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Flow cytometry’s (FCM) measurement of membrane potential (MP) and cell respiration viability based 
on continuous culture was used to investigate the responses of aerobic anoxygenic phototrophic 
bacteria (AAPB) in the heterotrophic growth and regulation mechanism of photosynthesis to 
environmental changes. An AAPB strain Erythrobacter sp. JL475 and a non-AAPB strain Erythrobacter 
sp. JL316 were used as the experimental bacteria, both of which were isolated from the South China 
Sea. The results showed that light-cultured AAPB showed higher MP and biomass at 10°C, suggesting 
an obvious stimulation of light on AAPB growth. By contrast, dark-cultivated JL475 had higher MP and 
biomass at higher temperature (20, 30 and 40°C). The rate of heterotrophic respiration at different 
temperature environment ranked as follows: dark-cultivated JL316 > dark-cultivated JL475 > light/dark 
cycling cultivated JL475. Light undoubtedly increased the cell viability of AAPB, especially of apoptosis 
cells. The CTC+% at different carbon concentration ranked as follows: light/dark cycling cultivated 
JL475 > dark-cultivated JL316 > dark-cultivated JL475. It was concluded that the heterotrophic 
respiration would played a key role in energy metabolism of AAPB, photosynthesis may provide an 
advantage for AAPB to survive in a variety of diverse environments. 
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INTRODUCTION 
 
Aerobic anoxygenic phototrophic bacteria (AAPB) are 
group of heterotrophic bacteria with capability of photo-
synthesis. They represent a newly recognized energy 
flow pathway and appear to be critical to carbon cycling in 
the ocean (Kolber et al., 2000, 2001). AAPB also would 
be of great value in understanding the evolution of 
photosynthesis and the structure and function of marine 
ecosystems (Jiao et al., 2003). Great progress has been 
made on AAPB’s ecological study (Shiba et al., 1991; 
Kolber et al., 2001; Cottrell et al., 2006; Jiao et al., 2007; 
Zhang and Jiao, 2007). Dissolved organic carbon (DOC), 
particularly from phytoplankton may have great effects on 
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the dynamics of AAPB (Jiao et al., 2007). To date, 
physiological studies of AAPB strains mainly focus on 
their specific photochemical properties. Carbon source, 
oxygen concentration and light are the most important 
factors in regulating the photochemical expression and 
synthesis. Although AAPB do not grow on light as a sole 
energy source (Harashima et al., 1982; Shimada 1995; 
Takamiya and Okamura 1984; Wakao et al., 1996), 
stimulation of growth in the presence of light has been 
reported (Harashima et al., 1987; Yurkov and Gemerden 
1993; Hiraishi et al., 2000). It has also been suggested 
that the viability of AAPB is stimulated by the light in the 
deficiency of nutrients (Fleischman et al., 1995; Hiraishi 
et al., 2000; Shiba 1984; Suyama et al., 2002). BChla 
expression was induced by the decline of carbon sources 
(Suyama et al., 2002). However, current knowledge of 
physiology of AAPB is still far from enough for understanding 
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of controlling mechanisms of AAPB in marine ecosys-
tems. Jiao et al. (2004) established a simplified protocol 
for determination of bacterial MP by flow cytometry with 
3, 3'-dihexyloxacarbocyanine iodide (DiOC6(3)) as the 
MP probe, which was capable of precise indication of the 
physiological states of the cells as well as cellular 
responses to environmental factors.  

The abundance of 5-cyano-2, 3-ditolyl tetrazolium chlo-
ride (CTC)-active cells and CTC reduction were highly 
correlated with respiration rates or metabolic activity or 
enzyme redox activity (Smith, 1998; Sherr et al., 1999; 
Iturriaga et al., 2001). In this study, we monitored by FCM 
the MP indicated by DiOC6(3) and respiratory viability 
indicated by CTC of a new AAPB strain of Erythorobactor 
longus under different light level and temperature during 
continuous culture courses, aiming at a better under-
standing of physiological responses of AAPB to variable 
environmental conditions. 
 
