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Different chemical species of dissolved vanadium, V (IV) and V (V), were measured in the water column of
the Long Island Sound (LIS), from the East River to the Atlantic boundary during spring and summer
conditions. Our preliminary results showed seasonal and spatial changes in total dissolved V and its redox
speciation along LIS. Levels of both V species were high in summer (V (IV), 2.2±1.7 nM; V (V), 22.4±
3.9 nM), and low in spring (V (IV), 1.4±1.4 nM; V (V), 11.1±2.6 nM). A V-salinity mixing plot suggests a
non-conservative behavior of total dissolved V (and V (IV)) during estuarine mixing.
Dissolved V (IV) occurred mostly in western LIS, accounting for 15–25% of the total dissolved V pool in
summer hypoxic bottomwaters of that region. In spring, V (IV) accounted for up to 40% of the total dissolved
V pool in western LIS, likely from sewage inputs. Dissolved V (IV) was also measured near the Quinnipiac,
Housatonic and Connecticut rivers (accounting for 10–20% of the total dissolved in summer), suggesting a
local source of the reduced V (likely desorption from surficial sediments and resuspended particles). A
positive trend between V (IV) and large size phytoplankton biomass suggests that levels of reduced V may be
influenced by biological activity.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
Vanadium is an essential element for many marine phytoplankton
species (Moore et al., 1996), macroalgae (Patrick, 1978; Nalewajko
et al., 1995), and other organisms (e.g., Taylor et al., 1997). Many
enzymes contain V as their metal center in the active site, such as
haloperoxidases (Butler and Carter-Franklin, 2004), nitrate reductases
(Antipov et al., 1999), and nitrogenases (Robson et al., 1986; Rehder,
2000). Vanadium may also be involved in many metabolic processes
such as chlorophyll synthesis (Meisch et al., 1977; Wilhelm and Wild,
1984), cell division (Meisch and Benzschawel, 1978), phosphate
uptake kinetics (Lee, 1982), sulfoxidation (Andersson et al., 1997; ten
Brink et al., 2001), cell motility and photosynthesis (Meisch and
Becker, 1981; Gilmore et al., 1985). While V (V) is the thermodyna-
mically stable form in oxygenated seawater, V (IV) commonly exists in
intra-cellular media (Cantley and Aisen, 1979; Rubinson, 1981;
Chasteen et al., 1986; Willsky, 1990). V (IV) ions, such as VO2+, are
generally internalized into the cytoplasm through passive diffusion
(Yang et al., 2003), and biological uptake of V (IV) is more rapid than
that of V (V) (Willsky et al.,1984). Once inside the cell, V (IV) is actively
involved in phytoplankton metabolism and has a high reactivity with
ADP, ATP, GDP, glutathione, amino acids, nucleic acids and lipids (e.g.,
Stern et al., 1993; Goc, 2006).

Vanadium is relatively abundant in open ocean waters (34–45 nM
in oxygenated seawater) with a relatively conservative distribution
+86 592 2184101.
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(Collier, 1984; Jeandel et al., 1987). Non-conservative behavior of V,
however, is also quite common in coastal waters (e.g., Shiller andMao,
1999; Auger et al., 1999), which has been attributed to ion exchange
and deposition of particles (Paulsen and List, 1997), and/or scavenging
by terrigenous and/or biogenic materials (e.g., Prange and Kremling,
1985; Yeats, 1992), ferric oxyhydroxide particles (e.g., Auger et al.,
1999), manganese oxides (Takematsu et al., 1985), sedimentary and
fluvial input (Shaw et al., 1990; Shiller andMao,1999), and possible V-
redox changes and associated adsorption/desorption mechanisms
(van der Sloot et al., 1985; Shiller and Mao, 1999).

