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Serum samples from kidney cancer patients and healthy controls were analyzed by both direct infusion

mass spectrometry (DIMS) and liquid chromatography-mass spectrometry (LC-MS) with a high

resolution ESI-Q-TOFMS. The classification and biomarker discovery capacities of the two methods

were compared, and MS/MS experiments were carried out to identify potential biomarkers. DIMS had

comparable classification and prediction capabilities to LC-MS but consumed only�5% of the analysis

time. With regard to biomarker discovery, twenty-three variables were found as potential biomarkers

by DIMS, and 48 variables were obtained by LC-MS. DIMS is recommended to be a fast diagnostic

method for kidney cancer, while LC-MS is necessary when comprehensive screening of biomarkers is

required.
Introduction

Metabonomics has been defined by Nicholson as the quantitative

measurement of the dynamic multiparametric response of

a living system to pathophysiological stimuli or genetic modifi-

cation.1 It concerns low molecular weight compounds in biofluids

and other complex matrixes, which are known as metabolites.2,3

Many analytical techniques have been developed for metabo-

nomic studies, including nuclear magnetic resonance spectroscopy

(NMR), mass spectrometry (MS), fourier transform infrared

spectroscopy (FT-IR), and Raman spectroscopy.4–7 With the

advantages of high sensitivity, high accuracy, wide dynamic range,

robustness to molecular weight (MW) determination, and the

ability to identify metabolites, mass spectrometry has become the

workhorse of metabonomics research in recent years.8–11

There is a trade-off between comprehensive sample analysis

and high sample throughput in MS-based metabonomics.

Currently, liquid chromatography coupled to MS (LC-MS) is

a reference tool for metabonomics analysis.12,13 Although being

beneficial to comprehensive analysis, the chromatographic step

limits the throughput, especially when the number of sample sets

is large.14 Furthermore, the pretreatment of LC-MS data (peak

alignment and retention time correction) before chemometrics

analysis is problematic because of the possible loss of some

relevant analytical signals or the generation of artifacts by erratic

retention time shift correction or background subtraction.15 On

the contrary, direct infusion mass spectrometry (DIMS), by

avoiding any prior chromatographic steps, has the greatest

potential for high throughput and provides more concise raw

data than LC-MS. DIMS has been used in targeted metabolite

analysis and global metabolite profiling in the last decade.8,16 A
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method using DIMS for the analysis of 23 amino acids in dry

blood spots without chemical derivatization has been devel-

oped.17 The quantitative analyses of metabolites by DIMS have

been validated and were used in large newborn-screening

programs to detect and diagnose inherited metabolic disorders in

the neonatal period.18,19 In general, DIMS applications for

metabolite profiling are mainly concentrated in the microbial and

plant arenas.16,20 DIMS has been used for the global analysis of

intracellular metabolites in different strains of the yeast S. cer-

evisiae.21 A nontargeted metabolic analysis has been performed

on strawberry fruit and tobacco flower extracts with direct

infusion Fourier transform ion cyclotron resonance mass spec-

trometry (FTICR-MS).22 Viant et al.23 reported an optimized

strategy for wide-scan direct infusion nanoelectrospray FTICR-

MS. This method collected multiple adjacent selected ion

monitoring (SIM) windows that were stitched together using

novel algorithms. Using the SIM-stitching approach, an increase

in the dynamic range and mass accuracy was achieved for

metabonomic studies. Although DIMS has been explored in

metabonomic analysis with low mass resolution analyzers,

including quadrupole and ion-trap,21,24,25 high mass resolution

devices such as time of flight (TOF) mass spectrometers and

FTICR-MS are more suited for such an approach, especially for

global metabonomics analysis.23,26–28 Mass spectrometry with

high resolving power unambiguously discriminates isobaric ions;

elemental compositions of low molecular mass analytes can be

obtained by accurate mass measurements with ppm errors in

mass spectra. Regardless of what devices used in DIMS, matrix

effects are inevitable because the samples are infused together

without separation, which may result in reduced sensitivity and

deteriorated capability for metabolite identification.29,30 Another

limitation of DIMS is its inability to discriminate between

isomeric compounds based solely on accurate mass.31 Thus,

a practical comparison of DIMS and LC-MS would be both

interesting and useful. However, few studies have compared the

two methods in real metabonomic analysis, especially using the

same mass spectrometer.
This journal is ª The Royal Society of Chemistry 2010
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In this study, serum samples from kidney cancer patients and

healthy controls were used as models to check the performance of

LC-MS and DIMS with a high resolution ESI-Q-TOFMS. The

resulting data were analyzed by multivariate data analysis.

MS/MS experiments were carried out to identify potential

biomarkers. The classification and biomarker discovery capac-

ities of the two methods were compared.
Experimental

Reagents and materials

HPLC-grade methanol and acetonitrile were purchased from

Merck (Darmstadt, Germany). Formic acid was obtained from

Fluka (Switzerland). Distilled water (18.2 MU) was prepared

using a Milli-Q water purification system (Millipore, MA, USA).