 
MATERIALS AND METHODS 
 
Experimental organisms 
  
JL475 was isolated from water of 75 m depth in the South China 
Sea (location: 112.00ºE, 20.00ºN) using RO medium. JL475 was 
grown in Erlenmeyer flasks shaken aerobically in natural light 
rhythm at 25°C and 150 rpm in liquid RO medium. The same 
medium with addition of 1.5% agar was used for routine cultivation 
on agar plates. JL475, belonging to Erythrobacter sp as seen from 
the 16S rDNA sequence, was identified to be an AAPB strain based 
on the following examinations (Yurkov and Beatty, 1998; Kolber et 
al., 2001).  

The absorption spectra of cell suspensions of the pigmented 
isolate (prepared according to Shiba and Simidu, 1982) gave a 
major peak in the 863 - 867 nm region, indicating the presence of 
bacterial chlorophyll incorporated into light-harvesting complex 1 
(LH1) and a small peak in the 800 - 805 nm region indi-cating the 
presence of the photosynthetic reaction center (RC). The reference 
non-AAPB strain Erythrobacter sp JL316 was isolated from the 
surface water in the South China Sea (location: 114.50ºE, 21.50ºN; 
salinity: 34.38; temperature: 21.18°C) using RO medium. The 
culture conditions for JL316 were the same as that of JL475.  
 
 
Continuous culture 
 
Continuous culture was carried out in a 3.5 L cylindrical bioreactor 
KLF2000 (Bioengineering AG, Switzerland) with working volume of 
2 L. The JL475 strain was grown in a modified RO medium 
(tryptone 0.1 g/L; vitamin B12, 20 ug/l trace element solution 1 ml/l 
and 0.22 um-filtered old sea water). Trace metal solutions was 
autoclaved before added to the 2 L feeding carboy. After the cells 
were grown exponentially in batch mode at 28°C for about 20 h, 
continuous mode of operation was initiated by constantly pumping 
fresh medium into and removing excess volume from the 
bioreactor. The culture was stirred at 300 rpm and aerated at 1 v/v 
per minute to provide sufficient oxygen supply.  

The continuous culture was run at the dilution rate of 0.05 L/h in 
darkness or light/dark cycling. Light intensity was 5000 Lux when 
JL475 was at light-cultivated and light/dark cycle was 12:12. The 
JL475 and JL316 strains were cultivated at pH 7.8. A temperature 
gradient of 10, 20, 30 and 40°C, were employed to detect the 
responses  in  MP,  respiration   election   transport   system   (ETS)  
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dehydrogenase and cell viability (CTC%). 
 
 
FCM measurements 
 
An Epics Altra II (Beckman Coulter, USA) FCM, equipped with an 
argon laser (306C-5, Coherent Inc., USA) as excitation source, a 
constant temperature apparatus (Model 911 Polyscience, USA) and 
an external quantitative sample injector (Harvard PHD2000, USA) 
was used for bacterial enumeration and MP measurement with the 
software ExpoTM32 MultiCOMP supplied by the manufacture. 
When measuring the MP, the basic FCM settings used in the 
analysis were: Laser Power, 60 mW; excitation wave length, 488 
nm; green fluorescence filter, 503DF19; red fluorescence filter, 
610BP12 (Omega, USA).  

When measuring the respiration and viability, the basic FCM 
settings used in analysis were: Laser Power, 100 mW; excitation 
wave length, 488 nm; green fluorescence filter, 525BP; red 
fluorescence filter, 675BP (Omega, USA). When bacterial counting, 
the basic FCM settings used in analysis were: Laser Power, 100 
mW; excitation wave length, 488 nm; green fluorescence filter, 
525BP; red fluorescence filter, 675BP (Omega, USA). When 
analyzing, sample were run at a flow rate of about 100 events sec-1 
and 1.0 me fluorescent beads (Polysciences, USA) were used as 
the internal reference. 
 
