C60Cl6, C60Cl8), and a series

of CCCs (e.g. C12Cl8, C16Cl10, C18Cl10, C20Cl10 and their

isomers; the isomers are referred as isomer I or II

hereinafter). Fig. 1 shows a typical HPLC-MS chro-
matogram (recorded under the chromatographic con-

dition A) of the toluene-soluble products from graphite

arc-discharge at the partial pressure of 40 Torr CCl4 and

300 Torr He. The structures of some CCCs were deter-

mined from their molecular formulas coupled with the

characteristic retention times in comparable chroma-

tography of reference compounds identified in our pre-

viously allied studies [16–18,21]. Other CCCs have no
structural proofs, but their compositions were unam-

biguously identified by their characteristic isotopic

cluster pattern of the molecular ion as shown in the inset

to Fig. 1.

Hirsch et al. [13] carried out the graphite arc-dis-

charge experiment with Cl2, and identified the main



Fig. 1. Typical HPLC-MS total ion current chromatogram (recorded

under chromatographic condition A) of the products from the graphite

discharge in the presence of CCl4 (40 Torr) and He (300 Torr). Except

the unidentified components, marked peaks are labeled by their

molecular formula or/and structures suggested from their isotope

distributions in mass spectra (as shown in inset) or the characteristic

retention times of reference compounds in comparable chromatogra-

phy [18].

Fig. 2. Fullerenes C60 or C70 produced under 12 different pressures of

He and the YCP of C70 vs C60.

Fig. 3. Linear YCP of CCCs vs C60 (Group 1).

Fig. 4. Random relationship between CCCs and C60 (Group 2).
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components of the products as perchlorobenzene
(C6Cl6, 60%) and perchloroacenaphthylene (C12Cl8,

9%), as well as a small amount of fullerenes (less than

5%) and other CCCs (in total 17%) such as perchloro-

coroannulene (C20Cl10). Alexakis et al. [22–24] designed

a PyroGenesis process for fullerene synthesis from C2Cl4
based on a DC plasma technology, 2.1% carbon was

transferred to fullerenes from C2Cl4 under optimal

reaction conditions. By means of HPLC- and gas
chromatography-mass spectra analyses, the CCCs

including C6Cl6, C10Cl8, C12Cl8, C14Cl8 and C16Cl10 were

also observed as by-products in their DC plasma pro-

cess. Although the synthetic methods and reactant

sources (chlorine and carbon) employed in Hirsch and

Alexakis’ experiments were different from the present

one, the products of fullerenes and CCCs were ap-

proximately similar. This might imply that the three
chlorine-involving processes shared a similar route for

fullerenes and CCCs growth. Alexakis et al. proposed

that reaction temperature is a critical factor for fullerene

yield, and the presence of these CCCs might be due to

termination of fullerene precursors, which were not

given an adequate residence time in the high tempera-

ture fullerene formation zone [22–24].

To further investigate the relation between fullerene
and the CCCs produced in the chlorine-involving syn-

thetic process, the graphite arc-discharge reaction was

performed at the constant CCl4 partial pressure of 40

Torr with increasing He partial pressures from 0 to 300

Torr. The yields of fullerenes and CCCs from 12

experiments carried out in different He pressure condi-

tions (as shown in Fig. 2a and b) and determined under

the chromatographic condition A were clearly depen-
dent on the He/CCl4 ratio. The variations of the yields/
peak areas against He pressures are shown in Figs. 2–4.

The yields of C60 and C70 are approximately propor-
tional to the He partial pressure increases (Fig. 2a and

b), and C70 yields are linearly correlated to the C60 yields

(Fig. 2c); such plots are hence referred as yield correla-

tion plots (YCP). This is a clear indication that both

formations for these two fullerenes (C60 and C70) share a

common mechanistic pathway. Significantly, the YCP of

CCCs vs C60 yield at increasing He pressures can be

classified in two groups. Group 1 exhibited a linear
correlation with positive slopes and consists of smaller

CCCs, such as C6Cl6 (perchlorobenzene), C10Cl8 (per-

chloronaphthalene), C12Cl8 (perchloroacenaphthylene,

isomer I), C12Cl8 (isomer II), C14Cl8 (isomer I), C16Cl10
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(perchlorofluoranthene, isomer I), C18Cl10 (isomer I and

II), and C20Cl10 (isomer I) as shown in Fig. 3; most of

their structures are known as the fragments of fulle-

renes. Group 2,including C14Cl8 (isomer II) and C16Cl10
(perchloropyrene, isomer II), exhibited random scatters

of attempted YCP plots as shown in Fig. 4. The dis-

played result apparently dictates that members of

Groups 1 are intimately related to the formation of

fullerenes, and those of Group 2 are unrelated side-

products. It is assumed that the CCCs in Group 1 are

the blind alley from trapping reaction (i.e. end prod-

ucts), and do not participate in the further fullerene
formation under the experimental conditions. But their

precursors, the energetic reactive species with their

attendant structures, known and logically assumed to

have pentagon, are the genuine intermediates and

excellent sources to evaluate the fullerene formation

mechanism. The increasing trend of Group 1 yields

suggests more trapping at higher concentration of ful-

lerene precursors when He pressure increasing. Such a
process has similar pathway as supposed by Alexakis

and co-workers [22–24], but we have made a further

observation to distinguish the CCCs in relation with

fullerene formation in the chlorine-involving process.

The fullerenes production was reported to be favored

under the moderate pressure of He buffer gas ranging

from 100 to 400 Torr in the graphite arc-discharge

[1,25–27]. We discovered that while the addition of a
small partial pressure (e.g. 10 Torr) of CCl4 into the He

medium significantly favored the fullerenes yield, further

increase in the CCl4 pressure from 10 to 100 Torr caused

a decrease in the fullerene yield in a non-linear fashion,

but on the other hand increased CCCs yield [28].

Accordingly, the YCP of CCCs vs C60 was deviated

from linear correlation by changing the CCl4 pressure.

The opposing trend of variations can be understood in
terms of the trapping of nascent state small carbon

clusters which is powerfully reactive owing to the un-

paired free electrons in energetic states as discussed

previously [16,17,28]. The reactive clusters either couple

to grow to fullerenes or get trapped by chlorine sources

to form CCCs as the end products. Under the discharge

conditions, equilibrium between the carbon clusters and

CCCs depends on the concentration/pressure of CCl4.
When the pressure of CCl4 was changed, the bonding/

dissociation equilibrium shifts [29], subsequently leading

to the deviation of YCP correlation.

The large carbon clusters with 10 or 12 free bonds,

e.g. C22Cl10, C28Cl10, C32Cl12, and C50Cl10 detected in the

products (see Table 1), must incorporate varying units

of pentagons that cause curvature on the surface of

aromatic conjugated networks or form small closed-cage
fullerenes from structural demands [30]. Their abun-

dances in the end products, however, were too low

to further investigate their relationship with fulle-

renes formation. Undoubtedly as the analytical process
become more efficient, further evidence can be ad-

duced leading to better understanding of fullerenes

formation.
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