All standards were purchased from Sigma-Aldrich (MO, USA).
Sample collection and storage

Thirty-one kidney cancer patients and 20 healthy volunteers

from First Hospital of Xiamen were enrolled in this study. All of

the patients were diagnosed using a histopathology examination

and none had received chemotherapy, radiation or undergone

nephrectomy before sample collection. The detailed demo-

graphic profiles of the participants are provided in Table 1. The T

test was carried out to check whether the age and body mass

index (BMI) distributions differed significantly between the two

classes. The statistical test showed that the two classes were well

matched. All of the blood samples were collected before break-

fast with consent and then centrifuged at 3,000 � g for 10 min at

4 �C. The sera were stored at �80 �C prior to any further sample

preparation or analysis. An in-house quality control (QC)

sample was prepared by pooling and mixing the same volume of

each sample.32
Sample preparation

The sera were thawed at room temperature before analysis. A

volume of 600 mL of methanol was added to 200 mL of sera. After

vortexing, the mixture was set aside at room temperature for 10

min and then centrifuged at 12,000 � g for 10 min at 4 �C. The

supernatant was filtered through a 0.2-mm regenerated cellulose

filter (Agilent Technologies, Inc., Boeblingen, Germany) before

LC-MS analysis. For DIMS analysis, the filtered supernatant

was further diluted 5-fold with 0.1% formic acid. To choose the

most appropriate dilution, the same samples with different

dilutions (2-fold, 5-fold, 10-fold, and 20-fold) were infused into
Table 1 Demographic and clinical data

Kidney cancer
patients Healthy controls p valvea

Number 31 20 —
Age (median, range) 56, 40–72 52, 43–71 0.15
Male/female ratio 19/12 12/8 —
BMI (median, range) 22.1, 16.4–27.6 23.4, 18.1–27.4 0.19
Race Chinese Chinese —

a p values were calculated from student T-test.

This journal is ª The Royal Society of Chemistry 2010
the mass spectrometer for a pilot study. Five-fold dilution was

ultimately selected because the maximum number of peaks (S/N

> 5) were detected with this dilution, indicating the best overall

response (low ion suppression and high sensitivity).
Mass spectrometer

A high resolution electrospray mass spectrometer (MicrOTOF-Q

II, Bruker Daltonics Corporation, USA) was operated in positive

ion mode for both LC-MS and DIMS analysis. This mass

spectrometer can provide accurate mass measurements with

errors of less than 5 ppm using external calibration and mass

resolving power of 20,000. The positive ion mode was used

because more compounds can be ionized in this mode and

because it is more widely used in serum metabolite profiling.33,34

The capillary voltage was set at �4500 V with an end plate offset

potential of �500 V. Data were collected from 50 to 1000 m/z

with an acquisition rate of 1 spectrum per second. Because the

sample flow rate differed between the two methods, the nebulizer

gas and dry gas parameters were individually optimized. For LC-

MS analysis, the dry gas was set to 6 L min�1 at 220 �C with

a nebulization gas pressure of 0.7 bar, while for DIMS, the dry

gas was set to 1.2 L min�1 at 120 �C with a nebulization gas

pressure of 0.4 bar. In the MS/MS experiments, argon was used

as the collision gas and the collision energy was adjustable from

10 eV to 30 eV.
LC-MS analysis

LC separation was performed on a 2.1 � 150-mm Acclaim C18

3-mm column (Dionex, USA) using a high performance liquid

chromatography system (Ultimate-3000, Dionex, USA). The

column was maintained at 30 �C and the mobile phase was 0.1%

formic acid (A) and acetonitrile with 0.1% formic acid (B). The

gradient started with 15% (B) for 2 min, and increased to 40% (B)

over 7 min, and then 98% (B) over 7–30 min. After holding at

98% (B) for 5 min, the composition was returned to its initial

conditions and maintained for three different column volumes

for equilibration. The sample injection volume was 15 mL. The

chromatograph was coupled directly to the mass spectrometer at

a flow rate of 200 mL min�1 without splitting. A QC sample and

a blank were analyzed after every 5 samples to identify the

sample carryover and check for stability.
DIMS analysis

A syringe pump (Razel, Connecticut, USA) was used at a flow

rate of 3 mL min�1 to infuse samples directly into the mass

spectrometer. The infusion time was 30 s for each sample.

Including the manual operation time, the whole analysis time

was about 2 min for each sample. A longer infusion time was not

used because the signal was sufficiently stable within 30 s. Longer

infusion time does not significantly improve the S/N or the

number of detected features. To avoid the cross-contamination,

a blank run was inserted between sample runs. A QC sample was

also used after every 5 samples to check for reproducibility.
Analyst, 2010, 135, 2970–2978 | 2971
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Data pretreatment

The raw data acquired from LC-MS were pretreated by the

DataAnalysis 4.0 software (Bruker Daltonics Corporation) to

find compounds with molecular features. Next, the data were

exported into the ProfileAnalysis 1.1 software (Bruker), which

allowed peak alignment, background noise subtraction and data

reduction, yielding a table of mass and retention time pairs with

associated intensities for all detected peaks. The main parameters

were set as follows: retention time range 1–40 min, mass range

50–1000, mass window 0.5, retention time window 1 min, and

noise elimination level 5. Variables that did not exist in 80% of

participants in one group were filtered out. For DIMS, the data

pretreatment is much easier because there is no need to take

account of retention time. ProfileAnalysis 1.1 software was also

used to convert the mass spectra into a variable table that dis-

played mass and associated intensities as columns for all samples.

