
COMMUNICATION www.rsc.org/crystengcomm | CrystEngComm

D
ow

nl
oa

de
d 

by
 X

ia
m

en
 U

ni
ve

rs
ity

 o
n 

13
 M

ar
ch

 2
01

1
Pu

bl
is

he
d 

on
 0

5 
A

ug
us

t 2
00

8 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/B

80
49

66
A

View Online
Influence of reaction conditions on the channel shape of 3d-4f heterometallic
metal–organic framework†‡

Xiang-Jian Kong,a Yan-Ping Ren,b La-Sheng Long,*a Rong-Bin Huang,a Lan-Sun Zhenga

and Mohamedally Kurmoo*c

Received 25th March 2008, Accepted 16th July 2008

First published as an Advance Article on the web 5th August 2008

DOI: 10.1039/b804966a
Three structural kinds of 3d-4f metal–organic-frameworks (MOFs),

{[Ln4(ox)3(Ni(IDA)2)3(H2O)6]}n$xnH2O (Type I: Ln]La, Nd, Eu,

Gd; IDA ¼ iminodiacetate, ox ¼ oxalate), {[Ln2 (ox)(Ni(I-

DA)2)2(H2O)2]}n$2nH2O (Type II: Ln]La, Pr, Nd, Eu) and

{[Dy2(ox)2Ni(IDA)2(H2O)2]}n$2nH2O (Type III), have been

synthesized under hydrothermal condition. The crystal structures

consist of Ln-oxalate tetramers for Type I, dimers for Type II and

one-dimensional polymers for Type III bridged by the metalloligand

[Ni(IDA)2]
2�. While Type I contains a mixture of ‘‘Ln6Ni4-paral-

lelogram’’ (A-Type) and ‘‘Ln6Ni2-parallelogram’’ (B-Type) chan-

nels, Type II and Type III contain only A-type and B-type channels,

respectively. A fairly high stability of the MOFs is indicated by

thermogravimetric analyses and reversible dehydration and rehy-

dration of guest water molecules, which is confirmed by single

crystal-to-single crystal transformation of 1 and 5.
The construction of heterometallic metal–organic frameworks, such

as, 3d-4f and 3d-5f metal systems, are currently of interest because of

their structural diversity and potential applications in magnetism,

catalysis, separation, gas storage and molecular recognition.1–3

However, owing to the variable and versatile coordination behavior

of 4f metals4 as well as the competitive reactions between 3d and 4f
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metals chelating to the same ligand,5 the construction of 3d-4f metal–

organic frameworks is mainly focused on those containing one single

ligand4–7 and the utilization of mixed ligands to construct hetero-

metallic metal–organic framework is rather limited.8 In particular,

how to control the shape and/or the size of cavity/channel of heter-

ometallic MOFs remains a great challenge. Here, we report the

syntheses and crystal structures of a novel family of 3d-4f hetero-

metallic MOFs, namely, {[Ln4(ox)3(Ni(IDA)2)3(H2O)6]}n$xnH2O

(Ln]La (1), x¼ 3, Nd (2), x¼ 2, Eu (3), x¼ 2, Gd (4), x¼ 2; IDA

¼ iminodiacetate (Scheme 1), ox ¼ oxalate), {[Ln2 (ox)(Ni(I-

DA)2)2(H2O)2]}n$2nH2O (Ln]La (5), Pr (6), Nd (7), Eu (8)) and

{[Dy2(ox)2Ni(IDA)2(H2O)2]}n$2nH2O (9). The most interesting of

these results is the occurrence of two types of channels in Type I

MOFs (1–4) characterized by ‘‘Ln6Ni4-parallelogram’’ (A-type

channel) and ‘‘Ln6Ni2-parallelogram’’ (B-type channel), while Type II

MOFs (5–8) contain only A-type channel, and Type III MOF (9)

contains only B-type channel, revealing that the shape and size of the

channel of 3d–4f MOFs can be controlled by the reaction conditions.

