First Asymmetric Synthesis of Piperidine Alkaloid (-)-Morusimic Acid D

De-Sheng Yu, ${ }^{\text {a }}$ Wei-Xuan Xu, ${ }^{\text {a }}$ Liang-Xian Liu, ${ }^{\text {a }}$ Pei-Qiang Huang*a,b
${ }^{\text {a }}$ Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. of China
Fax +86(592)2186400; E-mail: pqhuang@xmu.edu.cn
b The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. of China
Received 4 January 2008

Abstract: The first asymmetric synthesis of (-)-morusimic acid D, a 2,3-trans-2,6-cis-2-methyl-6-substituted piperidin-3-ol containing alkaloid is reported. The key steps are the reductive alkylation of N,O-diprotected 3-hydroxyglutarimide, a stepwise reductive alkylation, and an asymmetric aldol-type reaction using a modified Evans chiral auxiliary.
Key words: asymmetric synthesis, N-acyliminium ions, imides, aldol reaction, piperidines, alkaloids, morusimic acid D

Substituted, hydroxylated piperidines constitute a class of natural products exhibiting important bioactivities. ${ }^{1}$ As a key structural feature shared by many piperidine alkaloids, 2-methyl-6-substituted piperidin-3-ols with different stereochemical patterns have been the targets of numerous synthetic efforts, which have culminated in a number of methods for the synthesis of these molecules. ${ }^{2-}$ ${ }^{8}$ Because most of this class of piperidine alkaloids possess a 2,3-cis stereochemistry with either a 2,6-cis-stereochemical pattern (A, Figure 1), or a 2,6-trans stereochemistry pattern (B), much attention has been devoted to the construction of cis-2-methylpiperidin-3-ol skeleton. ${ }^{3}$ Only a few methods are available for the synthesis of trans-2-methylpiperidin-3-ols, ${ }^{4}$ although several methods have been developed for the syntheses of structurally related piperidine alkaloids prosophylline ${ }^{5}$ and micropine, ${ }^{6}$ quinolizidine alkaloids clavepictines ${ }^{7}$ and pictamine, ${ }^{7 a}$ as well as decahydroquinoline alkaloid lepadin D. ${ }^{8}$ In 2002, two 2,3-trans-2,6-cis-2-methyl-6-substituted piperidin-3-ol containing alkaloids, morusimic acids $\mathrm{C}(\mathbf{1})$ and $\mathrm{D}(\mathbf{2})$ were isolated from white ripened fruit of M. alba grown in Turkey. ${ }^{9}$

In continuation of our studies on the development of protected 3-hydroxyglutarimide-based synthetic methodology, ${ }^{10-12}$ we now report an application of this methodology to the first asymmetric synthesis of morusimic acid D (2), an alkaloid having a 2,3,6-trans,trans stereochemistry.
As displayed retrosynthetically in Scheme 1, both the C2 methyl group and the 2,3-trans stereochemistry were envisioned to be introduced by the reductive alkylation method ${ }^{10,11}$ starting from the protected 3-hydroxyglutarimide 6. ${ }^{12}$ The C6 side chain with 2,6-cis stereochemistry

A
azimic acid, $n=5, R=\mathrm{COOH}$ carpamic acid, $n=7, R=\mathrm{COOH}$ spectaline, $n=12, R=C O M e$ spectalinine, $n=12, R=\mathrm{CH}(\mathrm{OH}) \mathrm{Me}$ leptophyllin, $n=10, R=\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$

morusimic acid $\mathrm{C}, \mathrm{X}=\mathrm{Glu}$ (1) morusimic acid $\mathrm{D}, \mathrm{X}=\mathrm{H}$ (2)

Figure 1 Some alkaloids containing a 2-methyl-6-substituted pipe-ridin-3-ol moiety

Scheme 1 Retrosynthetic analysis of (-)-morusimic acid D
was considered to be accessible by another diastereoselective reductive alkylation method. ${ }^{13}$

