厦门火烧屿裸露岩石的铀放射系不平衡

刘广山 徐茂泉 黄奕普

(厦门大学海洋系,亚热带海洋研究所,福建厦门,361005)

摘 要 用 HPG 谱方法测定了厦门火烧屿裸露岩石天然放射性核素⁴⁰ K、²²⁸ Ra、²²⁸ Th、²³⁸ U、²²⁶ Ra 和²¹⁰ Pb 含量,对其铀系 不平衡关系进行了讨论,发现钍系核素²²⁸ Ra 和²²⁸ Th 基本上是平衡的,而大部分样品²²⁶ Ra 相对于²³⁸ U、²¹⁰ Pb 相对于²²⁶ Ra 亏 损。由此推论,水体作用下岸边岩石中²²⁶ Ra 直接进入水体,可以是海水中²²⁶ Ra 的一个来源;岸边岩石中²²² Rn 逸出后,衰变 为²¹⁰ Pb 再进入水体,可以是海水中²¹⁰ Pb 的一个来源。

关键词 谱分析 裸露岩石 铀系不平衡 火烧屿

Uranium Series Disequilibrium in Naked Rocks from Huoshaoyu Island, Xiamen

LIU Guangshan XU Maoquan HUANG Yipu

(Department of Oceanography/Institute of Subtropical Oceanography, Xiamen University, Xiamen, Fujian, 361005)

Abstract The natural radionuclides in naked rocks from Huoshaoyu island of Xiamen were measured by means of HPGe (spectroscopy ,and the 40 K, 228 Ra , 228 Th , 238 U, 226 Ra and 210 Pb were detected. Based on a discussion on the disequilibrium of uranium series , it is found that in most samples 226 Ra relative to 238 U and 210 Pb relative to 226 Ra are deficient. It can thus be concluded that the migration of 226 Ra from the coastal rocks into seawater by water leaching is a source of 226 Ra in seawater and that the 210 Pb formed by the decaying of 222 Rn escaped from rocks is a source of 210 Pb in seawater.

Key words spectrum analysis naked rock uranium series disequilibrium Huoshaoyu island

地球科学研究中,测定岩石、沉积物等的放射性 核素含量,研究其中的天然放射系不平衡关系可以 揭示其形成演变规律和环境的历史变迁。

铀系不平衡方法已广泛应用于地球科学研究中 (Bourdon 等,1994; Chabaux 等,1994; Gascoyne 等, 2002; Ivanovich 等,1992; Iwamori,1994; 罗兴章等, 1998;夏明,1989)。岩石中铀系不平衡研究主要应 用于年轻火山岩和水-岩相互作用体系两方面 (Bourdon 等,1994; Chabaux 等,1994; Gascoyne 等, 2002; Ivanovich 等,1992; Iwamori,1994; 罗兴章等, 1998)。通过²³⁸U-²³⁰ Th-²²⁶ Ra 之间的不平衡进行火 山岩测年和岩石受水体作用的地球化学研究,其时 间尺度为 10⁴~10⁶ a。

人们大多用质谱方法或 谱方法测定岩石样 品。也有用 谱方法测定岩石中放射性核素的报 道,但研究目的往往在岩石中的放射性水平,而不是 进行地球科学研究 (Ajayi 等, 2001; Khater 等, 2001)。本文用 谱方法测定了厦门火烧屿裸露岩 石中的放射性核素含量,讨论了其铀系不平衡和相 关的问题。

1 样品采集与测定

1.1 火烧屿

火烧屿位于中国福建省厦门西海域,四面环海, 地理坐标为 E118 %4, N24 %0。该岛呈 NE—WS 向延伸,长约 1 km,宽约 0.2~0.5 km,面积约为 0.3 km²,最高海拔 25 m。岛上部分植被覆盖,出露 地层为下侏罗统梨山组,主要由褐黄色、灰白色中-中细-细砂岩、长石石英砂岩夹薄层-中厚层状泥岩 及片理化流纹岩、流纹质晶屑凝灰熔岩、流纹质凝灰 岩组成。为一层湖相细碎屑岩夹陆相火山岩建造 (福建省地质矿产局区域地质调查队,1988)。在该 地层内可见发育的透镜状层理、微细水平层理,局部

