论文

第51卷第23期 2006年12月 🖨 🖗 🔏 🙇 🚛

近40年北太平洋亚热带环流区生态系变化的²²⁶Ra证据

杨俊鸿① 陈 敏①②^{*} 邱雨生①② 李艳平① 马 嫱① 吕 娥① 张 润① 黄奕普①② ① 厦门大学海洋系, 厦门 361005; ② 近海海洋环境科学国家重点实验室, 厦门 361005.* 联系人, E-mail: mchen@xmu.edu.cn)

摘要 利用 1999 年 7~10 月和 2003 年 10~12 月实测的北太平洋亚热带环流区表层水 ²²⁶Ra 含量,结合 文献所报道的历史数据,发现自 20 世纪 60 年代至今,北太平洋亚热带环流区表层水体 ²²⁶Ra 含量呈下 降趋势,反映出全球变化导致该海域生态系结构的变化.全球增暖一方面导致了该海域水体层化作用 的加强,进而导致上层水体 Ra 补充量的减少;另一方面,全球增暖导致海域生物生产力的升高,进而 导致 Ra 迁出量的增加.²²⁶Ra 含量的上述变化与文献报道的该海域叶绿素 a、硅酸盐、磷酸盐含量与初 级生产力的历史变化趋势相吻合,确证北太平洋亚热带环流区在全球变化背景下正发生着可观测的生 态系统变化.在上层海洋层化作用加强的情况下,为维持海域升高的生物生产力,其"新"氮可能的来源 是海洋的固氮作用.

关键词 北太平洋亚热带环流区 226Ra 生态系变化

北太平洋亚热带环流区是指由黑潮与加利福尼 亚海流、北赤道流与北太平洋海流所环绕的广阔海域, 其覆盖的经纬度范围为 13°N~35°N, 135°E~135°W, 表面积约 2×10⁷ km², 是世界上最大的环流区^[1]. 由于 四周为反气旋式环流所围绕,北太平洋亚热带环流 区的上层水体与周边水体被隔离开,形成一个相对 独立的生态系统. 该海域水体的一个主要特征是具 有永久性的、厚的温盐跃层,将深层富营养盐的水体 与真光层有效地隔离开,而反气旋式环流的存在使 得其边缘区存在下降流,进一步阻碍了深层营养盐 的向上提供^[2],从而导致该海域真光层营养盐含量极 低,且温度、盐度、营养盐等要素的水平梯度变化很 小^[3]. 由于其相对封闭的特点,因而传统的观点认为, 北太平洋亚热带环流区是古老、单一、相对稳定的生 态系统. 但最近获得的一系列证据显示,该海域的水 文、化学、生物学特征在一定时、空尺度上也存在变 化^[4~8].

本文通过对1999和2003年北太平洋亚热带环流 区表层水中²²⁶Ra的研究,结合文献报道的历史数据, 揭示该海域近40年来²²⁶Ra的时间变化特征,进而探 讨²²⁶Ra 变化的影响因素,为该海域生态系的变化提 供了镭同位素证据.

1 样品采集与分析

1.1 样品采集

研究样品采于 1999 年 9~10 月的 DY95-10 航次 和 2003 年 10~12 月的 DY105-12, 14 航次, 其中 DY95-10 航次采集了位于北太平洋亚热带环流区内 19 个站位的表层水样; DY105-12,14 航次采集了该海 域 23 个站位的表层水样(图 1). 每份水样(120~150

图1 采样站位图

+ 代表 2003 年航次采样站位; ○ 代表 1999 年航次采样站位

dm³)于船走航期间由帆布桶从表层(~0.5 m)采集后装 于塑料桶中,利用虹吸原理将其流过装有 12 g 锰纤 维的 PVC 管,流速控制在 200~250 cm³/min,以充分 富集水样中的镭同位素^[9]. 富集了镭同位素的锰纤维 用塑料袋密封,带回陆上实验室进行分析.