The synthesis commenced with (R)-3-benzyloxy-1-(4methoxybenzyl)glutarimide $[(R)-6],{ }^{12}$ which was prepared from D-glutamic acid following essentially the procedure described for its enantiomer (Scheme 2). ${ }^{12}$
For the reductive methylation, although our previous study showed that the addition of methyl magnesium iodide (3 molar equiv) to (S)-3-hydroxyglutarimide derivative (S)-6 in THF at $-78{ }^{\circ} \mathrm{C}$ yielded a diastereomeric mixture of N, O-acetal 10 and its C 6 adduct in 86:14 $\mathrm{C} 2 /$ C6 regioselectivity, it was found that almost only the C2 addition product was obtained when undertaking the reac-

Scheme 2
tion in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and at $-20{ }^{\circ} \mathrm{C}$. The subsequent reductive dehydroxylation under ionic hydrogenolytic conditions ${ }^{14}$ $\left(\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}\right.$ to r.t.) furnished predominantly trans-11 (trans/cis =92:8). Cleavage of the N -(4-methoxybenzyl) group by treating ($5 R, 6 S$)-11 with ceric ammonium nitrate (CAN) in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(3: 1)^{15}$ at room temperature gave lactam $(5 R, 6 S)-\mathbf{1 2}$ in 58% yield (Scheme 2).
Next, we turned our attention to the introduction of the chiral C6 side chain. To this end, another diastereoselective reductive alkylation method ${ }^{13}$ was adopted. Thus, lactam 12 was first converted [(Boc) $)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}\right]$ to imide $(5 R, 6 S)-5$, an activated form ${ }^{13 \mathrm{~b}}$ of the former (Scheme 2). Reaction of Grignard reagent $13{ }^{16}$ with imide $(5 R, 6 S)-5$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ proceeded smoothly to give the ring-opening product 14 in 68% yield. To introduce the ethoxycarbonylmethyl group, the TBS group in compound $\mathbf{1 4}$ was cleaved under acidic conditions $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}\right)$ to give $\mathbf{1 5}$ in 92%

Scheme 3
yield. ${ }^{17}$ The resulting alcohol 15 was oxidized with DessMartin periodinane (DMP) ${ }^{18}$ to give aldehyde $\mathbf{4}$ in quantitative yield (Scheme 3).
For the asymmetric carboxymethylation, an enzymatic method, ${ }^{19}$ Evans asymmetric aldol-type reaction, ${ }^{20}$ and Brown's asymmetric allylation reaction ${ }^{21}$ were all plausible. We sought to use Evans' aldol chemistry in view of its excellent enantio- and diastereoselectivities, as well as its compatibility with different substituents that may be useful for the synthesis of analogues of (-)-morusimic acid D. To take advantages of the progress in Evans aldol chemistry, ${ }^{22,23}$ oxazolidine-2-thione derivative 17 was selected for the asymmetric aldol reaction, where the chloro atom will serve as a stereodirecting group for the asymmetric aldol-type reaction. ${ }^{20}$ The starting oxazolidine-2thione 16 was prepared in 91% yield by the method reported by Wu. ${ }^{24}$ Successive treatment of oxazolidine-2thione 16 with n-butyllithium and chloroacetyl chloride gave 17 in 85% yield. Asymmetric aldol reaction of $\mathbf{4}$ with 17 under Crimmins' conditions $\left[\mathrm{TiCl}_{4},(i-\operatorname{Pr})_{2} \mathrm{EtN}, N-\right.$ methylpyrrolidin-2-one (NMP), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right]^{23}$ provided 18 as the only isolable diastereomer in 70% yield (Scheme 4).