本文由国家自然科学基金项目(40076024)资助。 责任编辑:宫月萱。

第一作者:刘广山,男,1959年生,研究员,从事同位素海洋学研究;E-mail:lgshan @public.xm.fj.cn。

可见微斜层理和交错层理。岩层内断裂构造和褶皱 构造发育,其产状与厦门岛构造形迹相似。另外,在 区域变质和动力变质作用的叠加作用下,该岛岩层 形成的低绿片岩相主要为绢云母片岩-云母石英片 岩和片理化火山岩2种岩石的自然共生组合。

尽管火烧屿面积不大,但其上有典型的地质剖面,丰富的地质现象,奇特的海蚀地貌,被称为厦门的地质博物馆。裸露岩石主要分布在周边潮间带和山脚下,受海水和雨水冲刷、侵蚀较为严重。

1.2 样品的采集与处理

所有样品在岩石裸露区域采取或从岩层上敲击 得到。山脚或海边样品于低潮时间采集。样品 2-1 和样品 2-2 是采自同一地点而外观不同的 2 种岩 石,其余样品均为在大块或大堆岩石上采集的有代 表性的样品。样品外观特征如表 1 所列。采集到的 样品用塑料袋封装,回实验室晾干后磨细、混匀、80 目过筛,然后用直径 75 mm,高度 50 mm,圆柱体的 聚乙烯塑料盒封装。

样品编号	名称	采样位置	外观特征	粉碎后色别
1	铁锰质岩脉	东部潮间带	为沿裂隙允填的铁锰质岩脉,表面附着少量生物壳体,呈暗黄褐 色	黄色
2-1	含铁锰质石英岩脉	西部山脚	原岩为泥质粉砂岩 ,呈淡褐色/ 灰白色 ,其间裂隙为含铁锰质石英 岩脉充填	浅粉红色
2-2	泥质粉砂岩	西部山脚	为泥质粉砂岩,呈淡褐色/灰白色,含有火山凝灰物质	浅粉红色
3	含白云母的铁锰 质石英岩脉	西部山顶	铁锰质石英岩脉,中间夹白云母层,表面为暗灰色,新断面为黄褐色	黄色
4	黄褐色铁质板岩	西部山顶	黄褐色,颗粒细小,为泥质、铁质板岩,隐晶质结构,板状构造	黄色
5	灰白色粉砂岩	东部海边海蚀崖	砂状结构,块状构造,一侧为石英脉壁,内见细小石英脉穿插其中	灰白色
6	暗褐色铁锰质岩脉	西部山腰	铁锰质脉 ,呈暗褐色 ,含少量石英脉 ,石英脉穿插其中	黄色
7	暗褐色含铁锰质 石英岩脉	东部山坡	粉砂状结构,块状构造,沿裂隙允填呈球状壳体,其内充填灰白色 /淡黄色砂页岩	黄色
8	铁质板岩	东部山脚	暗红褐色 ,内含大量赤铁矿 ,板状构造 ,鳞片粒状变晶结构	铁红色
9	砂页岩	东北部海蚀崖	灰白色 ,含凝灰质 ,页理、层理清晰可见 ,风化作用很强 ,具强烈高 岭土化	白色

表 1 样品外观特征 Table 1 The characteristics of the samples

1.3 样品的 谱分析

用 HPGe 探测器 谱仪(美国 Canberra 公司) 测量样品。探测器为 GX3020 型,晶体直径为 60 mm,高度为 54 mm,可测量(射线能量范围为 4 ~ 1 000 keV;在 25 cm 源距,对⁶⁰Co 点源 1 332 keV, 射线峰分辨率为 1.91 keV,相对效率为 37.3 %,峰 康比为 60 1。系统使用 Canberra747 铅室,Accuspec 多道板与微机组成的计算机多道,ADC 变换增益和 多道存储容量最大为 8 192 道。用 Genie-2000 谱分 析软件分析谱数据。

将装好的样品气密封 20 d 后直接放置在探测 器端帽上方收集谱数据,谱数据收集过程中观察感 兴趣 射线峰面积,要求其相对误差小于 5 %,谱数 据收集最长时间限制在 86 400 s 以内。 全部样品中可探测到的放射性核素为成系天然

放射系核素和⁴⁰ K。测量⁴⁰ K用 1 460.5 keV (分支 比 10.67 %) 射线;测量²¹⁰ Pb 用 46.5 keV (4.0 %) 射线;测量²²⁶ Ra 用²¹⁴ Pb 的 351.9 keV (37.09 %) 和²¹⁴ Bi 的 609.3 keV (46.1%)、1 120.3 keV (15.0%) 射线;测量²²⁸ Ra 用²²⁸ Ac 的 338.7 keV (11.9%)、911.2 keV (27%)和 968.8 keV (16.3%) 射线;测量²²⁸ Th 用²¹² Pb 的 238.6 keV (43.6%)和 ²⁰⁸ Th的 583.1 keV (30.96%) 射线;测量²³⁸ U用 ²³⁴ Th的 63.2 keV (分支比 3.826%)和 92.6 keV (5.41%) 射线。

用 GBW 04124 铀矿渣标准物质掺入模拟基质, 混匀、制成源物质,模拟基质由 SiO₂(71.2%)、Al₂O₃ (20.5%)和 Fe₂O₃(8.3%)分析纯化学试剂混合、磨 细、120 目过筛制成。制好的源物质与 KCI 试剂分 别装入 75 mm ×50 mm 的聚乙烯塑料样品盒,制成 与样品几何条件完全相同的刻度源。用源物质制作 的刻度源密度为 1.25 g/ cm^3 , KCI 试剂制作的刻度 源密度为 1.13 g/ cm^3 。

620

在与测量样品完全一致的几何条件下收集刻度 源 谱、空白基质本底 谱和样品容器本底 谱,测 量实验效率值,由实验效率值用双对数多项式拟合 得到效率曲线方程。 样品与刻度源密度基本一致,所以不进行自吸 收校正。

2 结果与讨论

2.1 火烧屿岩石中的放射性核素含量

全部样品用 谱方法探测到的核素为⁴⁰ K、 ²²⁸Ra、²²⁸Th、²³⁸U、²²⁶Ra 和²¹⁰Pb,测定结果如表 2 所 列。表中的²²⁸Th/²²⁸Ra、²²⁶Ra/²³⁸U和²¹⁰Pb/²²⁶Ra分 别表示两种核素的活度比。

Table 2 The radionuclides contents in naked rocks of Huoshaoyu island Bq/ kg ²²⁸Th 40 K ²²⁸Ra 228 Th/ 228 Ra 238U ²²⁶Ra ²¹⁰Pb ²¹⁰Pb/ ²²⁶Ra 样品编号 226 Ra/ 238 U 1 107 ±9 25.5 ±2.2 23.9 ± 2.6 0.94 68.7 ±7.1 68.4 ±5.8 1.00 31.7 ±3.9 0.462-1 1070 ±88 59.2 ±5.0 60 ±12 39.7 ±3.6 33.2 ±6.6 56.3 ±5.9 0.95 0.66 0.8464 ±10 48.4 ±4.5 2.32 2 - 21168 ±97 45.4 ±4.9 0.94 56 ±11 27.6 ±2.5 0.49 16.1 ±1.5 15.5 ±1.6 40.7 ±5.1 46.8 ±3.8 25.3 ±3.8 0.54 3 264 ±21 0.96 1.15 42.3 ±3.6 4 785 ±63 38.1 ±3.9 0.90 52.2 ±5.8 47.6 ±3.8 0.91 22.9 ±3.6 0.485 28.3 ±2.4 25.1 ±2.6 32.3 ±4.6 15.1 ±1.4 0.73 30.5 ±3.1 0.89 0.4711.0 ±2.3 3.5 ±5.0 6 641 ±52 7.7 ±4.0 34.2 ±3.6 0.91 50.2 ±5.9 55.1 ±.8 1.10 0.68 7 508 ±41 33.5 ±3.8 30.8 ±3.1 26.9 ±5.0 24.1 ±2.2 0.90 0.92 16.4 ±4.0 0.68 8 754 ±65 73.0 ±6.8 76.5 ±7.8 1.05 82.0 ±9.6 42.8 ±4.0 0.52 82.4 ±8.5 1.92 896 ±72 74.5 ±7.5 70.3 ±6.8 29.6 ±2.5 0.70 9 0.94 42.4 ±6.7 21.9 ±4.8 0.74 平均 43.9 41.6 51.2 39.7 35.6 622 0.94 0.77 0.98 范围 30.5~1168 16.1~74.5 15.5~76.5 0.89~1.05 26.9~82.0 15.1~68.4 0.47~1.15 11.0~82.4 0.46~2.68

表 2 火烧屿裸露岩石放射性核素含量

由表 2 中数据可以看出,不同样品中⁴⁰ K 含量 相差较大,以 5 号样品⁴⁰ K 含量为最低,仅 30.5 Bq/ kg;2-1 和 2-2 号样品的⁴⁰ K 含量在同一水平,且为 全部样品最高含量,其中 2-2 号样品含量达 1 168 Bq/kg。1 号和 3 号样品中的⁴⁰ K 较 5 号样品含量稍 高,但仍属偏低水平。全部样品⁴⁰ K 平均含量为 622 Bq/kg。

不同样品中的²²⁸ Ra 和²²⁸ Th 含量有较大的差 异,其中 3 号样品含量为最低,分别为 16.1 和 15.5 Bq/ kg,最高含量的 9 号样品分别为 74.5 Bq/ kg 和 70.3 Bq/ kg,全部样品²²⁸ Ra 和²²⁸ Th 平均含量为 43.9 Bq/ kg 和 41.6 Bq/ kg。

全部样品中的²³⁸U在26.9~82.0 Bq/kg范围 内,平均为51.2 Bq/kg;²²⁶Ra 含量为15.1~68.4 Bq/kg,平均为39.7 Bq/kg;²¹⁰Pb 含量为11.0~ 82.4 Bq/kg,平均为35.6 Bq/kg。

样品中⁴⁰ K和²³⁸ U 含量平均值与福建省土壤天 然放射性水平平均值为 609 Bq/ kg 和 55.5 Bq/ kg 接近,稍高于全国土壤⁴⁰ K和²³⁸ U 含量平均值 580 Bq/kg和 39.5 Bq/kg(全国环境天然放射性水平调 查总结报告编写小组,1992)。

2.2 铀系不平衡及其相关问题

2.2.1 ²²⁸ **Ra** 和²²⁸ **Th** 全部样品中²²⁸ Th 和²²⁸ Ra 的 活度比为 0.89~1.05,在实验误差范围内²²⁸ Ra 和²²⁸ Th 的含量水平一致。在钍放射系中,除母 体²³² Th 外,只有²²⁸ Ra 和²²⁸ Th 半衰期较长,分别为 5.75 a 和 1.91 a,其他核素半衰期较短,就地球科学 意义而言,可以将钍系看作是由²³² Th 和²²⁸ Ra 和 ²²⁸ Th构成的三级衰变链;岩石中²²⁸ Ra 和²²⁸ Th 含量 水平一致,说明所测样品中钍放射系是衰变平衡的。 2.2.2 ²³⁸ U、²²⁶ **Ra** 和²¹⁰ Pb ²³⁸ U、²²⁶ Ra 和²¹⁰ Pb 均 为铀放射系核素,通常,人们把铀系分为 5 个子系, 各个子系的第一个核素分别为²³⁸ U、²³⁰ Th、²²⁶ Ra、 ²²² Rn和²¹⁰ Pb,半衰期分别为 4.468 ×10⁹ a、7.7 ×10⁴ a、1.6 ×10³ a、3.82 d 和 22.26 a。很多情况下不能 用 谱方法测定²³⁰ Th;²²² Rn 是惰性气体,半衰期又 短,从采样到测量经历的时间较长时,所测的²²² Rn 已不是采样时的活度; 谱方法能测定的铀系核素 为²³⁸ U、²²⁶ Ra 和²¹⁰ Pb。

由表 2 数据可看出,所测样品铀系²³⁸ U、²²⁶ Ra π^{210} Pb 衰变不平衡。²²⁶ Ra π^{238} U 的活度比在 0.47~1.15之间,1、3、4、6、7 样品中的²³⁸ U π^{226} Ra 在实验误差范围内是衰变平衡的,其余样品²²⁶ Ra 相 对于²³⁸ U 亏损。一般认为,由²³⁸ U 经级联衰变的 ²²⁶ Ra比²³⁸ U 更易从矿物晶格逃逸,所以在海水与雨 水冲刷侵蚀下,岩石中更可能出现²²⁶ Ra 相对于²³⁸ U 亏损。1、3、4,6 和 7 号样品²²⁶ Ra 与²³⁸ U 在同一水 平,一个很明显的特点是 1、3、6、7 号样品均为铁锰 质岩脉,4 号样品为铁质板岩,可能是其中的铁锰氧 化物对镭的吸附作用阻滞了雨水或海水冲刷时镭的 溶出。

大部分样品²¹⁰ Pb 相对于²²⁶ Ra亏损,由于²²⁶ Ra 通过中间隋性气体衰变为²¹⁰ Pb,所采集样品为裸露 岩石,²²² Rn 易从其中逃逸,从而形成²¹⁰ Pb 相对于 ²²⁶ Ra亏损。2-2 和 8 号样品²¹⁰ Pb 相对于²²⁶ Ra 过剩, 但并不明显相对于²³⁸ U 过剩,所以可以认为是近 期²²⁶ Ra 的丢失造成的。

2.3 与海洋学相关的问题

(1) 长期以来,人们一直认为海洋中过剩的 ²¹⁰Pb来自陆地土壤中²²⁶Ra 衰变产生并释放进入大 气的²²²Rn,经大气输运到海洋上空衰变产生的。从 以上结果可知,沿岸表层岩石中的²²⁶Ra 衰变产生的 ²²²Rn也可以释出到大气中并衰变产生²¹⁰Pb,对海洋 中过剩的²¹⁰Pb 产生贡献。

(2)海底沉积物是²²⁶ Ra 的主要来源。另外,河 流中的颗粒物在河水与海水的混合区解析出²²⁶ Ra 是海水中²²⁶ Ra 的另一个来源。由于岩石中的²²⁶ Ra 相对于²³⁸U 亏损,所以海水的冲刷可以使沿岸岩石 中的²²⁶ Ra 释出到海水中,对海水中的²²⁶ Ra 含量产 生贡献。

参考文献

- 福建省地质矿产局区域地质调查队. 1988. 厦门地质图(1 50000)说 明书. 北京:地质出版社.
- 罗兴章, 闵茂中. 1998. 水-岩反应的铀系不平衡判别. 地球科学 —— 中国地质大学学报, 23(5):537~541.

- 全国环境天然放射性水平调查总结报告编写小组.1992.全国土壤中 天然放射性核素含量调查研究.辐射防护,12(2):122~141.
- 王非,陈文奇.1997.年青火山岩铀系不平衡研究的发展及其意义. 地震地质,19(3):269~276.
- 夏明等编著.1989.铀系年代学方法及实验技术. 兰州:兰州大学出 版社,161.

Reference

- Ajayi I R, Kuforiji. 2001. Natural radioactivity measurements in rock samples of Ondo and Ekiti states in Nigeria. Radiation measurements, 33:13 ~ 16.
- Bourdon B, Zindler A, Wörner G. 1994. Evolution of the Laacher See magma chamber: Evidence from SIMS and TIMS measurement of U-Th disequilibriua in minerals and glasses. Earth and Planetary Science Letters, 126:75 ~ 90.
- Chabaux F, All ère C J. 1994. ²³⁸ U-²³⁰ Th-²²⁶ Ra disequilibriua in volcanics: A new insight into melting conditions. Earth and Planetary Science Letters, 126:61 ~ 74.
- Fujian Bureau of Geology and Mineral Resources. 1988. Directions for Xiamen geological maps (1 50000). Beijing: Geological Publishing House (in Chinese).
- Gascoyne M, Miller N H, Neymark. 2002. Uranium series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years. Applied Geochemistry, 17: 781 ~792.
- Ivanovich M, Harmon R S. 1992. Uranium series disequilibrium :application earth, marine and environmental sciences. Second Edition. Oxford Clarendon Press. 909.
- Iwamori H. 1994. ²³⁸ U- ²³⁰ Th⁻²²⁶ Ra and ²³⁵ U- ²³¹ Pa disequilibriua produced by mantle melting with porous and channel flows. Earth and Planetary Science Letters, 125:1~16.
- Khater A E M, Higgy R H, Pimpl M. 2001. Radiological impacts of natural radioactivity in Abur Tartor phosphate deposits, Egypt. Journal of Environmental Radioactivity. 55:255 ~ 267.
- Luo Xingzhang, Min Maozhong. 1998. Judgment on water rock interaction in crystalline rocks using uranium series disequilibrium. Earth Science-Journal of Chinese University of Geosciences ,23(5) : 537 ~ 541 (in Chinese with English abstract).
- The Writing Group of the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China. 1992. Survey of natural radionuclides contents in soil in China (1983 ~ 1990). Radiation Protection ,12(2) :122 ~ 141 (in Chinese).
- Wang Fei , Chen Wenji. 1997. Development and importance of U-series disequilibrium investigation on young volcanic rocks. Seismology and Geology ,19(3):269 ~ 276 (in Chinese with English abstract).
- Xia Min et al. 1989. Uranium series Chronology and experiment technology. Lanzhou: Lanzhou University Press, 161 (in Chinese).