The DIMS main parameters were set as follows: mass range 50–

1000, mass window 0.5, and noise elimination level 5. Variables

were also filtered as mentioned above.
Chemometrics analysis

The data were exported to the SIMCA-P 11.5 demo version

(Umetrics AB, Ume�a, Sweden) for multivariate data analysis.

Both principle component analysis (PCA) and partial least

squares-discriminant analysis (PLS-DA) were used for modeling

the differences between the kidney cancer patients and the

healthy controls. PCA is an unsupervised data analysis technique

that reduces original data to a few principal components while

retaining the features that contribute most to the variance. PLS-

DA, in contrast, is a supervised extension of PCA that uses class

information to maximize the separation among classes of
Fig. 1 Typical LC-MS base peak chromatograms (BPC) obtained from s

2972 | Analyst, 2010, 135, 2970–2978
observations. Pareto (Par) scaling was used in all models to avoid

chemical noise.
Results and discussion

Metabonomic profile of LC-MS and DIMS

Typical LC-MS base peak chromatograms (BPC) of serum

samples from a cancer patient and a healthy control are shown in

Fig. 1. Several base peaks are marked on the chromatogram to

provide an intuitive display. Fig. 2 presents the typical metabolic

fingerprints of the same samples by DIMS analysis. About 2000

peaks were detected in the mass spectrum, with intensities

ranging from 2 � 102 to 1 � 106 (arbitrary units) and S/N larger

than 5. Obvious differences can be observed between the

fingerprints of a cancer patient and a healthy control using

DIMS analysis.

To give an overview of the differences between LC-MS and

DIMS in serum metabonomic profiles, a summed mass spectrum

from the LC-MS analysis is presented in Fig. 3(a). The ion of m/z

149.01 was a major solvent peak in LC-MS analysis. Comparing

the main peaks in the mass spectra, most of the ions in the DIMS

mass spectrum have a m/z difference of 21.98 compared to those

of LC-MS, corresponding to the mass of [Na–H]. Thus, the

compounds were apt to form sodium ion adducts in the DIMS

analysis. It is worth mentioning that because the summed mass

spectrum of the LC-MS is the summation of all the ions during

the entire analysis time, the signal of low abundance ions can be

overlaid by the summed background. Therefore, direct

comparison of the number of ions between the spectra is not

meaningful.

The stability of the analytical system is one of the most

important factors in obtaining valid data for metabonomic
erum samples of (a) a healthy control and (b) a kidney cancer patient.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 2 Typical metabolic fingerprints obtained from serum samples of (a) a healthy control and (b) a kidney cancer patient.

Fig. 3 Comparison of a summed mass spectrum from (a) LC-MS analysis with (b) a mass spectrum from DIMS analysis.
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analysis. A QC sample was injected every 5 samples to monitor

and evaluate the stability of the two methods. In order to eval-

uate the method stability and repeatability roundly, quality

assurance of all detected peaks across the QC samples was per-

formed.35 The variations in retention times of all the peaks for

LC-MS were less than 0.2 min, and the variations of m/z values
This journal is ª The Royal Society of Chemistry 2010
for both methods were less than 10 mDa. The relative standard

deviations (RSDs) of the peak areas (for LC-MS) and peak

intensities (for DIMS) were calculated across the QC samples. In

LC-MS analysis, 68% (using peak area) of all the peaks have

RSDs less than 15%; and 82% and 90% of the peaks have RSDs

less than 20 and 30%, respectively. For DIMS, the number of
Analyst, 2010, 135, 2970–2978 | 2973
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Table 2 Comparison of the PLS-DA models built on data from LC-MS
and DIMS analysis

Imported Discovered
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peaks showing repeatability at RSDs of 15, 20 and 30% was 79%,

87% and 93%, respectively. These results demonstrate the

excellent stability and reproducibility of both methods.
R2Y(cum) Q2(cum) Var No.a Marker No.b

LC-MS 0.986 0.928 8360 48
DIMS 0.969 0.931 1801 23

a Imported Var No.: number of the variables imported to build the
model. b Discovered Marker No.: number of variables discovered as
potential markers.
Comparison of classification and prediction abilities

The datasets from LC-MS and DIMS, containing 8360 and 1801

variables respectively, were imported to SIMCA-P for multi-

variate statistical analysis. PCA was used as an unbiased statis-

tical method to detect any inherent trends within the data and to

identify any potential outliers that could affect subsequent

discriminant analysis. As shown in Fig. 4, obvious separation

trends can be observed between the two groups by both methods,

indicating inherent metabolic changes of the kidney cancer

patients compared to the controls. According to the R2X (cum)

parameter in PCA, 40.1% and 55.3% of the variables can be

explained by the first two components of the models built on LC-

MS and DIMS datasets, respectively.