1.2 ²²⁶Ra 的测定

²²⁶Ra 的放射性活度利用 ²²²Rn-直接射气法测量, 首先将富集了镭同位素的 MnO₂-纤维甩干水分, 装入 特制扩散管中, 抽真空, 密封放置 5~7 d, 让子体 ²²²Rn 逐渐生长出来. 随后将 ²²²Rn 气体送入预先抽成 真空的 ZnS 闪烁室中, 放置 3 h 以确保 ²²²Rn 子体的 生长, 再利用氡钍分析仪(FD-125, 北京核仪器厂)测 定其中的放射性活度^[9].

²²⁶Ra 放射性比活度由下式计算得出:

$$A_{226} = \frac{k_{226}(N_s - N_b)}{\alpha \cdot V \cdot \eta_c \cdot \eta_d \cdot t},\tag{1}$$

其中 A₂₂₆ 为水样中 ²²⁶Ra 的放射性比活度(Bq/m³); k_{226} 为氡钍分析仪测量 ²²⁶Ra 的装置系数(Bq/cpm); N_s , N_b 分别为相同测量时间下样品和本底测量的计数率 (cpm); α 为 ²²²Rn 的累积系数; V为水样体积(m³); η_c 为 MnO₂-纤维对水样 ²²⁶Ra 的富集效率; η_d 为 MnO₂-纤维的射气效率; t为样品及本底的测量时间(min).

实验中通过将 3 份表层海水分别通过串联在一起的两份相同的 MnO₂纤维来确定 MnO₂-纤维对水样 ²²⁶Ra 的富集效率(η_c),结果表明,所采用 MnO₂纤维 对海水中镭同位素的富集效率平均为(99.2±0.4)%, 与本实验室以往的结果相吻合^[9]. MnO₂-纤维的射气 效率(η_d)则通过往 MnO₂ 纤维滴加已知活度的 ²²⁶Ra 标准溶液来确定,所得 η_d 为(91.0±1.1)%.²²⁶Ra测量的 装置系数(k_{226})由 ²²⁶Ra 标准溶液测定获得,其值介于 7.10~9.30 mBq/cpm 之间,不同的闪烁室具有不同的 装置系数.实验过程中对使用到的所有闪烁室均进 行了装置系数的测定,并在样品 ²²⁶Ra 比活度的计算 过程中采用相应闪烁室的 k_{226} 进行计算.

文中所报道数据均为±1σ计数统计误差,并已对 本底计数、样品计数和回收率的误差进行了误差传递 计算.

1.3 硅酸盐的测定

对 DY105-12,14 航次与镭同位素样品同步采集 的部分表层水样于船上同时进行了活性硅酸盐含量 的测定,所用方法为硅钼黄法,标准溶液为 GBW 08647,具体分析流程见文献[10].活性硅酸盐测量 的精度(标准偏差)为 0.1 μmol/dm³.

2 结果与讨论

2.1 近 40 年来北太平洋亚热带环流区表层水 ²²⁶Ra 含量的变化

研究结果显示, DY95-10 航次北太平洋亚热带环 流区表层水²²⁶Ra 放射性比活度介于 0.67~0.92 Bq/m³ 之间, 平均值为 0.74 Bq/m³. DY105-12,14 航次 ²²⁶Ra 放射性比活度介于 0.53~0.88 Bq/m³ 之间, 平均为 0.68 Bq/m³. 且两个航次研究海域表层水²²⁶Ra 含量 在空间上均呈均匀分布态势(表 1).

将本研究及文献报道的北太平洋亚热带环流区 表层水²²⁶Ra 含量按不同时间进行处理时可发现,20 世纪 60 年代至今,北太平洋亚热带环流区²²⁶Ra 平均 放射性比活度呈现明显的降低趋势,²²⁶Ra 平均放射 性比活度从 1967 年的~1.3 Bq/m³,降低至 2003 年的 ~0.7 Bq/m³(图 2). 鉴于北太平洋亚热带环流区相对 封闭的特点以及研究区域²²⁶Ra 的均匀分布特征,将 不同时期、不完全相同站位所获得的²²⁶Ra 平均含量 进行比较,进而揭示其时间变化特征是合理的.