Dissolved V generally exists in natural waters in two oxidation
states, as V (IV) and V (V) (e.g., Wehrli and Stumm, 1989; Hirayama
et al., 1992; Wang and Sañudo-Wilhelmy, 2008). The speciation of V
may likely depend on redox conditions of the aqueous system (Taylor
and van Staden, 1994; Elbaz-Poulichet et al., 1997; Giammanco et al.,
1998; Pettersson et al., 2003). Different redox pairs such as NO3

−/NH4
+,

Fe3+/Fe2+, MnO2/Mn2+, and SO4
2−/H2S may potentially play an

important role in V speciation and cycling in the water column.
Thermodynamically, V (V) is stable in oxidized marine environments,
while V (IV) is stable in moderately reducing environments (Sadiq,
1988). Both species have, however, been detected in natural waters
(e.g., Hirayama et al., 1992; Bosque-Sendra et al., 1998; Wuilloud et al.,
2001; Veschetti et al., 2007; Wang and Sañudo-Wilhelmy, 2008). In
general, the solubility of V decreases with decreasing valence, and
therefore V (IV) increases proportionally with decreasing total
dissolved V pool as the environment becomes progressively more
reducing (e.g., Sadiq, 1988). For example, compared to the Atlantic
Ocean, dissolved V concentrations are depleted (by ~60%) in reducing
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deep waters of the Black Sea and the Cariaco Basin suggesting that
reducing sediments may serve as a major sink for this element (e.g.,
Emerson and Huested, 1991; Nameroff et al., 2002).

While V concentrations in sediment cores are widely used as a
geochemical proxy of anoxic events (e.g., Nijenhuis et al., 1998; Algeo
and Maynard, 2004), it is unclear how V speciation is affected by water
column redox changes, biological activity, and the concentrations of
other trace metals that could act as potential reducers or oxidizers. In
order to address some of those questions, a field studywas conducted in
the Long IslandSound(LIS). The LISwaschosenbecauseperiodic bottom
water hypoxia and even anoxic events that could influence the redox
chemistry of V have been observed in some portions of the LIS under
summer conditions (Parker and O'Reilly,1991). In this study, we applied
the new method developed by Wang and Sañudo-Wilhelmy (2008) to
establish the seasonal and spatial distributions of dissolved V (V) and V
(IV) within LIS, and to further explore the potential mechanisms
affecting the cycling of this trace element in coastal waters.

2. Materials and methods

Two cruises (April and September of 2005) were conducted across
LIS from the East River in western LIS to the eastern part of the Sound
adjacent to the Atlantic Ocean (Fig.1). Spring and summer are seasonal
extremes that reflect awide range of environmental conditions within
the LIS water column (high versus low river flows, water column
stratification, oxic versus hypoxic conditions) (Parker and O'Reilly,
1991; Buck et al., 2005; Gobler et al., 2006). The April cruise was
characterized by high river discharge and low water column
temperature (water flux of Connecticut's rivers: 27 m3/s; water
temperature: 6–10 °C; salinity: 21–29); while the September cruise
took place under low river discharge and high water temperature
(water flux of Connecticut's rivers: 3.4 m3/s; water temperature: 20–
24 °C; salinity: 25–30).

Samples were collected using a peristaltic pump equipped with
trace metal clean Teflon tubing attached to 10 m-long boom at two
layers: surface (~2 m below surface), and bottomwaters (~2 m above
bottom). Dissolved samples were obtained by filtration through a
trace metal clean polypropylene capsule filter (0.2 µm). Water
temperature, salinity, pH and DO were measured at each location
using a Seabird-19 CTD. Size-fractionated chlorophyll a (Chl-a) was
analyzed by standard fluorimetric methods (Welschmeyer, 1994).
Dissolved Fe was preconcentrated following the APDC/DDDC organic
extraction technique (Bruland et al., 1985), and quantified by ICP-MS
(ThermoFinnigan Element 2) using Indium as an internal standard
(recoveries N95%).