The nine metal–organic-frameworks described this work are

formed of lanthanide cations connected by two different bridging

units, the oxalate ion and a metalloligand consisting of fac-

NiII(IDA)2
2� which has four divergent carboxylate oxygen atoms

(Fig, S1, ESI).† When the oxalate ion is generated in hydrothermal

reactions, different crystal phases are obtained compared to when

oxalate ion is added in the reaction mixture.

Complex 1, a representative of Type I, consists of four La(III),

three [Ni(IDA)2]
2�, three ox2� and nine water molecules. Analyses of

the diffraction data reveal two independent La(III) centers in the

crystal structure of 1 (Fig. 1) which are both nine-coordinated but

have different geometries. La1 adopts a tri-capped trigonal prism

geometry and is coordinated by two [Ni(IDA)2]
2�, one as a bidentate

and the other as monodentate ligand, two bidentate ox2� and two

water molecules. La2 adopts a capped square antiprism geometry

and is coordinated by four metalloligands, with two bidentate and

two monodentate, one bidentate ox2� and one molecule of water. The

range of the bond lengths for Ni–N, Ni–O and La–O are

2.033(3)�2.064(3), 2.005(3)�2.071(3) and 2.395(3)�2.677(3) Å,

respectively, being normal even if slightly shorter than those reported

for a nine-coordinated La–Ni–complex.9 The key feature of this

structure is the formation of La4(ox)3 tetramers connected by
Scheme 1 The structure of IDA ligand.
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Fig. 1 Ball and stick plot showing the coordination environment of two

independent La(III) centers in 1 (hydrogen atoms are omitted for clarity).

Fig. 2 Ball and stick plot showing the 2D structure in 1 viewed along (a)

the bc face, (b) the ab face, (c) the 3D structure of 1 (guest water molecules

and hydrogen atoms are omitted for clarity).

D
ow

nl
oa

de
d 

by
 X

ia
m

en
 U

ni
ve

rs
ity

 o
n 

13
 M

ar
ch

 2
01

1
Pu

bl
is

he
d 

on
 0

5 
A

ug
us

t 2
00

8 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/B

80
49

66
A

View Online
[Ni(IDA)2]
2� metalloligands. From another point of view, one may

regard this structure as two adjacent La(III) centers alternately con-

nected by an ox2� ligand and a [Ni(IDA)2]
2� to generate a 1D chain of

{[La2(H2O)3(ox)Ni(IDA)]}n
2n+ that is further extended into a 1D

ladder of {[La4(ox)3Ni2(IDA)2]}n
2n+ (along the b-axis) through

ox2� coordinating to the La(III) cations. The 2D (bc-face) structure in

1 can be viewed as the connection of two adjacent 1D ladders

through coordination of the [Ni(IDA)2]
2� to the La(III) centers. This

linking mode generates a structure containing two types of parallel-

ogram channels, i.e., a 9.12� 12.81 Å ‘‘La6Ni4’’ (namely, A-type) and

a 6.48 � 12.81 Å ‘‘La6Ni2’’ (namely, B-type). The adjacent chains of

{[La2(H2O)3(ox)Ni(IDA)]}n
2n+ are connected to each other through

uncoordinated carboxylate oxygen atoms of the [Ni(IDA)2]
2� along

the the a-axis forming layers in the ab-plane, as shown in Fig. 2b.

Adjacent layers are further linked alternately by oxalate and

[Ni(IDA)2]
2� units, generating the 3D structure (namely, Type I

MOF) with two kinds of channels as shown in Fig. 2c. The guest

water molecules are located only in the A-type channel and

hydrogen-bonded to its host.

Complexes 2, 3 and 4 are isomorphs of 1, except for the number of

guest water molecules which may be a consequence of the larger ionic
1310 | CrystEngComm, 2008, 10, 1309–1314
radius of La (122 pm) than those of Nd (104 pm), Eu (98 pm) and Gd

(97 pm). The bond lengths for Ni–N, Ni–O and Ln–O are

2.034(4)�2.067(4), 2.002(4)�2.072(3) and 2.325(3)�2.618(35) Å in 2,

2.040(5)�2.064(4), 2.014(4)�2.072(3), 2.300(4)�2.604(4) Å in 3 and

2.034(4)�2.058(4), 2.004(4)�2.076(4) and 2.295(6) �2.581(4) Å in 4,

respectively. The bond lengths of Ni–N, Ni–O and Ln–O in 2, 3 and 4

are very close to those in 1.