为确证所得²²⁶Ra数据的可靠性, DY105-12,14航 次同时测量了表层水中的 SiO₃-含量. 研究站位表层 水 SiO₃²⁻含量的变化介于 $0\sim 8.8 \text{ mmol/m}^3$ 之间, 平均值 为 2.78 mmol/m³, 其中 72%的站位其含量小于 3.3 $mmol/m^3$, 呈现低 SiO $_3^2$ 的特点. 从空间分布看不出研 究海域表层水硅酸盐含量有明显的变化规律.以往 研究显示,太平洋上层水体中的 226 Ra与SiO $_3^{2-}$ 含量之 间具有线性正相关关系[15,16],显示出二者地球化学 行为的相似性. DY105-12, 14 航次 ²²⁶Ra 放射性比活 度与 SiO²·含量之间的关系示于图 3. 很显然、研究海 域二者之间存在良好的线性正相关关系. 根据拟合 线方程可得其协变关系方程为: Δ^{226} Ra/ Δ Si=0.018 Bq/mmol. 这与 Broecker 等^[17]于大西洋所得到的 Δ^{226} Ra/ Δ Si = 0.017 Bg/mmol; Moore 和 Smith^[18]于北 冰洋所得到的 Δ^{226} Ra/ Δ Si = 0.017 Bq/mmol; Chung 和 Craig^[19]于太平洋 14°N~5°S 所得到的Δ²²⁶Ra/ΔSi = 0.023 Bq/mmol; 以及 Key 等^[20]于北大西洋 TTO 站位 所得到的 Δ^{226} Ra/ Δ Si =0.028 Bg/mmol 基本一致.因 此,基于以上相关关系可从另一方面旁证本研究所 获得的²²⁶Ra数据是可靠的,上述²²⁶Ra时间变化的特 征是海域生态系变化的真实反映.