To further study the differences between the kidney cancer

patients and the healthy controls, and to find out potential

biomarkers, supervised PLS-DA was subsequently used. 80% of

the data were randomly extracted from each group to create

a training set for building the PLS model. The remaining data

formed the independent prediction set and were used to evaluate

the developed model. The classification and prediction results are

shown in Fig. 5. Distinct clustering between the patients and

controls was achieved with both methods. All of the samples in

the prediction set were classified to the area in which they were

supposed to be. In PLS-DA, R2Y (cum) and Q2 (cum) parameters

were used for the evaluation of the models, indicating fitness and

prediction ability, respectively.36,37 The R2Y (cum) and Q2 (cum)

values obtained by DIMS are 0.969 and 0.931, respectively,
Fig. 4 PCA scores plots based on the (a) LC-MS dataset and

Fig. 5 PLS-DA scores plots for response variables (C patient training set, -

set): (a) LC-MS training set with prediction set overlaid and (b) DIMS train

2974 | Analyst, 2010, 135, 2970–2978
which are comparable to the values of 0.986 and 0.928 achieved

by LC-MS (summarized in Table 2). It should be noticed that

although fewer variables were obtained, DIMS analysis gener-

ated as robust a model as LC-MS. Considering that the analysis

time for each sample in DIMS is only 2 min, compared with

several tens of minutes for LC-MS, DIMS undoubtedly provides

a much higher sample throughput. DIMS could be developed as

a fast prognostic or diagnostic method for kidney cancer.
Comparison of biomarker discovery abilities

To discover the potential biomarkers among thousands of vari-

ables, parameter VIP (Variable Importance in the Projection)

was employed to reflect variable importance. A variable is

considered important for the model when its VIP is above 1.0.38,39

To focus on highly significant variables, only those with VIP

above 2.0 were considered here. The T-test was performed in

succession, and the variables without significant differences

between the patients and the controls (p > 0.01) were eliminated.
(b) DIMS dataset (C kidney cancer patients, -controls).

control training set, : patient prediction set, and A control prediction

ing set with prediction set overlaid.

This journal is ª The Royal Society of Chemistry 2010
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Table 3 Potential biomarkers identified from LC-MS and DIMS analysis

LC-MS DIMS

Identified resultsNo. m/z Adduct Fold changea p valueb No. m/z Adduct Fold changea p valueb

1 524.38 M + H [1+] �2.18 7.12E-11 1 546.35 M + Na [1+] �4.09 2.21E-21 LPCc (18 : 0)e

2 991.71 2M-H [1+] �2.70 2.68E-17 LPC (16 : 0)e

3 496.35 M + H [1+] �1.65 2.47E-14 2 518.32 M + Na [1+] �3.36 3.09E-21 LPC (16 : 0)e

4 522.36 M + H [1+] �1.47 3.02E-08 3 544.34 M + Na [1+] �2.19 1.17E-12 LPC (18 : 1)e

5 520.34 M + H [1+] �1.42 1.01E-03 4 542.32 M + Na [1+] �2.10 1.92E-10 LPC (18 : 2(9Z,12Z))f

6 310.31 M + H [1+] �8.61 9.56E-16 5 332.29 M + Na [1+] �3.21 1.12E-20 UNg

7 274.27 M + H [1+] +6.34 5.80E-12 6 274.27 M + H [1+] +3.08 8.73E-07 C16 sphinganinef

8 482.36 M + H [1+] �3.53 1.81E-17 LPC (15 : 0)f

9 510.36 M + H [1+] �3.14 2.27E-17 LPC (17 : 0)e

10 508.38 M + H [1+] �3.62 7.56E-17 LPC (P-18 : 0))f

11 480.35 M + H [1+] �2.83 5.25E-13 LPC (P-16 : 0)f

12 466.33 [1+] �6.05 7.94E-18 UNg

13 184.07 [1+] �1.85 2.31E-09 7 184.07 [1+] �1.25 1.21E-05 Fragment of LPCe

14 338.34 M+ ACN +H[1+] �3.52 1.94E-07 8 360.32 M+ ACN +Na[1+] �6.23 5.70E-21 Thromboxanef

15 774.59 [1+] �8.35 3.30E-14 9 796.55 M + Na [1+] �2.04 1.49E-07 UNh

16 387.17 2M + H[1+] +11.38 7.40E-09 10 409.16 2M + Na [1+] +4.85 7.83E-06 Phenylacetylglycine e

17 468.31 M + H [1+] �2.21 1.09E-07 LPC (14 : 0)e

18 548.37 M + H [1+] �2.24 2.31E-12 11 548.37 M + H [1+] �2.22 8.05E-13 LPC (20 : 2(11Z,14Z))f

19 293.27 [1+] �8.68 1.04E-21 UNh

20 510.39 M + H [1+] �3.47 2.06E-15 LPC (O-18 : 0)f

21 464.31 [1+] �5.04 3.04E-15 UNg

22 550.39 M + H [1+] �2.23 1.77E-08 12 550.39 M + H [1+] �2.12 9.08E-09 LPC (20 : 1(11Z))f

23 438.30 [1+] �3.54 2.97E-18 UNg

24 376.32 [1+] �6.65 8.25E-19 UNg

25 105.06 [1+] +8.85 1.45E-09 UNh

26 506.36 [1+] �3.38 4.83E-13 UNg

27 317.25 [1+] �2.13 4.74E-18 UNh

28 404.21 [1+] +9.88 1.75E-04 UNh

29 280.09 [1+] �3.36 2.91E-23 13 280.09 [1+] �3.06 6.73E-25 UNh

30 838.58 [1+] �7.64 1.82E-21 14 860.58 M + Na[1+] �1.06 9.00E-17 UNg

31 822.58 [1+] �4.53 9.13E-16 15 844.55 M + Na[1+] �3.20 8.21E-18 UNg

32 538.39 M + H [1+] �2.98 2.11E-15 LPEd (22 : 0/0 : 0)f

33 293.24 [1+] �5.72 1.11E-26 UNh

34 319.29 M + Na[1+] �3.20 1.03E-16 16 319.29 M + Na[1+] �2.73 7.73E-25 Thromboxanef