Complex 5, a representative of Type II MOF, consists of two

Pr(III) cations, two [Ni(IDA)2]
2� metalloligands, one ox2� ligand and

four water molecules. In the reactions, parts of the iminodiacetate

ligand decompose into oxalate ligands, as has been noted in

the literature.2i Crystal structure analyses reveal that there is

one independent Pr(III) cation in the asymmetric unit which is
This journal is ª The Royal Society of Chemistry 2008
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Fig. 3 Ball and stick plot showing the coordination environment of

Pr(III) center in 5 (hydrogen atoms are omitted for clarity).

Fig. 4 Ball and stick plot showing (a) 2D structure in 5 along bc face,

and (b) the 3D structure of 5 (guest water molecules and hydrogen atoms

are omitted for clarity).

Fig. 5 Ball and stick plot showing the coordination environment of

Dy(III) center in 9.
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nine-coordinated by two metalloligands in bidentate mode, two

metalloligands in monodentate mode, one ox2� ligand in chelate mode

and one water molecule to adopt a capped square antiprism geometry

as shown in Fig. 3. Its 3D structure can be described as follows: 1) two

adjacent [Pr2(ox)]4+ units coordinated by a [Ni(IDA)2]
2� through its

carboxylate in a bidentate fashion to form a 1D chain (along the

c-axis) consisting of {[Pr2(ox)Ni(IDA)2]}n
2n+; 2) every 1D chain

connects along the b-axis through the [Ni(IDA)2]
2� alternately coor-

dinated to the Pr(III) cations in an adjacent 1D chain, generating a 2D

(bc-face) layered structure {[Pr2Ni2(IDA)4(ox)(H2O)2]}n; when viewed

along theb-axis, the 2D (ac-face) structure is identical to that of theab-

face of the Type I structure; 3) two adjacent 2D (ac-face) layers further

extend into a 3D structure through the [Ni(IDA)2]
2� units as shown in

Fig. 4b. This linking mode results in the framework of 5 having only

A-type channels, significantly different from those of 1. Water mole-

cules are located in the A-type ‘‘Pr6Ni4-metal-parallelogram’’ channel

(8.83 � 12.64 Å) and hydrogen bonded to the carboxylate group of

the metalloligand. The bond lengths of Ni–N, Ni–O and Pr–O in 5 are

2.020(3)�2.035(2), 2.011(3)�2.049(3) and 2.313(3)�2.647(4) Å,

respectively.

Consequently, both structures of Type I MOF and Type II MOF

contain identical ‘‘layer-[Ni(IDA)2]
2�-layer’’ sections, which contain

the ‘‘A-type channels’’. In the structure of Type II, this motif makes

up the entire unit cell, and it repeats along the b-direction with

a periodicity of ca. 8.5 Å. In the structure of Type I, the sections are

linked through oxalate anions: essentially, the unit cell of the Type I

structure is ‘‘pillared’’ by oxalate anions. The periodicity along the

c-direction in the Type I structure is ca 14.7 Å, i.e. inserting

the oxalate anions expands the structure by about 6 Å and introduces

the ‘‘B-type channels’’.

The crystal structures of 6, 7 and 8 are isomorphous to that of

framework 5. The range of bond lengths for Ni–N, Ni–O and Ln–O

are 2.041(2)�2.051(2), 2.025(2)�2.058(2) and 2.377(2)�2.681(2) Å for

6, 2.041(3)�2.062(3), 2.030(2)�2.071(2) and 2.320(3)�2.662(3) for 7

and 2.039(4)�2.065(4), 2.034(3)�2.083(3) and 2.279(4)�2.655(4) for

8, respectively. The bond lengths for Ni–N, Ni–O and Ln-O in6,7and

8 are very close to those for 5.