All materials associated with the sampling, handling, and storage
of seawater were acid-washed using established cleaning protocols
Fig. 1. Sampling stations i
(e.g., Flegal et al., 1991; Breuer et al., 1999). The separation of different
dissolved V species was carried out immediately after sample
collection using the method of Wang and Sañudo-Wilhelmy (2008).
Themethod includes a Chelex 100 resin solid-phase extraction of both
V species from seawater at pH=4.5, elution with a base [for V (V)]
and with an acid [for V (IV)], and subsequent quantification by
graphite furnace atomic absorption spectrometry. All of the speciation
V (IV) and V (V) samples were stored at −10 °C, and quantified via
GF-AAS in the laboratory. The analytical precision was ~10% in the
concentration range of 10 nM. Certified reference seawater CASS-4
was analyzed for total dissolved V with a recovery efficiency of N90%.

3. Results and discussion

3.1. Seasonal and spatial changes in vanadium speciation

Total dissolved V concentrations were significantly higher in
summer (average: 25±4.0 nM) than in spring (average: 13±
2.4 nM) (Fig. 2). These summer average concentrations of dissolved
V were consistent with those reported for the Gulf of St. Lawrence
(24 nM; Yeats, 1992), the Po-Adriatic mixing area (summer, 24 nM;
Pettine et al., 1997), and the Sargasso Sea (summer, ~24 nM; Weisel
et al., 1984).

Lower levels of dissolved V measured in the spring cruise were
likely caused by high freshwater discharge from the Connecticut rivers
(e.g., the Quinnipiac and Housatonic). Relatively high total V
concentrations measured in the summer cruise near the East River
and some Connecticut rivers (especially the Quinnipiac and Housa-
tonic) (Fig. 2) indicated that there were some potential sources of
dissolved V nearby such as sewage effluents (Wolfe et al., 1991;
Balcom et al., 2004), and sedimentary releases (e.g., Aller, 1994;
Mecray et al., 2000; Audry et al., 2006; Santos-Echeandia et al., 2009)
under suboxic conditions. Slight differences in total V were observed
among stations, but no consistent trend was observed for all stations
(Fig. 2).

Higher levels of dissolved V under summer conditions have also
been reported in other systems, e.g., Tokyo Bay and Shimizu Port (Sato
and Okabe, 1978, 1982), Biwa Lake (Sugiyama, 1989), and Florida Bay
(Caccia and Millero, 2003). Although the process(es) controlling
seasonal changes in total dissolved V concentrations are still
unknown, Harita et al. (2005) hypothesized that high levels of
dissolved V in summer may result from the release from sediments
and suspended particles due to increased biological activity. Santos-
Echeandia et al. (2009) reported that the flux of dissolved V from
surficial sediments may be very high during summer. Laboratory
experiments suggest that water–particle interaction often results in
the non-conservative behavior of dissolved V (Paulsen and List, 1997).
n Long Island Sound.



Fig. 2. Total dissolved vanadium (TDV), dissolved V(V) and V(IV) during spring and
summer cruises (triangle and circle symbols represent surface and deep layers
respectively; open and filled symbols denote spring and summer cruises respectively).
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In summary, low levels of dissolved V measured in the LIS in spring
may result largely from dilution due to increased freshwater input,
and to some extent, from adsorption by suspended particles and
organic materials in April, while desorption from particles and
sediments under high temperature in September likely contributed
Fig. 3. Total dissolved vanadium (TDV) versus salinity in LIS. The solid line indicates
expected trend for conservative mixing between Atlantic Ocean (35 nM at salinity of 35,
Collier, 1984) and average river water (10 nM at salinity of 20) (triangle and circle
symbols represent surface and deep layers respectively; open and filled symbols denote
spring and summer cruises respectively).
to the relatively high levels of dissolved V in the Sound. Similar
mechanisms have been invoked to explain temporal gradients in V
concentrations in other systems (e.g., Francois, 1988; Mecray et al.,
2000; Harita et al., 2005).
3.2. Non-conservative behavior of vanadium in coastal waters

Dissolved V generally behaves as a conservative component in
open ocean waters (e.g., Morris, 1975; Jeandel et al., 1987). However,
biological uptake or particle scavenging also occurs, albeit with a
slight depletion in surface waters (Collier, 1984; Middelburg et al.
1988). Non-conservative behavior was commonly found in coastal
waters, including the Louisiana Shelf (Shiller and Mao, 1999), English
Channel (Auger et al., 1999) and Florida Bay (Caccia and Millero,
2003). Consistent with those studies, the V-salinity mixing plot
suggests non-conservative behavior of total dissolved V in the LIS,
when using the lowest salinity point in the LIS (10 nM at salinity of 20)
and Atlantic Ocean (~35 nM; Collier, 1984) concentrations as end-
members (Fig. 3).