年份	站位	经度	纬度	²²⁶ Ra 比活度/Bq·m ⁻³	$SiO_3^{2-}/mmol \cdot m^{-3}$
1999	ZH1	164°47.6′ W	21°19.9′ N	0.77±0.03	n.d.
	ZH2	169°25.3′ W	21°25.8′ N	0.92 ± 0.04	n.d.
	ZH3	174°51.9′W	21°34.0′ N	0.68±0.03	n.d.
	ZH4	179°40.8′ E	21°43.2′ N	0.78 ± 0.04	n.d.
	ZH5	174°51.1′ E	21°41.1′ N	0.70±0.03	n.d.
	ZH6	175°35.0′ E	21°55.4′ N	0.77±0.04	n.d.
	ZH7	167°44.6′ E	21°58.2′ N	0.72±0.03	n.d.
	ZH8	161°59.5′ E	22°40.6′ N	0.74 ± 0.04	n.d.
	ZH9	156°40.2' E	22°42.0′ N	0.82 ± 0.04	n.d.
	ZH10	151°02.6′ E	22°49.4′ N	0.71±0.03	n.d.
	ZH11	145°42.0′ E	22°52.1′ N	0.69±0.03	n.d.
	ZH12	141°01.4′ E	25°13.5′ N	0.71±0.03	n.d.
	CNE5	176°24.0′ E	21°17.6′ N	0.67±0.03	n.d.
	CNE6	176°17.9′ E	21°06.2′ N	0.79 ± 0.04	n.d.
	CNE7	176°46.0′ E	21°09.1′ N	0.70±0.03	n.d.
	CNW7	175°37.9′ E	21°54.9′ N	0.69±0.03	n.d.
	CNW8	175°41.5′ E	21°52.7′ N	0.76 ± 0.04	n.d.
	CNW9	175°25.4′ E	22°09.7′ N	0.71±0.04	n.d.
	YB2	172°01.0′ E	20°16.1′ N	0.67 ± 0.04	n.d.
2003 年	DY1	156°46.2′ W	19°57.3′ N	0.53±0.02	0.00
• • • •	DY2	154°59.1′ W	18°17.5′ N	0.63 ± 0.02	0.27
	DY3	153°29.3′ W	17°32.5′ N	0.69 ± 0.02	5.59
	DY4	151°05.0′ W	16°53.0′ N	0.63 ± 0.02	5.59
	DY5	149°18.3′ W	16°43.8′ N	$0.64{\pm}0.02$	1.40
	DY6	146°52.7′ W	16°31.1′ N	0.73 ± 0.03	2.62
	DY7	143°19.0′ W	15°17.1′ N	0.76 ± 0.02	3.24
	DY8	139°41.5′ W	13°46.9′ N	$0.79{\pm}0.03$	4.87
	DY9	138°08.1′ W	13°44.8′ N	$0.59{\pm}0.03$	2.73
	DY10	135°34.7′ W	13°41.2′ N	0.68 ± 0.03	5.38
	DY28	160°58.9′ W	21°17.8′ N	$0.76{\pm}0.02$	n.d.
	DY29	165°41.6′ W	21°29.8′ N	0.73 ± 0.03	4.98
	DY30	170°28.3′ W	21°17.4′ N	0.61 ± 0.02	2.43
	DY31	175°14.8′ W	22°06.0′ N	0.61 ± 0.02	0.83
	DY32	179°38.6′ W	23°05.1′ N	0.88 ± 0.03	8.81
	DY33	174°39.5′ E	24°02.4′ N	0.68 ± 0.02	2.43
	DY34	169°55.4′ E	24°56.7′ N	0.64 ± 0.02	0.83
	DY35	164°46.1′ E	25°54.6′ N	0.69 ± 0.02	0.00
	DY36	159°37.5′ E	26°40.0′ N	0.69 ± 0.03	1.15
	DY37	154°24.8′ E	27°25.6′ N	0.73 ± 0.03	0.00
	DY38	149°09.0' E	28°11.6′ N	$0.54{\pm}0.02$	0.00
	DY39	144°06.2′ E	28°45.2′ N	$0.74{\pm}0.02$	1.47
	DY40	139°22 0' F	29°11 7' N	0.68+0.02	6 57

表 1 北太平洋亚热带环流区表层水 ²²⁶Ra 放射性比活度及硅酸盐含量 ^{a)}

a) n.d.代表没有数据

2.2 SiO₃²⁻, PO₄³⁻, Chl.a 和初级生产力的时间变化特征

上文已说明,²²⁶Ra 与 SiO₃²⁻之间存在类似的地球 化学行为,那么,北太平洋亚热带环流区表层水中 SiO₃²⁻含量是否如²²⁶Ra 所示也表现出时间变化特征 呢?为此,我们收集了研究海域 SiO₃²⁻含量的历史数 据,其中 1965~1989 年混合层(0~50 m)数据和 0~100 m 水柱积分含量数据来自 World Ocean Database 2001, 数据覆盖区域为 20°~30°N, 140°~170°W. 1998 年以后 的数据来自夏威夷时间系列站(ALOHA)(22.45°N,

图 2 北太平洋亚热带环流区表层水 226 Ra 含量的历史变化

图 3 北太平洋亚热带环流区表层水 ²²⁶Ra 放射性比活度 与 SiO²-含量的关系

158.00°W)(http://hahana.soest.hawaii.edu). 结果显示, 北太平洋亚热带环流区上层水体中的 SiO₃⁻²含量自 20 世纪 60 年代至今也呈现下降的趋势(图 4), 进一步证 实该海域生态系发生了变化.