Complex 9, the only one of its kind (namely, Type III MOF),

consists of two Dy(III) cations, one [Ni(IDA)2]
2� metalloligand, two

ox2� ligands and four water molecules. Crystal structure analyses
This journal is ª The Royal Society of Chemistry 2008
reveal that the central Dy(III) cation is eight-coordinated, respec-

tively, by two [Ni(IDA)2]
2� (with one in bidentate mode and the other

in monodentate mode), two ox2� and one water molecules in

a di-capped trigonal prism coordination geometry as shown in Fig. 5.

The 2D structure in 9 can be viewed as the 1D chain in 5 connected to

adjacent ones through ox2� alternately coordinated to Dy(III) cations

from the 1D chain of {[Dy2(ox)Ni(IDA)2]}n
2n+, while the 3D structure

of 5 can be viewed as the extension of the 2D layers through the
CrystEngComm, 2008, 10, 1309–1314 | 1311
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coordination of the uncoordinated carboxylate group of the

[Ni(IDA)2]
2� metalloligand from one 2D layer coordinated to the

Dy(III) cation of adjacent 2D layers as shown in Fig. 6. This linking

mode results in the 2D layer containing only B-type ‘Dy6Ni2-paral-

lelogram’ channels (6.10 � 13.73 Å), much different from those in 1

and 5.

Interestingly, comparison of the channel dimensions with those of

1 (6.48 � 12.81 Å) reveals that the shape of B-type channel in 9 is

significantly modified (6.10 � 13.73 Å). The bond lengths of Ni–N,

Ni–O in 9 are 2.067(6), 2.012(5)�2.033(5) Å, respectively, compa-

rable to those in 5. The bond lengths of Ln–O are 2.240(5)�2.446(5)

Å, shorter than those in 5. One guest water molecule is located in each

B-type ‘‘Dy6Ni2-parallelogram’’ channels.

Considering the synthetic conditions (ESI)† and the fact that part

of the iminodiacetate ligand decomposes into ox2� during the reac-

tion, it is difficult to explain the structural differences on the basis of

the concentration of ox2�. In rational, the ratio Lanthanide ion:

oxalate: metalloligand is 4 : 3 : 3 for Type I MOF, 4 : 2 : 4 for Type

II MOF and 4: 4: 2 for Type III MOF, suggesting a common total of

six ligand/metalloligand per four lanthanide ions. With the addition

of an extra oxalate ion in the starting reaction mixture, the resulting

structures appear to contain more oxalate than metalloligand.

Compared to Type I MOFs, the formation of the Type III MOF

would require more ox2� according to their crystal structural anal-

yses. However, several attempts to synthesize Type III MOFs in the

same way as described for Type I MOFs or at higher initial

concentration of ox2� were unsuccessful and we obtained the previ-

ously reported 3D complex Ln2(ox)3(H2O)6,
10 rather than the Type
Fig. 6 Ball and stick plot showing (a) 2D structure in 9 along the bc-face,

and (b) the 3D structure of 9 (guest water molecules and hydrogen atoms

are omitted for clarity).

Fig. 7 TGA–DSC curves for complexes 1 (a), 6 (b) and 9 (c) over the

temperature range of 25–800 �C.

1312 | CrystEngComm, 2008, 10, 1309–1314 This journal is ª The Royal Society of Chemistry 2008
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III MOF. Also, it was difficult for us to obtain Type III MOF for the

light lanthanide ions (La3+–Eu3+). These facts indicate that, in addi-

tion to the concentration of ox2�, the lanthanide cation itself is an

important factor influencing the structure of the MOFs and we

attribute it to the smaller radius of Dy(III). This is understandable,

because the lanthanide ion with smaller radius would favour the

coordination of ox2� ligand on the basis of the Hard–Soft Acid–Base

principle, while combining with more ox2� would favour the heavy

lanthanide ion to form the complex with lower coordination number

satisfying the requirement of the coordination geometry for heavy

lanthanide ion. Consistently, the coordination number of lanthanide

ion in Type II, Type I and Type III MOFs decreases from nine,

to nine/eight and to eight, respectively, with the increase of ox2�

ligand.8d,8e

Complexes 1, 6 and 9 were selected for TGA to examine the

thermal stability of the complexes in the temperature range 20–800
�C. As shown in Fig. 7, the TGA curve for 1 displays an initial weight

loss of 8.46% between 25 and 282 �C, which corresponds to the loss of

guest and coordinated water molecules (calculated, 8.30%). Between
Table 1 Crystal data and details of data collection and refinement for comp