Dissolved V (V) was also higher in summer (22.3±3.9 nM) than in
spring (11.0±2.0 nM) (Fig. 2). Reduced V (IV)wasmeasured inwestern
LIS (Fig. 2) in both cruises (spring surface: 2.9±1.9 nM; bottom: 2.0±
1.4 nM; summer surface: 4.3±1.3 nM; bottom: 3.0±1.8 nM). High
levels of V (IV) were also detected near the East, Quinnipiac, Housatonic
and Connecticut rivers (spring: 2.0±2.0 nM; summer: 2.3±1.3 nM),
while levels of V (IV)weremuch lower in all other regions of the Sound.
High levels of V (IV) may be attributed to several different sources, such
as inputs from sewage and fluvial discharges (IPCS, 1988; ATSDR, 1992;
Greig and Pereira,1993; Caccia andMillero, 2003), sedimentary releases
Fig. 4. Dissolved V(IV) and V(V) versus average water temperature in surface and
bottom layers during spring and summer cruises.



Fig. 5. Relationship between V(IV and V) and large size fraction chlorophyll a in LIS in spring and summer ( Eastern LIS; Central LIS; Western LIS).
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(e.g., Ouddane et al., 2004; Audry et al., 2006), and V (V) reduction in
moderate reducing environments (Sadiq, 1988).

No consistent patterns in V speciationwere found between surface
and bottomwaters of the LIS (Figs. 2–4), despite the fact that different
sources may affect different parcels of water. Surface waters may
receive V from river inflow and atmospheric fallout (rain water and
airborne particles), while bottom waters may be influenced by
sedimentary sources. On the other hand, particle scavenging, biogenic
adsorption and uptake are assumed to be the major removal affecting
V species in the whole water column. However, to some extent, the
lack of surface and bottom water differences is consistent with the
conservative behavior of this element reported for open ocean waters
(Morris, 1975; Collier, 1984). This suggests that, once formed, reduced
V species (likely as organic complexes) may remain for a long time in
the water column, even during subsequent mixing.

3.3. Potential factors affecting vanadium cycling within the LIS

The geochemical behavior of V depends on the ambient redox
conditions; V (V) is reduced to V (IV) with a decrease in the redox
potential (Eh) (e.g., Szalay and Szilágyi, 1967; Breit and Wanty, 1991),
and even to insoluble V (III) under strongly reducing conditions (e.g.,
Sadiq,1988). V (IV) is also readily adsorbed onto particles or complexed
with organic matter followed by deposition into sediments (e.g., Wanty
and Goldhaber, 1992; Wehrli and Stumm, 1989).

Physico-chemical parameters such as water temperature, pH, DO,
dissolved Fe, ammonium, and sulfide concentrations could be used as
redox indicators for explaining V behavior. We found that dissolved V
concentrations in the water column of the LIS (Fig. 4) were higher in
summer when water temperature was also higher (temp.: 22.1±
1.2 °C versus 7.9±1.5 °C in spring). High levels of V (V) and V (IV)
were also measured in summer [V (IV): 2.2±1.7 nM; V (V): 22.4±
3.9 nM] than in spring [V (IV): 1.4±1.4 nM; V (V): 11.1±2.6 nM]
(Fig. 4), suggesting that both species could be affected by tempera-
ture-dependent adsorption/desorption processes (e.g., Censi et al.,
2006; Aller, 1994; Man et al., 2004). We hypothesized that in the LIS,
besides freshwater dilution, weak adsorption processes occurred
under cold spring conditions, with V (IV) being more readily adsorbed
onto particles and removed from the water column (e.g., Rehder,
2008), while desorption of both V species from sediments and
suspended particles dominated during warm periods (e.g., Harita
et al., 2005), contributing to the high levels of both V species in
summer (Fig. 4). High water temperature could also increase the
release of V from surficial sediments (e.g., Aller, 1994; Beck and
Sañudo-Wilhelmy, 2007), and this mechanism could also be respon-
sible for the high levels of V detected in summer.