另外,也有一系列文章报道过北太平洋亚热带 环流区生态系各要素存在时间变化的现象.Yasuda 等^[7]观察到北太平洋亚热带模态水(NPSTMW, 27°~ 33°N,140°~175°E)三月份的表层水温(SST)近30年有 增加趋势,由此导致上层水体层化作用的加强.Venrick 等^[21]研究了 Climax 研究区域(26.5°~31.0°N, 150.5°~158.0°W)Chl.a 含量的历史数据,表明北太平 洋亚热带环流区夏季(5~10月)真光层中 Chl.a 的平均 含量自 1968 年至 1985 年几乎增加了一倍;Karl 等^[6] 通过分析夏威夷附近海域 ALOHA 时间系列站 (22.45°N, 158.00°W)及邻近海域(20°~30°N, 140°~

图 4 近 40 年北太平洋亚热带环流区上层水体 SiO₃²含量 的历史变化

1965~1989 年的数据引自 World Ocean Database 2001; 1998~2001 年的 数据引自 ALOHA 时间系列站, 网址为 http://hahana.soest.hawaii.edu

170°W)的历史数据后指出,北太平洋亚热带环流区 真光层中的 Chl.a 积分含量和初级生产力积分值在过 去 30 a 中升高了一倍,而活性硅酸盐和活性磷酸盐 的积分含量分别从 710 和 32 mmol/m²逐渐下降至 120 和 4 mmol/m²,上述变化同时伴随着 Chl.b 含量的增 加,证明该海域浮游植物群体结构的转变. 2.3 近 40 年北太平洋亚热带环流区 ²²⁶Ra 含量变化 的可能机制

开阔大洋上层水体中²²⁶Ra 的主要来源是中深层 水体的垂直平流与扩散作用,而其从表层水输出的 途径主要是生源颗粒物的载带迁出^[14].根据开阔大 洋中²²⁶Ra 的来源与迁出途径,上述²²⁶Ra 时间变化特 征可能与研究海域对全球变暖的响应相关.一方面, 在全球变暖的影响下,其上层水体的层化作用加强, 由此导致上、下层水体交换的受阻^[22],下层富含 Ra 同位素的水体难以向上提供,导致上层水体 Ra 同位 素供应的减少.另一方面,在全球变暖背景下,研究 海域生态系种群结构的转变可导致初级生产力的提 高^[6],由此导致被生物吸收并随生源颗粒迁出的 Ra 通量增加,进一步降低上层水体中 Ra 同位素的含量. 上述机制与观测到的各相关要素(如表层水温、营养 盐、Chl.a、初级生产力等)的变化趋势是吻合的.

在全球变暖的影响下,北太平洋亚热带环流区 上层水体的层化作用增强,由此导致由中深层向上 层提供的营养盐减少,而同时该海域的生物生产力 又是升高的^[6].要维持提高的生物生产力,必须有 "新"营养盐的输入,对于氮来说,其最可能的来源是 上层海洋固氮生物的固氮作用.Karl^[5]的研究表明, 近30年来在北太平洋亚热带环流区,*Prochlorococcus* spp., *Synechococcus* spp.等细菌生物已经取代单细胞 生物、鞭毛虫等真核生物的优势地位,从而导致海洋 固氮作用的增强,并逐渐使该海域生物生长的限制 性营养盐由氮向磷转化.Hayward^[23]也将其观察到的 亚热带北太平洋颗粒氮含量在过去 30 年中的增加归 因于海洋的固氮作用.

