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Rigorous expressions for the calculation of nonadiabatic electron transfer rates are presented in
closed forms for donor-acceptor systems incorporated fluctuating bridges and their non-Condon
electronic couplings. In high temperature limit, they show a similar property to the Marcus formula.
However, the Marcus parabolic with respect to the driving force is shifted for the exponential
coupling while it becomes an overlap of several Gaussian functions for the linear coupling.
Furthermore, the effective couplings are exponentially and linearly dependent on temperature and
the squared frequencies of bridge modes for the exponential and linear couplings, respectively.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3063095�

I. INTRODUCTION

Electron transfer �ET� process in donor-bridge-acceptor
�D-B-A� systems has been one of the exciting areas of re-
search. As the bridges are assumed to be rigid spacers the
standard nonadiabatic ET rates in high temperature limit are
given by the well-known Marcus formula,1,2

k =
�TDA

0 �2

�
� �

�kBT
exp�−

�� + �G�2

4�kBT
� . �1�

Here �, T, and �G are reorganization energy, temperature,
and driving force, respectively. TDA

0 is the effective electronic
coupling between D and A states. In recent years the fluctu-
ating effects of the bridges on ET in complex medium, such
as solvent molecules, glasses, and proteins, have drawn
much interest �see, for instance, Refs. 3–7�. In these systems,
the nuclear motions are commonly divided into two groups
in respect of their effects on ET.8,9 The first group corre-
sponds to the modes that undergo reorganization in the
course of transition. They mainly contain the donor and ac-
ceptor modes. The second one includes the modes that oscil-
late around their equilibrium positions during ET and repre-
sent the fluctuations of the bridges. An important property
for the first group modes is that the electronic transition is
dominated by the particular regime where the electronic en-
ergies of the D and A states are nearly the same. Thus, the
Condon approximation is applicable for the transition. How-
ever, the second group modes are not limited to local posi-
tions during ET process. The electronic coupling can be in-
fluenced by these modes and may strongly depend on the
nuclear coordinates of the bridges. In this case, the non-
Condon effect begins to play a role and produces inelastic
tunneling. Based on such a consideration, theoretical and ex-

perimental investigations have revealed rich information be-
ing significantly different from the prediction from Eq.
�1�.8–18 For instance, the effective electronic coupling be-
comes temperature dependent when bridge dynamics is
incorporated.17 The conformational gating of the bridges
greatly enhances the rates.12,13,15,16 Several theoretical mod-
els have been proposed to deeply understand these
phenomena.8,9,19–21 Medvedev and Stuchebrukhov9 treated
the non-Condon couplings with exponential and linear forms
and demonstrated that non-Condon effects can result in sub-
stantial enhancement of the rates in the inverted regime and
qualitatively new distance dependence. Troisi et al.19 ex-
pressed the rate in energy domain as a series of contributions
of the decreasing importance from the fluctuating bridge
without introducing explicit coupling forms. The leading
term corresponds to the slow fluctuations, which is the same
as the Marcus formula except that the squared coupling is
substituted by its average value, and the other terms include
the corrections due to finite time fluctuations. The rate for-
mula is easily applied to realistic systems as long as the
non-Condon effects are relatively small. Jang and Newton21

investigated the torsional non-Condon effects on the basis of
a generalized spin-boson Hamiltonian with a sinusoidal
modulation coupling. They also extensively discussed pos-
sible applications to realistic systems.

In the present work, we use the non-Condon models con-
sidered by Medvedev and Stuchebrukhov9 and present closed
rate expressions. Although the rigorous formulas in the nona-
diabatic limit have been proposed,9 they are quite compli-
cated in the implementation especially for multiple bridges
because they require sum over all eigenstate quantum num-
ber of the systems. We start the rate expressions from time
domain and present eigenstate-free formulas which should be
convenient for both analytical and numerical calculations.
Indeed, the rate formulas obtained can be expressed as the
Marcus-type forms in the classical limit. Thus, the quantita-
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tively analytical relationship between the rates and the non-
Condon coupling parameters is built naturally.

The paper is arranged as follows. In Sec. II, we present
the closed expressions of rates for the exponential and linear
electronic couplings. The semiclassical and classical limits of
the rates are discussed in Sec. III, and the concluding re-
marks are given out in Sec. IV.