35 219.02 [1+] �1.36 9.65E-07 17 219.02 [1+] �1.36 9.80E-03 UNh

36 558.32 M + H [1+] �3.41 4.30E-15 LPE (22 : 1/0 : 0)f

37 205.09 M + H [1+] �1.58 2.34E-06 L-Tryptophane

38 357.24 M + Na[1+] �3.21 1.44E-20 Tetrahydrodeoxy-corticosteronee

39 373.23 [1+] �3.58 3.01E-22 UNh

40 640.44 M + 2H[2+] +13.88 4.33E-04 Ganglioside GM3 (d18:1/25 : 0)f

41 291.26 [1+] �3.16 4.68E-17 UNh

42 397.23 [1+] �3.56 3.07E-19 UNg

43 618.42 M + 2H[2+] +9.24 5.05E-04 18 640.41 M + H + Na[2+] +3.03 1.39E-05 Ganglioside GM3 (d18:1/22 : 1)f

44 327.23 [1+] �3.53 1.10E-19 UNg

45 182.07 M + H [1+] �1.69 4.53E-15 L-Tyrosinee

46 333.24 [1+] �2.19 5.73E-25 UNh

47 104.09 [1+] �1.54 7.46E-14 19 104.09 [1+] �2.27 5.31E-23 Fragment of LPCe

48 488.32 [1+] �2.94 5.74E-19
20 381.30 [1+] �4.02 1.30E-14 UNh

21 576.28 [1+] �2.58 2.53E-20 UNh

22 361.33 [1+] �2.34 1.08E-19 UNh

23 754.55 [1+] +1.53 8.20E-03 UNh

a Fold change was calculated from the arithmetic mean values of each group. Fold change with a positive value indicates a relatively higher
concentration present in kidney cancer patients while a negative value means a relatively lower concentration compared to the healthy controls. b p
values were calculated from student T-test. c LPC: Lysophosphatidylcholine. d LPE: Lysophosphatidylethanolamine. e Metabolites formally
identified by standard samples. f Metabolites putatively annotated. g Unknown: Compounds which MS/MS spectra were not interpretable or not
informative. h Unknown: Compounds lacked of enough intensity for MS/MS experiments.
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As a result, 23 variables were found as potential markers by

DIMS, while 48 variables were obtained by LC-MS (Table 3).

The method of identifying compounds is as follows. First, the

quasi-molecular ion of the corresponding variable was found in

the mass spectrum. Second, the exact mass of the quasi-
This journal is ª The Royal Society of Chemistry 2010
molecular ion was searched on the HMDB or METLIN website

to find possible compounds within a certain mass range. Because

the variation of the measured m/z value in our experiment was

below 10 mDa, the accurate mass cutoff was set as 10 mDa.

Third, the scope was further narrowed with some obvious
Analyst, 2010, 135, 2970–2978 | 2975
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structure information obtained from the MS/MS data, and the

standard MS/MS spectra of possible compounds were searched

on the website. Finally, the result was confirmed with commercial

standard compounds if available. Taking the variable of m/z 524

as an example, the MS/MS results from LC-MS and DIMS were

shown in Fig. 6. For LC-MS, the corresponding quasi-molecular

ion peak was found according to the retention time in the

extracted ion chromatogram of m/z 524. For DIMS, the sum

intensity of the variable m/z 524 and its sodium adduct m/z 546

was approximately one order of magnitude lower than that of

LC-MS, and the intensity of m/z 524 was only 20% of the sum

intensity. Nevertheless, the m/z 524 ion was still chosen for the

MS/MS experiment in DIMS analysis because it can be conve-

niently compared with the MS/MS spectrum of the commercial

standard or the spectra from the literature. All of the identifi-

cation results are shown in Table 3. Unfortunately, about 40% of

the potential biomarkers were unidentifiable due to insufficient

intensity for MS/MS experiments or the restrictions of metabo-

lite databases.

As shown in Table 3, most biomarkers found by DIMS were

also obtained by LC-MS. Instead of forming [M + H]+ ions in

LC-MS, the compounds prefer to form [M + Na]+ adducts in

DIMS. The complicated serum matrix not only affects the ion

adduct forms, but also reduces the biomarker detection ability.

When thousands of metabolites are infused together into the

mass spectrometer, ion suppression effects cause some

biomarkers of low abundance, low volatility, or low ionization
Fig. 6 Identification of a selected marker (m/z 524): (a) MS/MS spectrum i

spectrum of the commercial standard Lysophosphatidylcholine C18:0. The c

2976 | Analyst, 2010, 135, 2970–2978
efficiencies to be undetectable in the DIMS analysis. Thus, the

LC-MS method is a better choice for comprehensive screening of

potential biomarkers. On the other hand, although the DIMS

method is less information-rich, it requires only �5% of the

analysis time of the LC-MS approach and still provides roughly

half as much biomarker information, allowing quality statistical

data generation.