2.4 过去 40 年北太平洋亚热带环流区表层水 SiO₃²⁻ 含量降低的平均速率

利用前述的 ²²⁶Ra-SiO₃²⁻关系以及 ²²⁶Ra 放射性比 活度在近 40 年中的降低趋势,可估算出北太平洋亚 热带环流区表层水 SiO₃²⁻含量在过去 40 年中的平均降 低速率为 0.010 mmol/m³·a⁻¹. 由所收集到的研究海 域混合层 SiO₃²⁻含量的数据计算得到的平均降低速率 为 0.018 mmol/m³·a⁻¹. 若考虑到这些数据是由不同 研究者在不同站位、不同时间获得的结果,显然两种 方法得到的 SiO₃²⁻平均降低速率是相当吻合的. 如果 假设研究海域为一稳态系统,该结果也表明研究海 域单位体积海水(1 m³)生物对 Si 的吸收速率平均每年 增加 0.010~0.018 mmol,而这些增加的 SiO₃²⁻显然用

3 结语

亚热带北太平洋环流区表层水²²⁶Ra 含量在过去 40 年中呈现降低趋势,反映了该海域生态系在全球 变化背景下的响应,其主要体现在于水体层化作用 的加强以及生物生产力的升高.

致谢 感谢国家海洋局第二海洋研究所倪建宇、王方国研 究员在硅酸盐测定中给予的支持;感谢编委和评审专家的 宝贵意见和建议.本工作受国家自然科学基金(批准号: 90411016)、国家重点基础研究发展计划(批准号: 2005CB422305)和国际海底区域研究开发计划(批准号: DY105-02-04和DY105-02-01)资助.

参考文献

- 1 Sverdrup H U, Johnson M W, Fleming R H. The Ocean, their physics, chemistry and general biology. New York: Prentic-Hall Englewood Cliffs, 1942, 1—1087
- 2 Wyrtki K. Fluctuation of the dynamic topography in the Pacific Ocean. J Phys Oceanogr, 1975, 5: 450-459
- 3 Hayward T L. Primary production in the North Pacific Central Gyre: a controversy with important implications. Trends Ecol Evolution, 1991, 6: 281–284
- 4 Karl D M, Lukas R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep-Sea Res Part II, 1996, 43: 129–156
- 5 Karl D M. A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems, 1999, 2: 181–214
- 6 Karl D M, Bidigare R R, Letelier R M. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep-Sea Res Part II, 2001, 48: 1449—1470
- Yasuda T, Kitamura Y. Long-term variability of north pacific subtropical mode water in response to spin-up of the subtropical gyre. J Oceanogr, 2003, 59: 279–290
- 8 McClaina C R, Signorinib S R, Christian J R. Subtropical gyre variability observed by ocean-color satellites. Deep-Sea Res Part II , 2004, 51: 281–301
- 9 谢永臻,黄奕普,施文远,等.天然水体中²²⁶Ra,²²⁸Ra的联合富 集与测定.厦门大学学报(自然科学版),1994,33(增刊):86—90
- 10 国家海洋局主编.海洋监测规范.北京:海洋出版社.1991.71— 272
- 11 Nozaki Y, Dobashi F, Kato Y, et al. Distribution of Ra isotopes and the ²¹⁰Pb and ²¹⁰Po balance in surface sea waters of the mid Northern Hemisphere. Deep-Sea Res Partl , 1998, 45: 1263—1284
- Yamada M, Nozaki Y. Radium isotopes in coastal and open ocean surface waters of the western North Pacific. Mar Chem, 1986, 19: 379-389
- Tsunogai S, Harada K. 西北太平洋的²²⁶Ra和²¹⁰Pb. 见: Goldberg E D, Horibe Y, Saruhashi K 编. 黄奕普, 施文远, 邹汉阳, 等译.