3.4. Impact of water column redox changes on vanadium cycling

Due to the influence of freshwater, the characterization of the redox
environment in estuarine waters is likely to differ from those typical of
open ocean environments (e.g., Turner et al., 1981). According to
Emelyanov (2005), the redox conditions of the water column of
estuarine waters such as the LIS can be roughly defined as: 1) oxic
(EhN0.59V); 2)moderately reducing suboxic (ranging fromdenitrifica-
tion (Eh of 0.59V) to iron reduction (0.24V) conditions), and3) strongly
reducing (Eh of 0.24 to−0.38 V; sulfate reduction conditions). It should
be noted that these definitions assume thermodynamic equilibrium.



Fig. 6. Hypothetical mechanisms controlling vanadium speciation and cycling in Long
Island Sound in spring and summer.
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The redox potentials in the LIS during both cruises were calculated
using our measurements of pH, DO, nitrate, ammonium, dissolved Fe
and sulfide concentrations from Cuomo et al. (2005). The calculated
Eh values for the LIS ranged from ~0.2 to 0.6 V, under which V (IV)was
likely being produced in western LIS by V (III) oxidation and/or V (V)
reduction. V (V) should exist as the only thermodynamically stable
form under the oxic conditions prevalent in central and eastern LIS
(DON350 μM; pH=8.0–8.3; EhN0.6 V).

V (IV) may account for more than 50% of the total dissolved V in
reducing groundwater (Nakano et al., 1990; Hirayama et al., 1992;
Bosque-Sendra et al.,1998), and between 30 and40% inwaters affected
by industrial effluents or volcanoes (e.g., Minelli et al., 2000; Banerjee
et al., 2003). A low proportion of V (IV) (b10%) has also been reported
in oxic river water and seawater (e.g., Emerson and Huested, 1991;
Elbaz-Poulichet et al., 1997; Bosque-Sendra et al., 1998). Consistent
with those reports, our results (Figs. 2–4) showed that V (IV)
accounted for up to 40% of the total dissolved V in some areas of LIS.
When less reducing conditions following summer hypoxia in western
LIS are reestablished, V (III) in sediments may be re-oxidized back to
soluble V (IV) andV (V) (Byerrumet al.,1974). High levels of bothV (V)
and V (IV) near the Connecticut rivers (the Quinnipiac, Housatonic and
Connecticut) in summer suggest that desorption of bothV species from
sediments and suspended particles could also supply dissolved V in
those waters despite being thermodynamically unfavorable.

3.5. Biological relevance of V (IV)

Although not fully elucidated yet, high levels of V stimulate the
growth of diatoms and green algae in the laboratory (Patrick, 1978).
Bellenger et al. (2008a) reported that dissolved vanadate concentra-
tions of 10 to 1000 nM are suitable for the growth of nitrogen-fixing
bacteria, and V may be limiting for nitrogen-fixing bacteria below
10 nM (Bellenger et al., 2008a). Under limiting conditions, these
bacteria may also produce ‘vanadophores’ for taking up V (Bellenger
et al., 2008b). Presumably, total dissolved V is unlikely to be a limiting
nutrient for phytoplankton due to its high abundance in the LIS (above
10 nM, Fig. 2).