 
Measurement of mp 
 
DiOC6(3) (Molecular Probes, USA) was used as the MP probe for 
flow cytometry-based MP measurement. Bacterial suspensions for 
MP measurement were diluted with the filtrate of the corresponding 
culture to cell concentration of approximately 5 × 105 cells ml-1 and 
then added with DiOC6(3) at the final concentration of 10 µM and 
incubated for about 20 - 25 mins before FCM analysis (Jiao et al., 
2004). Data acquisition was controlled by running time of 100 s, 
about 10000 events were collected for statistics. Cells were kept in 
darkness and at culture temperature during the staining and 
determination processes. The ratio metric method (red to green 
fluorescence readings) was used for the MP calculation (Novo et 
al., 1999).  
 
 
Measurement and calculation of ETS dehydrogenase and cell 
viability 
 
CTC (Flucka, USA) was used to quantify the ETS dehydrogenase 
and cell viability (Zheng and Yao, 2005). Bacterial suspensions for 
measurement were diluted with the filtrate of the corresponding 
culture to cell concentration of approximately 1 × 106 cells ml-1 and 
then added with CTC at the final concentration of 5 mM and 
incubated for about 60 min before FCM analysis. Data acquisition 
was controlled by running time of 100 s, approximately 10000 
events were collected for statistics. Cells were kept in darkness and 
at culture temperature during the staining and determination 
processes.  

As CTC was reduced by ETS into a fluorescent CTC-formazan 
(CTF) in the respiring cells, the CTF red fluorescence was taken as 
the measurement of ETS dehydrogenase which can be an 
indication of cell respiration. 
 
 
Bacterial count 
 
Aliquots of one milliliter of sample were taken from cultures for MP 
analysis and bacterial counting. Samples for the enumeration ana-
lysis were fixed with 0.1% glutaraldehyde and stained with SYBR 
Green I (molecular probes) (final concentration 10-4 the  commercial 
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solution) (Marie et al., 1996) and then counted by FCM. 
 
 
RESULTS  
 
Variation of mp of JL475 and JL316 with temperature 
and light availability 
 
As shown in Figure 1, the ratiometric MP values of JL475 
and JL316 in all of the treatments ascended with 
increasing temperature (except 40°C), but to different 
extents at different levels of temperature and light 
availability. The MP value of JL475 light-cultivated was 
distinctly higher than those of both strains in the dark at 
10°C. The MP values of non-AAPB strain JL316 dark-
cultivated was still higher than those of JL475, however, 
was lower than AAPB strain JL475 light-cultivated at 
10°C. The MP values of the JL475 light-cultivated were 
70.11 - 5.28% higher than that of JL475 dark-cultivated at 
10 and 20°C, while 12.95 -1 1.5% lower at 30 and 40°C. 
 
 
Variation of respiration activity of JL475 and JL316 
with temperature and light availability 
 
CTF measurements during the incubation course showed 
likely pattern from that of MP. The non-AAPB strain JL316 
showed significantly higher CTF values than the AAPB 
strain JL475 in all the treatments. By contrast, the AAPB 
strain JL475 light-cultivated showed lower CTF values 
than JL475 dark-cultivated regardless of temperature 
(Figure 2). The two strains’ CTF continuously increased 
with increasing temperature (except 40°C). 
 
 
Cell concentration changes at different temperature 
  
The cell concentration continuously increased with 
increasing temperature (except 40°C). The non-AAPB 
strain JL316 yielded higher cell concentration than the 
AAPB strain JL475 at all the treatments. Within the AAPB 
strain, cell concentrations of the light-cultivated JL475 at 
10 and 20°C were 27.58 - 3.08% higher than those of the 
dark-cultivated ones, respectively. In contrast, cell 
concentrations of dark-cultivated JL475 at 30 and 40°C 
were 13.35 - 16.15% higher than that of light-cultivated 
ones.  
 
 
Cell viability at different temperature 
 
The CTC+% can directly characterize the presence of 
living cells. As shown in Figure 4, it increased with 
increasing temperature (except 40°C). The non-AAPB 
strain JL316 appeared higher CTC+% than that of the 
AAPB strain JL475 dark-cultivated at all the treatments. 
The AAPB strain JL475 light-cultivated also showed 
higher CTC+% than JL316 dark-cultivated at all the 
treatments (Figure 3). 