Complex 1 1a 2

Formula C15H24La2 N3Ni1.5O22.5 C15H21La2 N3Ni1.5O21 C15H
Mr 972.26 945.23 973.
T/K 123(2) 298(2) 1
Crystal system Triclinic Triclinic Tric
Space group P�1 P�1 P�1
a/Å 7.201(2) 7.223(1)) 7.1
b/Å 12.813(3) 12.769(2) 12.6
c/Å 14.723(3) 14.766(2) 14.6
a/� 74.624(4) 74.862(2) 74.9
b/� 89.392(4) 89.617(2) 89.5
g/� 87.687(3) 87.493(2) 87.4
V/Å3 1308.7(5) 1313.3(3) 1270
Z 2 2 2
Dc/g cm�3 2.467 2.390 2.54
m/mm�1 4.376 4.353 5.22
Data/params 4976/412 5017/385 4848
q/� 2.46–26.00 1.43–26.00 1.44
Obsd reflns 4554 4787 4427
R1 [I > 2s(I)] 0.0397 0.0270 0.04
wR2 (all data) 0.1046 0.0820 0.09

Complex 5 5a 6

Formula C18H28N4Ni2O24Pr2 C18H24N4Ni2O22Pr2 C18H28La2N4Ni2
Mr 1083.68 1047.65 1079.68
T/K 123(2) 298(2) 298(2)
Crystal system triclinic triclinic triclinic
Space group P�1 P�1 P�1
a/Å 7.113(2) 7.153(2) 7.225(1)
b/Å 8.519(2) 8.569(3) 8.647(2)
c/Å 12.641(4) 12.570(4) 12.836(2)
a/� 74.748(5) 75.026(6) 74.971(3)
b/� 88.024(5) 87.787(6) 87.847(3)
g/� 86.919(5) 85.779(6) 86.518(3)
V/Å3 737.8(4) 742.2(4) 772.9(2)
Z 1 1 1
Dc/g cm�3 2.439 2.344 2.320
m/mm�1 4.612 4.575 4.014
Data/params 2363/238 2411/220 2946/238
q/� 1.67–24.99 1.68–25.00 2.44–25.99
Obsd reflns 2310 2200 2906
R1 [I > 2s(I)] 0.0371 0.0531 0.0248
wR2 (all data) 0.1121 0.1360 0.0654

This journal is ª The Royal Society of Chemistry 2008
282 and 340 �C, 1 shows no weight loss, which is an indication of its

stability up to 340 �C. When the temperature is higher than 340 �C, 1

rapidly decomposes to a mixture of NiO and La2O3 (observed resi-

dues, 45.03%; calculated, 45.05%) at 800 �C. The TGA curve for 6

displays the first weight loss of 7.3% for the loss of lattice water and

coordinated molecules (calcd. 6.7%) between 25 and 305 �C. Between

305 and 345 �C, 6 shows no weight loss, indicating that the frame-

work of 6 can be maintained over this temperature range. In contrast

to those of 1 and 6, the TGA curve for 9 displays an initial weight loss

of 3.83% for the loss of guest water molecules (calculated, 4.02%)

between 25 and 100 �C (Fig. 11d). The second weight loss of 4.03%

for the loss of coordinated water molecules (calculated, 4.02%) occurs

in the temperature range of 165 to 210 �C. Between 210 to 350 �C, 9

shows no weight loss, indicating that the framework of 9 is stable

up to 350 �C.