II. RIGOROUS RATE EXPRESSIONS
IN THE NONADIABATIC LIMIT

The Hamiltonian regarding to a D-A system with fluctu-
ating bridges can be written as

H = �D	�HD + HB�
D� + �A	�HA + HB�
A�

+ ��D	HDA
A� + H . c .� . �2�

Here, HD and HA are the Hamiltonians for the first group
modes. HB is for the second group modes. HDA is the elec-
tronic coupling between D and A states. For nonadiabatic ET
reactions, i.e., the electronic coupling is weak enough that
the perturbation theory is applicable to calculate the transi-
tion probability from the D to the A states, Fermi’s golden
rule predicts the ET rates as

k =
2�

�
�
ii�

�
j j�

PDiPi�
Di,i��HDA�Q��Aj, j�	�2

���EDi + Ei� − EAj − Ej�� , �3�

where T is temperature, �Di	, �Aj	 and EDi, EAj are the vibra-
tional eigenfunctions and eigenenergies in the D and the A
states, respectively, i and j with prime correspond to the
bridge modes, Q represents the nuclear coordinates of
bridges, and initial probabilities PDi and Pi� are given by

PDi = exp�− �EDi�/Qd, �4�

Pi� = exp�− �Ei��/Qb, �5�

respectively, where �=1 /kbT and Qd and Qb are the corre-
sponding partition functions. By using the Fourier transform
of the delta function in Eq. �3� and assuming that the elec-
tronic coupling only depends on the coordinates of the bridge
molecules, one can obtain an alternate rate expression,

k =
1

�2� dtCDA�t�CB�t� , �6�

in time domain, with

CDA�t� =
1

QD
tr�e−�HDeiHDt/�e−iHAt/�� �7�

and

CB�t� =
1

QB
tr�e−�HBeiHBt/�HDA�Q�e−iHBt/�HDA�Q�� . �8�

It is clear that CDA�t� is the usual correlation function of the
ET theory and the non-Condon contribution to the rate is
incorporated into CB�t�. Equation �6� together with Eqs. �7�
and �8� has been adopted by Teklos and Skourtis,22

Medvedev and Stuchebrukhov,9 and others to investigate ET

rates. It has been successfully used in theoretical studies of
ET by Skourtis and Beratan5 and more recently by Berlin
et al.23

For the multimodes of the D and A states with frequen-
cies �i and shifts x0i, and the B state with frequencies � j�, the
Hamiltonians are explicitly given by

HD = �
i
 pi

2

2mi
+

1

2
mi�i

2xi
2� , �9�

HA = �
i
 pi

2

2mi
+

1

2
mi�i

2�xi − xi0�2� , �10�

HB = �
j
 pj

2

2mj�
+

1

2
mj�� j�

2Qj
2� , �11�

where xi represent the nuclear coordinates of the D and the A
modes, mi and mj� are masses for the D-A and the B modes,
respectively. pi and pj are relevant momentum operators.
With above Hamiltonians, the full quantum expression of
CDA�t� is well known �see, for instance, Refs. 3 and 24�, and
it has an explicit form

CDA�t� = exp�i�Gt/��	i

�exp�− Si��2ni + 1� − nie
−i�it − �n + 1�ei�it�� ,

�12�

where ni=1 / �exp���i�−1�, �G is the driving force, and
Huang–Rhys factors Si=�i /�mi�i with the reorganization
energy �i=

1
2mi�i

2x0i
2 .

CB�t� is significantly affected by the concrete electronic
coupling form. According to the McConnell superexchange
mechanism,25,26 HDA can be reasonably assumed to have an
exponential expression

HDA�Q� = �
i

Cie
−
iQi, �13�

where Ci and 
i are constants and Q represent the nuclear
coordinates of the bridges. Molecular dynamical
simulations,8,10,27,28 however, have found that HDA�Q� can
strongly oscillate and even change sign. In this case, HDA�Q�
may be modeled to a linear dependence of the bridge
coordinates,

HDA�Q� = �
i

�Ci + DiQj� , �14�

where Ci and Di are constants. In this paper, we consider
above two kinds of couplings.