In our study, large phytoplankton (N2.0 μm) abundance was
generally high (~4–8 μg/L) in the western LIS in spring (likely a spring
bloom) but low (b4 μg/L) in central and eastern LIS. Large phytoplank-
ton was also prevalent (~4–8 μg/L) near the Connecticut rivers
(Quinnipiac, Housatonic and Connecticut) in summer (Fig. 5). The
results presented in Fig. 2 showedvery high levels of V (V) in central and
eastern LIS in summer, which likely resulted from the advection of
oxygenated seawater from Atlantic Ocean (Lee and Lwiza, 2005) with
high V (V) concentrations. These high V (V) levels (associated with low
Chl-a) suggest that the growth of those phytoplankton species may be
unrelated to dissolved V (V) concentrations in LIS.

During our study, biomass of large phytoplankton (likely diatoms and
dinoflagellates (Gobler et al., 2006)wasdirectly related to the amountof V
(IV) (relativelyhighbiomass inwesternLISwithhighV(IV) levels and low
biomass in central and eastern LIS where low V (IV) concentrations were
measured). A significant correlation (r2=0.58, pb0.05) between V (IV)
concentrations and large phytoplankton (Chl-a N6.0 μg/L)was detected in
the western LIS in summer (Fig. 5). The positive relationship between
biomass andV (IV) concentrations suggests that the concentrations of this
V concentration couldbe influencedbybiological uptake, as V (IV) ismore
easily taken up by phytoplankton (Willsky et al., 1984). Future studies
should address that hypothesiswith in-situ bottle incubation experiments
using V (IV and V) additions.

3.6. Potential mechanisms influencing the geochemical behavior of
vanadium

Our results showed that V speciation changed seasonally and
spatially in LIS. The geochemical behavior of V seems to be affected by
water temperature, redox conditions, and biological activity. Supply of V
to the LIS may include fluvial and sewage discharges, as well as releases
from suspended particles and surficial sediments, while removal
processes may include biological uptake and adsorption onto particles
and sediments. Fig. 6 summarizes the major hypothetical mechanisms
responsible for the seasonal and spatial variation in V speciation
observed during our study in the LIS. The major differences in the two
sampling seasons are a net removal of V in spring (mainly V (IV)) when
riverine inputs and biomass are high, and desorption of this trace
element (both V (IV) and V (V)) from suspended particles and bottom
sediments in response to higher water temperature in summer (Fig. 6).

Vanadium speciation in the LIS seems to be also affected by point-
sources (e.g., fluvial, sewage input) in addition to the ambient redox
conditions. Therefore, enrichments or depletions of this element in
the sedimentary record may not reflect only the redox conditions of
the water column during sediment deposition. Further studies are
needed to understand the biogeochemical behavior of this redox-
sensitive element in the modern ocean to fully understand V
enrichments in ancient sedimentary systems (e.g., Chaillou et al.,
2002; Nameroff et al., 2002; McKay et al., 2007).

4. Summary

Consistent with thermodynamic calculations, V (IV) accounted for
a significant fraction (as high as 40%) of the total dissolved V pool in
western LIS during summer hypoxic conditions. V (IV) accounted for
less than 5% in most of the other oxygenated waters of the LIS. Our
preliminary results showed seasonal and spatial changes in total
dissolved V and its redox speciation in LIS. Higher V (V), along with
total V, was observed during the summer cruise, which likely resulted
from oxygenated seawater intrusion from the Atlantic Ocean.
Dissolved V (IV) was mostly detected in western LIS and near
Connecticut rivers, suggesting that V speciation was influenced by
point-sources, especially in summer. Dissolved V-salinity plots show a
non-conservative behavior of this element, and a net removal in
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spring from particle adsorption and dilution by river input with low
levels of dissolved V.

Water temperature seems to have an impact on the redox speciation
of V, and the positive relationship between V (IV) and large size
phytoplankton biomass suggested that V (IV) may be influenced by
biological activity. Paleoceanographic studies that use V as a proxy for
ancient redox chemistry, especially in coastal waters, should consider
the complex geochemical behavior of this element. While the main
objective of this project was to establish seasonal and spatial changes in
V speciation in amarine system by directmeasurements of V (IV) and V
(V) concentrations, future studies are needed to confirm the bioavail-
ability of V (V) and V (IV), and the exchange of the different V species
between dissolved and solid phases.
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