It is worthy to mention that more compounds can be detected

and less analysis time is needed if ultra performance liquid

chromatography (UPLC) is used instead of conventional LC.40

However, the general throughput of UPLC is not comparable to

that of DIMS. Very fast gradient elution may be used in UPLC

to obtain a throughput closer to that of DIMS, but it would

sacrifice both separation performance and detection capability.
The biological changes of the potential biomarkers

The alteration of potential biomarkers in kidney cancer patients

compared to healthy controls is also presented in Table 3. A fold

change with a positive value indicates a relatively higher

concentration in kidney cancer patients, while a negative value

indicates a relatively lower concentration compared to the

healthy controls. The alteration trends (up- or down-regulation)

of corresponding biomarkers obtained by the two methods were

consistent with one another although the fold values were not

equal. The differences in the concentration ratios between the

two methods may have been due to the different data
n LC-MS analysis; (b) MS/MS spectrum in DIMS analysis; (c) MS/MS

ollision energy was 20 eV.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 7 Variation of serum (a) LPC (16 : 0), (b) LPC (18 : 0), (c) phenylacetylglycine and (d) Ganglioside GM3 levels in kidney cancer patients compared

to controls. Light gray and dark gray bars correspond to LC-MS and DIMS acquisitions, respectively. The boxes are drawn from the 25th to 75th

percentiles in the intensity distribution. The median, or 50th percentile, is drawn as a black horizontal line inside the box. The whiskers extend from the

upper inner to lower inner fence values.
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pretreatment and different matrix complexities. The pretreat-

ment of LC-MS data, including peak alignment and data

reduction, is still problematic and increases the uncertainty of the

quantitative result. In DIMS, ion suppression may hinder its

ability to reflect true concentration differences.

As shown in Fig. 7, an obvious decline of LPC (16 : 0) and

LPC (18 : 0) and an increase of phenylacetylglycine and

Ganglioside GM3 were observed by both methods in kidney

cancer patients compared to controls. LPC is formed by the

hydrolysis of phosphatidylcholine by the enzyme phospholipase

A2 or lecithin-cholesterol acyltransferase (LCAT). It regulates

many biological process, including cell proliferation, tumor cell

invasiveness, and inflammation.33 A distinct decline of LPC was

observed in our study, which is in agreement with the earlier

study on kidney cancer by 31P-NMR spectroscopy.41 Similar

trends were also found in other malignant diseases, such as

leukemia, malignant lymphomas, gastrointestinal and liver

cancer.38,42 Serum LPC concentrations might be developed as

a general indicator for malignant disease.

The obvious increase of phenylacetylglycine revealed a disor-

dered fatty acid metabolism in kidney cancer patients. Phenyl-

acetylglycine is an acyl glycine, which is normally a minor

metabolite of fatty acids. In certain cases, the measurement of acyl

glycines in body fluids can be used to diagnose disorders associ-

ated with mitochondrial fatty acid beta-oxidation.43,44 Similar

changes were reported in a recent study on chemically-induced

precancerous colorectal lesions.45 Phenylacetylglycine is also

a putative biomarker of phospholipidosis.46 Urinary phenyl-

acetylglycine concentration was reported to increase in animals

exhibiting abnormal phospholipid accumulation in many tissues.47

Gangliosides (sialic acid-containing glycosphingolipids) are

synthesized from ceramide and have attracted considerable

interest for more than 20 years as potential targets for cancer

diagnosis because of their relevance in tumor growth and

metastasis.48,49 The ganglioside GM3 is one of the main

components of the total gangliosides in many cell types.50 It

inhibits proliferation of epidermoid carcinoma cells and neuro-

blastoma cells by suppressing activity of the relevant cell growth

factor receptor.51,52 Over-expression of ganglioside GM3 has

been found in several kinds of tumors,49,53 which is in agreement

with our kidney cancer study.
This journal is ª The Royal Society of Chemistry 2010
The discovery of these biomarkers not only gives a better

understanding of the pathophysiological changes of kidney

cancer but also indicates possible chemotherapy for patients. The

quantification of these metabolites could be significant in further

studies as an aid in the prognostication of kidney cancer.
Conclusion

The performance of LC-MS and DIMS on serum metabonomic

study was compared using the same mass spectrometer. Patients

with kidney cancer and healthy volunteers were used as real

models. DIMS had comparable classification and prediction

capability to LC-MS. With regard to biomarker discovery, 23

variables were found as potential markers by DIMS, while 48

variables were obtained by LC-MS. Most biomarkers obtained

by DIMS were also observed by LC-MS, and the trends of

alteration of the corresponding biomarkers were similar.

Considering that a much higher throughput can be obtained

without a chromatographic step, DIMS could be developed as

a fast prognostic or diagnostic method for kidney cancer. The

LC-MS method is necessary when comprehensive screening of

biomarkers is required.
Acknowledgements

We gratefully acknowledge financial support from the Medical

Center Construction Foundation of Xiamen, the Fujian Prov-

ince Department of Science & Technology and the National

Natural Science Foundation of China (No. 20775063).
References

1 J. K. Nicholson, J. C. Lindon and E. Holmes, Xenobiotica, 1999, 29,
1181–1189.

2 S. J. Bruce, P. Jonsson, H. Antti, O. Cloarec, J. Trygg, S. L. Marklund
and T. Moritz, Anal. Biochem., 2008, 372, 237–249.