A. Exponential coupling

We start from a single bridge mode, i.e., HDA�Q�
=Ce−
Q, Eq. �8� in the configuration space can be expressed
as follows:

CB�t� = 1/QB� � dQdQ�HDA�Q�HDA�Q��
Q�e−�1HB�Q�	

�
Q��e−�2HB�Q	 , �15�

where �1=�− it /� and �2= it /�. Consider the mode having a
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frequency �� and a mass m�. The coordinate matrices of the
exponential propagator can be evaluated analytically by


Q�e−�Hb�Q�	 =  m���

2� sinh������
1/2

exp�−
m���

2 sinh�����

���Q2 + Q�2�cosh����� − 2QQ��� . �16�

Inserting Eq. �16� and the concrete coupling form into
Eq. �15� and introducing new variables x= �Q+Q�� /2 and
y=Q−Q�, we can cast Eq. �15� into two independent inte-
grals,

CB�t� = 1/QBC2 m���

2� sinh����1��
1/2

� m���

2� sinh����2��
1/2

I1I2, �17�

with

I1 =� dx exp�− x2m���� cosh����1� − 1

sinh����1�

+
cosh����2� − 1

sinh����2� � − 2
x� , �18�

I2 =� dy exp�− y2m���

4
� cosh����1� + 1

sinh����1�

+
cosh����2� + 1

sinh����2� �� . �19�

I1 and I2 are standard Gaussian integrals and can be easily
calculated. By using QB=1 / �2 sinh���� /2�� and after some
algorithms, we finally obtain a closed expression of Eq. �15�
as follows:

CB�t� = C2 exp� �
2

2m���
��2n� + 1� + n�ei�t

+ �n� + 1�e−i�t�� , �20�

where n�=1 / �e���−1�. For the multiple bridge modes, CB�t�
can be obtained through CB,i��t� of the individual mode by
CB�t�=�i�CB,i��t�. Thus the rigorous nonadiabatic ET rates
are evaluated from Eq. �6� together with Eqs. �12� and �20�.

It is interested to find that CDA�t� �Eq. �12�� and CB�t�
�Eq. �20�� have a very similar structure and �
2 /2m��� acts
as the Huang–Rhys factor. This factor is the same as � de-
fined by Medvedev and Stuchebrukhov9 �see Eq. �3.7� in
their paper�. Compared with their formulas, the present rate
expression avoids the sum over the vibrational quantum
numbers of the bridges but uses time integral. This property
is much useful especially for the calculation of the rates with
multiple bridges.

B. Linear coupling

For the linear electronic coupling with the form of Eq.
�14�, the correlation function CB�t� for a bridge mode has
four terms

CB�t� �
1

QB
tr�e−�HBeiHBt/�Ce−iHBt/�C�

+
1

QB
tr�e−�HBeiHBt/�Ce−iHBt/�DQ�

+
1

QB
tr�e−�HBeiHBt/�DQe−iHBt/�C�

+
1

QB
tr�e−�HBeiHBt/�DQe−iHBt/�DQ� . �21�

One immediately knows that the first term is C2 and the
second and third terms are zero because their integrands in
the coordinate representations are odd functions. To calculate
the fourth term, the same techniques used for the exponential
coupling can be adopted although they are tedious. Here, we
propose an alternative approach. It is easy to show that

1/QB tr�e−�HBeiHBt/�Qe−iHBt/�Q�

= 1/2 lim

→0

�2

�
2 �1/QB tr�e−�HBeiHBt/�e−
Qe−iHBt/�e−
Q��

− 1/QB tr�e−�HBQ2� . �22�

Here, the term in �¯� is the correlation function for the
exponential coupling. Taking the second derivative over 

from Eq. �20�, we obtain

�2

�
2 �¯� =
�

m���
��2n� + 1� + n�ei��t + �n� + 1�e−i��t� .

�23�

By using tr�e−�HBQ2� /QB=��2n�+1� /2m��� and Eq. �23�,
we can explicitly express Eq. �21� as follows:

CB�t� = C2 +
�D2

2m���
�n�ei��t + �n� + 1�e−i��t� . �24�

Thus the exact nonadiabatic rates can be calculated combin-
ing together Eqs. �6�, �12�, and �24�.