同位素海洋化学.北京:海洋出版社.1990.102-117

- 14 Broecker W S, Li Y H, Cromwell J. Radium-226 and radon-222: concentration in Atlantic and Pacific oceans. Science, 1967, 158: 1307-1310
- 15 Ku T L, Huh C A, Chen P S. Meridional distribution of ²²⁶Ra in the eastern Pacific along GEOSECS cruise tracks. Earth Planet Sci Lett, 1980, 49: 293—308
- Chung Y. Radium-barium-silica correlation and a two-dimensional radium model for the world ocean. Earth Planet Sci Lett, 1980, 49: 309—318
- 17 Broecker W S, Goddard J, Sarmiento J L. The distribution of ²²⁶Ra in the Atlantic Ocean. Earth Planet Sci Lett, 1976, 32: 220–235
- 18 Moore R M, Smith J N. Disequilibria between ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po in the Arctic Ocean and the implications for chemical modification of the Pacific water inflow. Earth Planet Sci Lett, 1986, 77: 285–292
- 19 Chung Y, Craig H. ²²⁶Ra in the Pacific Ocean. Earth Planet Sci Lett,

1980, 49: 267-292

- 20 Key R M, Moore W S, Sarmiento J L. Transient tracers in the ocean: North Atlantic Study-final data report for ²²⁸Ra, and ²²⁶Ra. OTL Technical Report No. 92-2. 1992
- 21 Venrick E L, McGowan J A, Cayan D R, et al. Climate and chlorophyll a: long-term trends in the central North Pacific Ocean. Science, 1987, 238: 70-72
- 22 Wang D X, Wang J, Wu L X, et al. Relative importance of wind and buoyancy forcing for interdecadal regime shifts in the Pacific Ocean. Sci China Ser D-Earth Sci, 2003, 46(5): 417–427
- 23 Hayward T L. The nutrient distribution and primary production in the central North Pacific. Deep-Sea Res, 1987, 34: 1593—1627

(2006-05-13 收稿, 2006-08-15 接受)

《中国科学 D 辑: 地球科学》简介

《中国科学 D辑:地球科学》是中国科学院主管、中 国科学院和国家自然科学基金委员会共同主办的地球科学 领域的综合性学术期刊,力求及时报道地质学、地球化学、 地球物理学、地理学、大气科学和海洋科学基础研究与应 用方面具有创新性和高水平成果的最新研究成果.由《中 国科学》杂志社出版.月刊.主编为周光召院士,执行主 编为孙枢院士.

《中国科学 D辑:地球科学》是《中国科技论文与引

文数据库》和《中国科学引文数据库》的源期刊,被《中 国学术期刊网》、《中国数字化期刊群》和《中国科学文献 数据库》等收录。

《中国科学 D辑:地球科学》设有以下 2个栏目:

评述:综述所研究领域的代表性成果、研究进展,提 出作者自己的见解以及对今后研究方向的建议.

论文:报道地球科学各领域具重要意义的创新性科研 成果.

第36卷 第11期 目次

(2006年11月20日出版)

红河断裂带大型右旋走滑运动发生时代的地质分析与 FT 测年 ·····		•••••				
	万景林	韩竹军	虢顺民	张晚霞	陈立春	董兴权
天山北缘新近系沉积物岩石磁学研究	·· 李传新	郭召杰	孟自芳	李海燕	张志诚	吴朝东
四川大渡河谷灯影期层状铅锌矿床中震积岩的发现及其成矿意义		•••••			林方成	潘桂棠
青藏公路沿线冻土的地温特征及退化方式		•••••	··金会军	赵林	王绍令	晋 锐
基于 NIR-Red 光谱特征空间的土壤水分监测新方法····································	詹志	明 秦其	明 阿布	5都瓦斯提	·吾拉木	汪冬冬
基于多智能体系统的空间决策行为及土地利用格局演变的模拟····		•••••		…刘小平	黎 夏	叶嘉安
沙漠绿洲陆面物理过程和地气相互作用数值模拟	⋯ 刘树华	刘和平	胡 予	张称意	梁福明	王建华
高分辨率海岸带遥感影像中简单地物的最优分割问题		•••••		…陈建裕	潘德炉	毛志华
地表拖曳对斜压波地面锋生的影响······		•••••			张熠	谈哲敏
非线性局部 Lyapunov 指数与大气可预报性研究		•••••		…陈宝花	李建平	丁瑞强