3 E. Chorell, T. Moritz, S. Branth, H. Antti and M. B. Svensson, J.
Proteome Res., 2009, 8, 2966–2977.

4 G. Theodoridis, H. G. Gika and I. D. Wilson, TrAC, Trends Anal.
Chem., 2008, 27, 251–260.

5 B. M. Beckwith-Hall, E. Holmes, J. C. Lindon, J. Gounarides,
A. Vickers, M. Shapiro and J. K. Nicholson, Chem. Res. Toxicol.,
2002, 15, 1136–1141.
Analyst, 2010, 135, 2970–2978 | 2977

http://dx.doi.org/10.1039/C0AN00265H


D
ow

nl
oa

de
d 

by
 X

ia
m

en
 U

ni
ve

rs
ity

 o
n 

26
 J

an
ua

ry
 2

01
1

Pu
bl

is
he

d 
on

 2
1 

Se
pt

em
be

r 
20

10
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0A

N
00

26
5H

View Online
6 G. G. Harrigan, R. H. LaPlante, G. N. Cosma, G. Cockerell,
R. Goodacre, J. F. Maddox, J. P. Luyendyk, P. E. Ganey and
R. A. Roth, Toxicol. Lett., 2004, 146, 197–205.

7 D. I. Ellis and R. Goodacre, Analyst, 2006, 131, 875–885.
8 S. G. Villas-Boas, S. Mas, M. Akesson, J. Smedsgaard and J. Nielsen,

Mass Spectrom. Rev., 2005, 24, 613–646.
9 A. Nordstrom, G. O’Maille, C. Qin and G. Siuzdak, Anal. Chem.,

2006, 78, 3289–3295.
10 X. Lu, X. J. Zhao, C. M. Bai, C. X. Zhao, G. Lu and G. W. Xu, J.

Chromatogr., B: Anal. Technol. Biomed. Life Sci., 2008, 874, 125–125.
11 Y. H. Chen, R. P. Zhang, Y. M. Song, J. M. He, J. H. Sun, J. F. Bai,

Z. L. An, L. J. Dong, Q. M. Zhan and Z. Abliz, Analyst, 2009, 134,
2003–2011.

12 I. D. Wilson, R. Plumb, J. Granger, H. Major, R. Williams and
E. M. Lenz, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci.,
2005, 817, 67–76.

13 J. Zhang, L. J. Yan, W. G. Chen, L. Lin, X. Y. Song, X. M. Yan,
W. Hang and B. L. Huang, Anal. Chim. Acta, 2009, 650, 16–22.

14 W. B. Dunn, S. Overy and W. P. Quick, Metabolomics, 2005, 1, 137–
148.

15 G. Madalinski, E. Godat, S. Alves, D. Lesage, E. Genin, P. Levi,
J. Labarre, J. C. Tabet, E. Ezan and C. Junot, Anal. Chem., 2008,
80, 3291–3303.

16 W. B. Dunn, N. J. C. Bailey and H. E. Johnson, Analyst, 2005, 130,
606–625.

17 K. Nagy, Z. Takats, F. Pollreisz, T. Szabo and K. Vekey, Rapid
Commun. Mass Spectrom., 2003, 17, 983–990.

18 T. H. Zytkovicz, E. F. Fitzgerald, D. Marsden, C. A. Larson,
V. E. Shih, D. M. Johnson, A. W. Strauss, A. M. Comeau,
R. B. Eaton and G. F. Grady, Clin. Chem., 2001, 47, 1945–1955.

19 D. H. Chace, T. A. Kalas and E. W. Naylor, Clin. Chem., 2003, 49,
1797–1817.

20 W. B. Dunn and D. I. Ellis, TrAC, Trends Anal. Chem., 2005, 24, 285–
294.

21 J. I. Castrillo, A. Hayes, S. Mohammed, S. J. Gaskell and
S. G. Oliver, Phytochemistry, 2003, 62, 929–937.

22 A. Aharoni, C. H. R. De Vos, H. A. Verhoeven, C. A. Maliepaard,
G. Kruppa, R. Bino and D. B. Goodenowe, OMICS, 2002, 6, 217–
234.

23 A. D. Southam, T. G. Payne, H. J. Cooper, T. N. Arvanitis and
M. R. Viant, Anal. Chem., 2007, 79, 4595–4602.

24 E. W. Naylor and D. H. Chace, J. Child Neurol., 1999, 14, S4–S8.
25 A. Koulman, B. A. Tapper, K. Fraser, M. S. Cao, G. A. Lane and

S. Rasmussen, Rapid Commun. Mass Spectrom., 2007, 21, 421–428.
26 S. C. Brown, G. Kruppa and J. L. Dasseux, Mass Spectrom. Rev.,

2005, 24, 223–231.
27 M. Scholz, S. Gatzek, A. Sterling, O. Fiehn and J. Selbig,

Bioinformatics, 2004, 20, 2447–2454.
28 G. A. Pope, D. A. MacKenzie, M. Defemez, M. A. M. M. Aroso,

L. J. Fuller, F. A. Mellon, W. B. Dunn, M. Brown, R. Goodacre,
D. B. Kell, M. E. Marvin, E. J. Louis and I. N. Roberts, Yeast,
2007, 24, 667–679.

29 R. King, R. Bonfiglio, C. Fernandez-Metzler, C. Miller-Stein and
T. Olah, J. Am. Soc. Mass Spectrom., 2000, 11, 942–950.