 
  
 
 
DISCUSSION 
 
Marine microbe show different responses to temperature. 
Some AAPB can grow in a temperature range as wide as 
5 to 42°C (Yurkov, 1998). In this study, we found that the 
abundance of JL475 cultivated in a chemostat was 
greatly influenced by temperature (Figure 3). Both strains 
grew more slowly at 5 than 30°C. Moreover, the mem-
brane potential and respiratory rate of JL475 and JL316 
were raised in accordance with the increasing of 
temperature from 5 to 30°C. Whereas at a higher 
temperature of 40°C, the abundance membrane potential 
and respiratory rate of JL475 and JL316 decreased 
remarkably. We suppose that 30°C is likely the optimum 
temperature for the growth of the strains. 

Interestingly, we also found that JL475’s MP was higher 
in darkness than in light when cultivated at the optimum 
temperature of 30°C in autoclaved seawater containing 
0.1 g/L peptone. It revealed that JL475 mainly perform 
heterotrophic metabolism under this condition, mean-
while, it could also perform some photorespiration. Beatty 
(2002) argued that both photosynthesis and respiration of 
AAPB use the very composite Q10 of the electron 
transport chain. Hence, the two processes tend to 
repress each other. On the other hand, Koblizek et al. 
(2003) showed that the respiration of AAPB (E. longus 
clone NJ3Y) is restrained when stimulated by light, which 
means that when AAPB increases the viability of light, 
part of its respiration is repressed. The redox state of 
electronic carriers (such as quinone and cytochrome) 
which participates in the process of both photosynthesis 
and respiration in bacteria affected the transfer efficiency 
of light-driven electron and proton (Yurkov et al., 1998). 
When quinine and cytochrome are at their reduction 
state, the electron transport will be greatly reduced even 
if Bchla are stimulated by light (Beatty, 2002), thus will 
partially influence the efficiency of heterotrophic respi-
ration. It was reflected with a lower MP value of JL475 
cultivated in light than that in darkness. Zhang (2006) 
found that 1. Seasonal changes of AAPB are smaller than 
that of non-AAPB; 2. The biggest abundance of AAPB 
(11.6% of the total microbial community) usually appears 
in winter. It was also found that the abundance of non-
AAPB could increase in accordance with the rising of 
temperature, whereas AAPB keep unchanged. It reveals 
that temperature has smaller effects on AAPB. It appears 
that less dependence on temperature is likely a unique 
feature of AAPB, which is correlated with photosynthesis. 
In other words, the energy required for bacterial meta-
bolism of non-AAPB was merely produced by organic 
carbon respiration. While to AAPB, besides from the 
organic carbon respiration, photosynthesis can bring 
some additional energy, thus can somewhat offset the 
negative effect of low temperature on cell metabolism. 
Previous studies had revealed that light can prolong the 
living time of AAPB when it was transferred from a 
nutrient-rich medium to a carbon-free medium (Koblizek 
et al., 2003). Therefore, photosynthesis  may  provide  an  
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Figure 1. Responses of MP of dark-cultivated JL316, dark-
cultivated JL475 and light/dark cultivated JL475 to a variation 
of temperature in the continuous culture. 
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Figure 2. Responses of respiration (quantified by CTF red 
fluoresecence) of dark-cultivated JL316, dark-cultivated 
JL475 and light/dark cultivated JL475 to a variation of 
temperature in the continuous culture. 
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Figure 4. Responses of cell viability (CTC+ ) of dark-cultivated 
JL316, dark-cultivated JL475 and light/dark cultivated JL475 to a 
variation of temperature in the continuous culture. 
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Figure 3. Responses of the cell concentration of dark-cultivated 
JL316, dark-cultivated JL475 and light/dark cultivated JL475 to a 
variation of temperature in the continuous culture. 
 
 
 
advantage for AAPB to survive in a variety of diverse 
environments. 
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