It should be addressed that Eq. �24� is rigorous for the
linear coupling. However, one may naturally expect that the
correlation function for the linear coupling �Clinear�t�� with
the coupling of 1−
Q should be an approximation from that
for the exponential coupling �Cexpo�t��. Indeed, if one ex-
pands the exponential term in Eq. �20� with respect to 
2 to
the first order, then Clinear�t��Cexpo�t� is obtained with ne-
glecting of ��
2 /2m�����2n�+1�.

III. SEMICLASSICAL AND CLASSICAL LIMITS

The closed forms of the rates in Sec. II are easy to
implement numerically. However, it should be interesting to
consider their semiclassical and classical limits. In such
cases, the time integrations can be carried out and the effects
of the non-Condon parameters on the rates may be found out.

Consider the simplest situation that CDA�t� decays much
more rapidly than CB�t�. CB�t� may be approximately re-
placed by CB�0�, and Eq. �6� becomes
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k �
1

�2 
HDA
2 	� dtCDA�t� , �25�

where 
HDA
2 	 ��CB�0�=1 /QB tr�e−�HBHDA�Q�2�� repre-

sents the effect of structural averaging of the bridge confor-
mation and neglects the inelastic ET by the bridge fluctua-
tions. Its values are C2 exp��
2 /m��� coth���� /2�� and
C2+ ��D2 /2m���� coth���� /2� for the exponential and lin-
ear couplings, respectively. These values are explicitly de-
pendent on temperature and the frequency of bridge modes
as well as the coupling strength. It should be addressed that

HDA

2 	 for the linear coupling cannot be obtained by the lin-
ear expansion of that for the exponential coupling because a
0.5 factor is missing if doing it. In the classical limit, Eq.
�25� is nothing but the Marcus formula except that the elec-
tronic coupling HDA

2 is replaced by CB�0�.
However, the fluctuations of the bridge, donor, and ac-

ceptor modes usually have comparable relaxation times as
demonstrated by molecular dynamical simulations.8,10 One
has to treat both CB�t� and CDA�t� in a similar way. In the
semiclassical limit, the time integration in Eq. �6� can be
explicitly carried out by using saddle point techniques. Here
we use a simpler approximation, which is used to derive the
Marcus formula �1�, i.e., we expand exponential terms
exp�i�t� to the second order of time.

For the exponential coupling, the semiclassical approxi-
mation reads

k =
�i�

Ci�
2

�2 exp��
i�

2Si�
� �2ni�

� + 1��
�� 2�

�i
Si�2ni + 1�wi

2 + �i�
Si��2ni�

� + 1�wi�
�2

�exp�−
��i

Si�i − �i�
Si��i�

� + �G�2/�

2��i
Si�2ni + 1�wi

2 + �i�
Si��2ni�

� + 1�wi�
�2�� .

�26�

Here i and i� correspond to the D-A and the B modes, re-
spectively, and a Huang–Rhys–type factor Si�

� with a value of
�
i�

2 /2mi�
� �i�

� for the i�th bridge mode has been introduced.
In the classical �high temperature� limit, ni and ni� can be

further approximated by 1 / ����i� and 1 / ����i�
� �. In this

case, the rates can be compactly expressed as follows:

k =
1

�
�HDA

e �2� �

kBT�� + ���
exp−

�� − �� + �G�2

4kBT�� + ���
� .

�27�

Here, prefactor HDA
e is given by �HDA

e �2

=�i�Ci�
2 exp��2kbT /mi�

� ��
i� /�i�
� �2�. � is the total reorganiza-

tion energy of the D-A system and ��=�i��i�
�

=�i���
i��
2 /2mi�

� .
It is interesting to note that Eq. �27� has a very similar

structure to the Marcus formula �Eq. �1��. HDA
e acts as an

effective electronic coupling strength. It explicitly depends
on the coupling parameters Ci�, 
i� as well as the bridge

mode frequencies �i� and temperature, and is sensitive very
much to the ratio of 
i� and �i� because of its exponential
dependence. For a given bridge, this effective coupling in-
creases exponentially with increasing of temperature. From
Eq. �27�, it is also seen that the �� plays a similar role to �.
Compared with the Marcus formula, the maximum rate with
respect to �G is shifted from �G=−� to �G=��−�. Despite
the driving force dependence of the rates has the Marcus
parabolic shape, it is 4�kBT ln 2���+��−��� broader. For a
symmetric ET reaction, i.e., �G=0, the barrier is lowered by
��� / ��+���.

Equation �27� has an advantage that it reveals the ana-
lytical relationship between the rates and the non-Condon
parameters. In applications, one has to consider its validity.
Although the exponential coupling model is predicted by the
McConnell superexchange mechanism, it may be physically
reasonable when ����kBT. In high temperature limit
�����kBT� the population of the bridge modes can be dis-
tributed in the high vibrational excited states, which leads to
the dramatic exponential increase in the electronic coupling
for Qi��0. This is not only unphysical but also contradicts
the nonadiabatic limit considered in the present work. One
way to remedy this problem is to include anharmonic bridge
modes as considered by Medvedev and Stuchebrukhov.9 To
guarantee Eq. �27� validity, therefore, one must use a small
enough 
i�. Here we roughly estimate its values. At a given
temperature, the energy of the motion of the bridge mode is
about kBT and the corresponding classical turning point is
Q0=�2kBT /m���2. If the linear expansion of the exponential
coupling at Q0 is still valid Eq. �27� should be less problem-
atic, which leads to 
��m���2 /2kBT.

For the linear coupling, since CB�t� itself is the sum of
exponential terms we only make an approximation for
CDA�t�, i.e., expand exp�i�t� in Eq. �12� to the second
order as before. For a single mode, the correlation function
becomes

C�t� � �C2 + S�n�ei��t + S��n� + 1�e−i�t�

�exp�i�Gt/� + iS�t − 1/2�2n + 1�S�2t2� , �28�

where S�=�D2 /2m���. Thus the semiclassical rates can be
obtained by simple Gaussian integrations, and it has a form

k =
1

�2� 2�

�2n + 1�S�2 �C2e−�S� + �G/��2/2�2n+1�S�2

+ S�n�e−�S� + �� + �G/��2/2�2n+1�S�2

+ S��n� + 1�e−�S� − �� + �G/��2/2�2n+1�S�2
� . �29�

By using the classical approximations of n and n�, we get

k =
C2

�
� �

�kBT
exp�−

�� + �G�2

4�kBT
�

+
HDA

2

�
� �

�kBT
exp�−

�� + ��� + �G�2

4�kBT
�

+ exp�−
�� − ��� + �G�2

4�kBT
�� , �30�
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where the effective coupling strength HDA
2 is defined as

kBTD2 /2m���2. It is seen from Eq. �30� that the first term is
the exact Marcus formula and other terms have the similar
structures to the Marcus formula. However, in these two
terms, the peaks of the Gaussian distributions with respect to
the driving force are shifted with ��� and −���, respec-
tively, and the effective coupling explicitly depends on tem-
perature and the frequency of the bridge mode.

For multiple bridge modes, the rates in the classical limit
can be formally expressed as

k =
1

�
� �

kBT�
�
j=1

3N�

�HDA
j �2e−�� + ��j

c + �G�2/4kBT�, �31�

where N� is the total number of the bridge modes, � j
c repre-

sent all possible linear combinations of �i�, �i=1,2 , . . .N��
including a zero value, and HDA

j are the corresponding effec-
tive electronic couplings. The sum in Eq. �31� has 3N� terms,

in which the maximum and minimum � j
c are �max=�i=1

N� � j�
and �min=−�max, respectively, and the corresponding elec-
tronic couplings have the same value of �i�kBTDi�

2 /2mi�
� �i�

�2.
Despite the effective electronic couplings have different
forms in Eq. �31� two of them corresponding to the maxi-
mum and minimum � j

c have the most explicit change with
respect to temperature and the frequencies of the bridge
modes.

Comparing Eq. �31� with Eq. �27�, we find several obvi-
ous differences. The effective electronic coupling �HDA

j � is
quadratically dependent on Dj� /� j�, rather than exponen-
tially. For a given bridge, it is linearly proportional to tem-
perature. Moreover, the parabolic shape dependence of the

driving force is changed to the overlap of 3N� Gaussian func-
tions and the peak positions cover from �G=�+�max to
−��+�max�.

To explicitly show these properties, Fig. 1 plots the driv-
ing force dependence of the rates with the linear and expo-
nential couplings for a single bridge mode, respectively, as
well as that from the Marcus formula. The maximum values
of the rates are scaled to 1 for the comparison. The param-

eters used are �=0.2��, 
=0.5���, and kBT=1.5��, respec-
tively, to guarantee the validity of the classical approxima-
tions. For the exponential electronic coupling, the peak is
shifted as predicted by Eq. �27� and the width becomes wider
compared with that from the Marcus formula. These proper-
ties have already been addressed in previous works �see, for
instance, Ref. 9�. However, the present work has presented
an analytical form which correctly predicts these phenom-
ena. For the linear coupling, we display the rates with two
cases: C+DQ�C=D� and DQ. They are drawn in Fig. 1 with
dot-long-dashed and dot-short-dashed lines, respectively. In
case 1, the peak position is the same as that from the Marcus
formula, but the width becomes wider. The reason can be
explained by the overlap of three Gaussian functions shown
in Eq. �30�. In case two or C�D, two symmetric peaks
explicitly appear as expected because the intermediate peak
�the Marcus peak� disappears. It is noted that two peaks have
also been found for a sinusoidal modulation coupling21 in a
special situation where the peaks are asymmetric.

Figure 2 displays the temperature dependence of the
rates at �G=0. The rates are scaled by the Marcus one for
the purpose of investigating rate slops. The linear coupling
has a form of C�1+Q�. Obviously, the rate changes with
respect to temperature are significantly different for the lin-
ear and exponential couplings. The rates increase exponen-
tially with increasing of temperature for the exponential cou-
pling, while the rates for the linear coupling show the linear
property as expected.

IV. CONCLUDING REMARKS

We have presented rigorous nonadiabatic ET rate formu-
las for donor-acceptor systems incorporated fluctuating
bridges for linear and exponential non-Condon couplings in
closed forms. At high temperature limit, the analytical ex-
pressions of the non-Condon coupling parameter dependence
of the rates are built. It is found that the effective coupling is
much dependent on the coupling form, as well as the fre-
quencies of bridge modes and temperature. The modifica-
tions for the Marcus parabolic shape are quantitatively pre-
dicted. The present analytical solutions may be used
experimentally to judge the properties of bridge dynamics.
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FIG. 1. The driving force dependence of the rates. Dashed line is for the
exponential coupling �Eq. �27��, dot-long-dashed line for the linear coupling
�Eq. �31�� with a C+DQ form, dot-short-dashed line for the linear coupling
with a DQ form, and solid line for no bridge �Eq. �1��.
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FIG. 2. The temperature dependence of the rates at �G=0. Solid and dashed
lines are for the exponential and linear couplings, respectively.
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For instance, if the rates increase nearly exponentially with
respect to temperature compared with these from the donor-
acceptor system without bridges, the non-Condon coupling
mostly depends exponentially on the nuclear coordinates of
bridges. From the driving force dependence of the rates, one
may expect the linear non-Condon coupling if several peaks
appear or the parabolic width becomes wider than the
Marcus’s one, while the exponential coupling is assumed if
the peak of the Marcus parabolic shape is shifted.

Exponentially, the anomalous energy gap law deviated
from Marcus theory has been observed. The typical ex-
amples include ET for Ru-modified proteins29 and the
quenching of fluorescer molecules by quencher molecules.30

The non-Condon coupling has been successfully used to ex-
plain such situations.9,20 With a measurement of temperature
dependence of the rates, the present formulas could further
shed some light on bridge properties, such as mode frequen-
cies and coupling parameters. More recently, several experi-
ments have observed temperature dependence of electronic
coupling in some systems, for example, C-shaped donor-
bridge-acceptor systems31 and the donor-acceptor system
with oligo-p-phenyleneethynylene bridges.32 The present ap-
proach may be also useful for these systems to investigate
the non-Condon property coming from the bridge fluctua-
tion. The work on this aspect is underway.
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