Consistent with TGA results, PXRD study (Fig. S2–S3)† reveals

that 1 retains its crystallinity when heated to 300 �C, suggesting that

the framework of 1 is maintained at that temperature. When cooled

to 25 �C and exposed to air for 24 h, the initial X-ray pattern was
lexes 1 to 9

3 4

23N3 Nd2Ni1.5O22 C15Eu2H23 N3Ni1.5O22 C15Gd2H23 N3Ni1.5O22

91 989.35 999.93
23(2) 223(2) 123(2)
linic Triclinic Triclinic

P�1 P�1
18(2) 7.0976(19) 7.072 (1)
50(3) 12.604(3) 12.517(3)
33(3) 14.654(4) 14.536(3)
22(4) 74.981(5) 74.901(4)
13(4) 89.720(5) 89.669(4)
03(4) 87.365(5) 87.133(4)
.9(5) 1264.7(6) 1240.7(4)

2 2
5 2.598 2.676
7 6.107 6.515
/403 4868/394 4716/394
–26.00 1.44–26.00 1.45–25.99

4079 4519
45 0.0430 0.0415
80 0.1020 0.1087

7 8 9

O24 C18H28N4 Nd2Ni2O24 C18Eu2H28N4Ni2O24 C12Dy2N2 H18NiO20

1090.34 1105.78 894.0
123(2) 298(2) 298(2)

triclinic triclinic triclinic
P�1 P�1 P�1

7.163(2) 7.124(2) 7.403(2)
8.577(2) 8.578(2) 8.224(2)

12.728(3) 12.695(3) 9.822(2)
74.789(4) 74.769(4) 81.482(4)
87.820(4) 87.335(5) 81.709(4)
86.685(4) 86.314(5) 83.254(4)

753.1(3) 746.7(3) 582.3(2)
1 1 1
2.404 2.459 2.549
4.730 5.494 7.248
2847/238 2800/229 2237/169
1.66–26.00 1.66–26.00 2.11–25.99
2782 2705 2189
0.0390 0.0422 0.0358
0.1011 0.1069 0.0915

CrystEngComm, 2008, 10, 1309–1314 | 1313
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recovered, indicating that the dehydration and rehydration processes

for 1 are reversible. The high thermal stability of 1 was mainly

attributed to the rigid oxalate ligands which prevent the framework

from collapsing. The XRPD study reveals that complex 5 has similar

thermal stability and reversible sorption process as 1.

Based on the stability of the frameworks, 1 and 5 were selected for

investigation of their dehydration and rehydration behaviour.

Although thermogravimetric analyses suggest that these frameworks

are stable when the guest and coordinated water molecules are

removed, the anhydrous crystals obtained after these measurements

were severely damaged with cracks that it was difficult to perform

X-ray data collections. However, when the crystals were gently

heated to 230 �C and kept for 30 min followed by cooling to room

temperature, the crystals were less damaged and we were able to

obtain the partially dehydrated 1 (namely 1a) and 5 (namely 5a). The

crystal structures obtained from the single crystal diffraction data

collected at room temperature reveal that the frameworks are

maintained but only the non-coordinated water molecules were

removed. The range of bond lengths for Ni–N, Ni–O and La-O in 1a

are 2.035(2)�2.062(3), 2.003(3)�2.067(2) and 2.381(2)�2.699(2) Å,

while those in 5a are 2.010(7)�2.052(7), 2.013(6)�2.047(6) and

2.313(6)�2.630(7) Å, respectively. These are comparable to the

corresponding ones in 1 and 5. Analyses using Platon11 gave an

estimated void volume of 62 and 55 Å3 per mole for 1 and 5 without

the guest water, respectively. The attempt to perform similar

measurements for crystals of 9 has so far been unsuccessful.

In summary, using organic ligand and metalloligand as building

units in association with lanthanide cations, we have synthesized

three structural kinds of 3d-4f MOFs, in which complexes 1 to 4

contain two kinds of channels, i.e., A- and B-type, complexes 5 to 8

contain only the A-type channel, while complex 9 contains only a B-

type channel. The structural differences of the complexes reveal that

the shape and dimensions of the channels of MOFs may be changed

by adjusting the reaction conditions.
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