Scheme 4

The subsequent steps required for the synthesis of morusimic acid D (2) included N-Boc deprotection, one-pot reductive cyclization-debenzylation, dechlorination, and cleavage of the chiral auxiliary. Attempts to cleave the protecting group Boc by TFA, followed by $\mathrm{Pd}(\mathrm{OH})_{2}$ or Pd / C-catalyzed hydrogenolysis to obtain 19 was unsuccessful, and other attempts under the conditions shown in Scheme 5 also failed.
After extensive trials, it was found that after the cleavage of the chiral auxiliary under Evans' conditions ${ }^{25}$ (LiOH , $\mathrm{H}_{2} \mathrm{O}_{2}$, THF- $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~h}$) selective dechlorination could be achieved by subjecting 20 (colorless oil, yield 92\%) to Abushanab's hydrogenation conditions ${ }^{26}\left[\mathrm{H}_{2}(\mathrm{latm}), 10 \%\right.$ $\mathrm{Pd} / \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, 24$ h, r.t.], which furnished the dechloro product 3 in 85% yield along with 10% of the recovered starting material (Scheme 6).

Scheme 5

20

Scheme 6

Finally, treatment of $\mathbf{3}$ with trifluoroacetic acid in dichloromethane at $0^{\circ} \mathrm{C}$ for one hour, followed by subjecting the resulting crude product to catalytic hydrogenolysis $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}\right.$, r.t., 24 h$)$ led, in one pot, to the formation of morusimic acid $D(2)$ in 75% yield as a white powder $\left\{[\alpha]_{D}{ }^{20}-14.0(c 0.25, \mathrm{MeOH})\right.$, lit. ${ }^{9}[\alpha]_{D}{ }^{20}-14.6(c$ $0.25, \mathrm{MeOH})\}$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data of the synthetic material are identical with those reported for the natural morusimic acid $\mathrm{D}(\mathbf{2}) .{ }^{9}$
Alternatively, morusimic acid D methyl ester (22) ${ }^{27}$ could be obtained in one pot by treatment of $\mathbf{3}$ with trifluoroacetic acid, followed by catalytic hydrogenolysis in methanol using Pearlman's catalyst $\left[\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{~mol} \%), \mathrm{H}_{2}, 1\right.$

$$
3 \xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2} \\ 0^{\circ} \mathrm{C}, 1 \mathrm{~h}}]{\mathrm{TFA}}
$$

21

or

85\% (from 3)

Scheme 7
atm] for three hours, and then stirring with concentrated hydrochloric acid for 24 hours (Scheme 7).

In summary, by modifying the reaction conditions, the C2/C6 regioselectivity of the addition of methyl magnesium iodide to N,O-diprotected 3-benzyloxyglutarimide 6 was improved from 86:14 to at least 95:5. On the basis of this reaction, the first asymmetric synthesis of (-)-morusimic acid D is achieved in 11 steps with an overall yield of 13% from $(R)-\mathbf{6}$, with all the three stereocenters established in excellent diastereoselectivities.

Acknowledgment

The authors are grateful to the NSFC (20572088), Qiu Shi Science \& Technologies Foundation, and the program for Innovative Research Team in Science \& Technology (University) in Fujian Province for financial support. We thank Professor Y. F. Zhao for the use of her Bruker Dalton Esquire 3000 plus LC-MS apparatus.

References and Notes

(1) For reviews on the piperidine alkaloids, see: (a) Strunz, G. M.; Findlay, J. A. Pyridine and Piperidine Alkaloids, In The Alkaloids, Vol. 26; Brossi, A., Ed.; Academic Press: New York, 1985, 89. (b) Numata, A.; Ibuka, T. In The Alkaloids, Vol. 31; Brossi, A., Ed.; Academic Press: New York, 1987. (c) Schneider, M. Pyridine and Piperidine Alkaloids: An Update, In Alkaloids: Chemical and Biochemical Perspectives, Vol. 10; Pelletier, S. W., Ed.; Elsevier Science: Oxford, 1996, 155. (d) Michael, J. P. Nat. Prod. Rep. 1999, 16, 675.
(2) For reviews on the syntheses of piperidines, see: (a) Nadin, A. J. Chem. Soc., Perkin Trans. 1 1998, 3493. (b) Zhou, W. S.; Lu, Z. H.; Xu, Y. M.; Liao, L. X.; Wang, Z. M. Tetrahedron 1999, 55, 11959. (c) Laschat, S.; Dickner, T. Synthesis 2000, 1781. (d) Toyooka, N.; Nemoto, H. Drugs Future 2002, 27, 143. (e) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953. (f) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693. (g) Buffat, M. G. P. Tetrahedron 2004, 60, 1701.
(3) (a) Lu, Z. H.; Zhou, W. S. Tetrahedron 1993, 49, 4659. (b) Lee, H. K.; Chun, J. S.; Pak, C. S. Tetrahedron 2003, 59, 6445. (c) Sato, T.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2003, 5, 3839. (d) Randl, S.; Blechert, S. Tetrahedron Lett. 2004, 45, 1167. (e) Lemire, A.; Charette, A. B. Org. Lett. 2005, 7, 2747. (f) Leverett, C. A.; Cassidy, M. P.; Padwa, A. J. Org. Chem. 2006, 71, 8591.
(4) (a) Ha, J. D.; Lee, D.; Cha, J. K. J. Org. Chem. 1997, 62, 4550. (b) Sengupta, S.; Mondal, S. Tetrahedron 2002, 58, 7983. (c) Bailey, P.; Smith, P. D.; Morgan, K. M.; Rosair, G. M. Tetrahedron Lett. 2002, 43, 1071.
(5) (a) Takao, K.-i.; Nigawara, Y.; Nishino, E.; Takagi, I.; Maeda, K.; Tadano, K.-i.; Ogawa, S. Tetrahedron 1994, 50, 5681. (b) Luker, T.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 3592. (c) Ojima, I.; Vidal, E. S. J. Org. Chem. 1998, 63, 7999. (d) Toyooka, N.; Yoshida, Y.; Yotssui, Y.; Momose, T. J. Org. Chem. 1999, 64, 4914. (e) Herdeis, C.; Telser, J. Eur. J. Org. Chem. 1999, 1407. (f) Datta, A.; Kumar, J. S. R.; Roy, S. Tetrahedron 2001, 57, 1169. (g) Comins, D. L.; Sandelier, M. J.; Grillo, T. A. J. Org. Chem. 2001, 66, 6829. (h) Cossy, J.; Willis, C.; Bellosta, V.; BouzBouz, S. J. Org. Chem. 2002, 67, 1982. (i) Dransfield, P. J.; Gore, P. M.; Prokeš, I.; Shipman, M.;

Slawin, A. M. Z. Org. Biomol. Chem. 2003, 1, 2723. (j) Chavan, S. P.; Praveen, C. Tetrahedron Lett. 2004, 45, 421. (k) Jourdant, A.; Zhu, J. P. Heterocycles 2004, 64, 249. (1) Wang, Q.; Sasaki, N. A. J. Org. Chem. 2004, 69, 4767. (m) Kim, I. S.; Ryu, C. B.; Li, Q. R.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2007, 48, 6258. (n) Fuhshuku, K.-i.; Mori, K. Tetrahedron: Asymmetry 2007, 18, 2104.
(6) Bayquen, A. V.; Read, R. W. Tetrahedron 1996, 52, 13467.
(7) (a) Toyooka, N.; Yotsui, Y.; Yoshida, Y.; Momose, T.; Nemoto, H. Tetrahedron 1999, 55, 15209. (b) Ha, J. D.; Cha, J. K. J. Am. Chem. Soc. 1999, 121, 10012. (c) Agami, C.; Couty, F.; Evano, G.; Darro, F.; Kiss, R. Eur. J. Org. Chem. 2003, 2062.
(8) Pu, X. T.; Ma, D. W. J. Org. Chem. 2006, 71, 6562.
(9) Kusano, G.; Orihara, S.; Tsukamoto, D.; Shibano, M.; Coskun, M.; Guvenc, A.; Erdurak, C. S. Chem. Pharm. Bull. 2002, 50, 185.
(10) For accounts on the methodologies, see: (a) Huang, P.-Q. Recent Advances on the Asymmetric Synthesis of Bioactive 2-Pyrrolidinone-Related Compounds Starting from Enantiomeric Malic Acid, In New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles; Vicario, J. L.; Badia, D.; Carrillo, L., Eds.; Research Signpost: Kerala, 2005, 197. (b) Huang, P.-Q. Synlett 2006, 1133.
(11) Huang, P.-Q.; Guo, Z.-Q.; Ruan, Y.-P. Org. Lett. 2006, 8, 1435.
(12) Ruan, Y.-P.; Wei, B.-G.; Xu, X.-Q.; Liu, G.; Yu, D.-S.; Liu, L.-X.; Huang, P.-Q. Chirality 2005, 17, 595.
(13) For a recent example, see: (a) Jourdant, A.; Zhu, J. Tetrahedron Lett. 2001, 42, 3431. (b) For amide activation by Boc, see: Giovannini, A.; Savoia, D.; Umani-Ronchi, A. J. Org. Chem. 1989, 54, 228.
(14) For a review on $\mathrm{Et}_{3} \mathrm{SiH}$-mediated ionic hydrogenation, see: (a) Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. Synthesis 1974, 633. For selected examples, see: (b) Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656. (c) Yoda, H.; Kitayama, H.; Yamada, W.; Katagiri, T.; Takabe, K. Tetrahedron: Asymmetry 1993, 4, 1451. (d) Drage, J. S.; Earl, R. A.; Vollhardt, K. P. C. J. Heterocycl. Chem. 1982, 19, 701.
(15) Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimura, J.; Okamoto, T.; Shin, C. Bull. Chem. Soc. Jpn. 1985, 58, 1413.
(16) McDougal, P. G.; Rico, J. G.; Oh, Y. I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388.
(17) Kelly, D. R.; Roberts, S. M.; Newton, R. F. Synth. Commun. 1979, 9, 295.
(18) (a) Dess, D. M.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. (b) Frigerio, M.; Santagostino, M.; Sputores, S. J. Org. Chem. 1999, 64, 4537.
(19) (a) Oetting, J.; Holzkamp, J.; Meyer, H. H.; Pahl, A. Tetrahedron: Asymmetry 1997, 8, 477. (b) Singh, R.; Ghosh, S. K. Tetrahedron Lett. 2002, 43, 7711.
(20) For the use of halogen as a stereodirecting group for the asymmetric ethoxycarbonylmethylation, see: (a) Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. E. Tetrahedron Lett. 1987, 28, 39. (b) Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. J. Am. Chem. Soc. 2000, 122, 10033.
(21) (a) Jadhav, P. K.; Bhat, K. S. P.; Perumal, T.; Brown, H. C. J. Am. Chem. Soc. 1986, 51, 432. (b) Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U. S. J. Am. Chem. Soc. 1990, 112, 2389. (c) See also: Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Park, J. C. J. Org. Chem. 1990, 55, 4109.
(22) For recent reviews on the asymmetric aldol reaction, see:
(a) Arya, P.; Qin, H. P. Tetrahedron 2000, 56, 917.
(b) Csákÿ, A. G.; Plumet, J. Chem. Soc. Rev. 2001, 30, 313.
(23) (a) Crimmins, M. T.; She, J. Synlett 2004, 1371. See also:
(b) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894. (c) Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc. 1997, 119, 7883.
(24) Wu, Y. K.; Yang, Y. Q.; Hu, Q. J. Org. Chem. 2004, 69, 3990.
(25) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141.
(26) Saibaba, R.; Sarma, M. S.; Abushanab, E. Synth. Commun. 1989, 19, 3077.
(27) All new compounds gave satisfactory analytical and spectral data. Selected physical and spectral data for morusimic acid D methyl ester (22): pale yellow powder; mp $132-135^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-11.3$ (c 0.4, CHCl_{3}). IR (film): 3387, 2929, 2854, 1731, 1438, 1380, 1305, 1165, $1061 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.40(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.68(\mathrm{~m}, 20 \mathrm{H}), 2.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H})$, $3.42(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=16.00,26.52,26.56,28.33,30.43,30.48$, $30.52,30.56,30.59,32.92,34.26,38.05,43.25,52.15$, 58.49, 59.24, 69.23, 70.70, 173.92. ESI-HRMS: m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 344.2795 ; found: 344.2798 .