30 E. L. Harry, D. J. Weston, A. W. T. Bristow, I. D. Wilson and
C. S. Creaser, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci.,
2008, 871, 357–361.
2978 | Analyst, 2010, 135, 2970–2978
31 M. Bedair and L. W. Sumner, TrAC, Trends Anal. Chem., 2008, 27,
238–250.

32 F. Michopoulos, L. Lai, H. Gika, G. Theodoridis and I. Wilson, J.
Proteome Res., 2009, 8, 2114–2121.

33 J. Yang, X. J. Zhao, X. L. Liu, C. Wang, P. Gao, J. S. Wang, L. J. Li,
J. R. Gu, S. L. Yang and G. W. Xu, J. Proteome Res., 2006, 5, 554–561.

34 L. W. Jia, J. Chen, P. Y. Yin, X. Lu and G. W. Xu, Metabolomics,
2008, 4, 183–189.

35 E. Zelena, W. B. Dunn, D. Broadhurst, S. Francis-McIntyre,
K. M. Carroll, P. Begley, S. O’Hagan, J. D. Knowles, A. Halsall,
I. D. Wilson, D. B. Kell and H. Consortium, Anal. Chem., 2009, 81,
1357–1364.

36 S. Cubbon, T. Bradbury, J. Wilson and J. Thomas-Oates, Anal.
Chem., 2007, 79, 8911–8918.

37 P. Y. Yin, P. Mohemaiti, J. Chen, X. J. Zhao, X. Lu, A. Yimiti,
H. Upur and G. W. Xu, J. Chromatogr., B: Anal. Technol. Biomed.
Life Sci., 2008, 871, 322–327.

38 P. Y. Yin, D. F. Wan, C. X. Zhao, J. Chen, X. J. Zhao, W. Z. Wang,
X. Lu, S. L. Yang, J. R. Gu and G. W. Xu, Mol. BioSyst., 2009, 5,
868–876.

39 Y. P. Qiu, G. X. Cai, M. M. Su, T. L. Chen, X. J. Zheng, Y. Xu, Y. Ni,
A. H. Zhao, L. X. Xu, S. J. Cai and W. Jia, J. Proteome Res., 2009, 8,
4844–4850.

40 I. D. Wilson, J. K. Nicholson, J. Castro-Perez, J. H. Granger,
K. A. Johnson, B. W. Smith and R. S. Plumb, J. Proteome Res.,
2005, 4, 591–598.

41 F. Sullentrop, D. Moka, S. Neubauer, G. Haupt, U. Engelmann,
J. Hahn and H. Schicha, NMR Biomed., 2002, 15, 60–68.

42 L. A. Taylor, J. Arends, A. K. Hodina, C. Unger and U. Massing,
Lipids Health Dis., 2007, 6, 1–8.

43 L. Bonaf, H. Troxler, T. Kuster, C. W. Heizmann, N. A. Chamoles,
A. B. Burlina and N. Blau, Mol. Genet. Metab., 2000, 69, 302–311.

44 K. G. Sim, J. Hammond and B. Wilcken, Clin. Chim. Acta, 2002, 323,
37–58.

45 Y. P. Qiu, G. X. Cai, M. M. Su, T. L. Chen, Y. M. Liu, Y. Xu, Y. Ni,
A. H. Zhao, S. J. Cai, L. X. Xu and W. Jia, J. Proteome Res., 2010, 9,
1627–1634.

46 A. W. Nicholls, J. K. Nicholson, J. N. Haselden and C. J. Waterfield,
Biomarkers, 2000, 5, 410–423.

47 J. Delaney, W. A. Neville, A. Swain, A. Miles, M. S. Leonard and
C. J. Waterfield, Biomarkers, 2004, 9, 271–290.

48 G. C. Zeng, L. Y. Gao, S. Birkle and R. K. Yu, Cancer Res., 2000, 60,
6670–6676.

49 J. P. Oliva, Z. Valdes, A. Casaco, G. Pimentel, J. Gonzalez, I. Alvarez,
M. Osorio, M. Velazco, M. Figueroa, R. Ortiz, X. Escobar,
M. Orozco, J. Cruz, S. Franco, M. Diaz, L. Roque, A. Carr,
A. M. Vazquez, C. Mateos, M. C. Rubio, R. Perez and
L. E. Fernandez, Breast Cancer Res. Treat., 2006, 96, 115–121.

50 H. J. Choi, T. W. Chung, S. K. Kang, Y. C. Lee, J. H. Ko, J. G. Kim
and C. H. Kim, Glycobiology, 2006, 16, 573–583.

51 X. Q. Wang, P. Sun, M. O’Gorman, T. D. Tai and A. S. Paller,
Glycobiology, 2001, 11, 515–522.

52 D. L. Hynds, R. W. Burry and A. J. Yates, J. Neurosci. Res., 1997, 47,
617–625.

53 R. Watanabe, C. Ohyama, H. Aoki, T. Takahashi, M. Satoh, S. Saito,
S. Hoshi, A. Ishii, M. Saito and Y. Arai, Cancer Res., 2002, 62, 3850–
3854.
This journal is ª The Royal Society of Chemistry 2010

http://dx.doi.org/10.1039/C0AN00265H

	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer

	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer

	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer
	Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer




