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a b s t r a c t

The models for calculation of phase diagrams of semiconductor thin films with different substrates were

proposed by considering the contributions of strain energy, the self-energy of misfit dislocations and

surface energy to Gibbs free energy. The phase diagrams of the AlxIn1�xAs and AsxSb1�xAl thin films

grown on the InP (10 0) substrate, and the AlxIn1�xSb thin films grown on the InSb (10 0) substrate at

less than 1mm, the strain-induced zinc-blende phase appears, the region of this phase extends with

decreasing of the layer thickness, and there is small effect of surface energies of liquid and solid phases

on the phase diagrams.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The III–V semiconductors are important materials in the
fields of fabrication of microwave, optoelectronic, and electronic
devices. The film materials of devices are usually obtained by
several techniques, such as metal organic vapor phase epitaxy
(MOVPE), molecular beam epitaxy (MBE) and liquid phase epitaxy
(LPE). Accurate phase diagrams for thin films are very important
for understanding of phase transformation in the thin film system,
because the growth conditions such as solution composition for
the growth and starting growth temperature can be effectively
obtained from phase diagram [1,2]. However, the solid composi-
tions of epitaxial film are not precisely consistent with those
determined by the equilibrium phase diagram of bulk materials,
because the epitaxial films grown on a substrate is affected by the
additional energies, such as surface energy, strain energy as well
as the energy of misfit dislocations, which are always ignored in
bulk materials.
ll rights reserved.

ax: +0086 592 2187966.
Studies of III–V semiconductors have indicated that these
additional energies have considerable influence on phase trans-
formation [3–6]. The III–V ternary compounds can be stabilized
and the composition-latching phenomenon appears by the effect
of strain in a certain range of solution composition [7,8]. Nakajima
et al. [9] calculated the In–Ga–As ternary phase diagram by
adding the excess energies to the chemical free energy to explain
the extraordinary behavior of the liquid–solid equilibrium near
the lattice-matched composition of InGaAs on InP. Ohtani et al.
[10] calculated the phase diagrams of some strained III–V
semiconductors by considering the strain energy to interpret the
composition-latching phenomenon. However, there is no sys-
tematic information of liquid–solid equilibrium and the misci-
bility gap in the whole range of composition for the epitaxial film/
substrate structure when the film thickness is thinner than
100 nm.

The purpose of the present work is: (a) to propose a method for
calculating the phase diagrams of thin films with different
substrates by considering the contributions of strain energy, the
self-energy of misfit dislocations and surface energy to Gibbs free
energy, and (b) to calculate the pseudobinary section phase
diagrams of AlAs–InAs with substrate InP, AlAs–AlSb with
substrate InP and AlSb–InSb with substrate InSb.

https://core.ac.uk/display/41340528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/jcrysgro
dx.doi.org/10.1016/j.jcrysgro.2009.07.038
mailto:lxj@xmu.edu.cn
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2. Models of Gibbs free energies

In the calculation of Gibbs free energy in the film–substrate
system, besides the chemical free energy, the strain energy, self-
energy of dislocations and the surface energies of solid and liquid
phases should be taken into account, when the film is in nano-
scale.

2.1. Chemical Gibbs free energy

The chemical Gibbs free energies of the liquid phase and the
zinc-blende phase x ((A, B)C) in A–B–C ternary system are
respectively described by the regular solution model and two-
sublattice model, as follows:

for liquid phase,

Gliq ¼ 0Gliq
A xA þ

0Gliq
B xB þ

0Gliq
C xC þ RTðxA ln xA þ xB ln xB þ xC ln xCÞ

þLliq
A;BxAxB þ Lliq

A;CxAxC þ Lliq
B;CxBxC þ Lliq

A;B;CxAxBxC ð1Þ
for zinc-blende phase,

Gx ¼ 0GA:CyI
A þ

0GB:CyI
B þ RTðyI

A ln yI
A þ yI

B ln yI
BÞ þ LA;B:CyI

AyI
B ð2Þ

where Li,j
lig is the i–j interaction parameter in the liquid phase,

LA,B:C the A–B interaction in the first sublattice when the second
sublattice is occupied by component C. xA, xB and xC are the mole
fractions of A, B and C components, yA

I and yB
I are the site

fractions of A and B in the first sublattice, respectively.

2.2. Strain energy

The strain energy between the epitaxial layer and substrate
was discussed by Ohtani et al. [10]. The strain energy is generated
by lattice mismatch, and piles up as the layer thickness increases.
Therefore, the strain energy has different expressions below and
over the critical thickness, at which the first misfit dislocation has
been generated. Contribution of the strain energy to Gibbs free
energy is given as follows:

Gst ¼
m
2

1þ u
1� u

NAa3f 2 for hohc ð3Þ

Gst ¼
NAa3

4h
D 1þ ln

h

hc

� �� �
for hZhc ð4Þ

where a is the lattice parameter, m the shear modulus, n the
Poisson’s ratio, NA the Avogadro’s number, f the misfit between the
epitaxial layer and the substrate, and is given by f ¼ (a�a0)/a0,
where a0 the lattice parameter of the substrate. h and hc are
respectively the layer thickness and critical layer thickness. D the
energy barrier, and the value of D is assumed to be 0.8 (J/m2)
[10,11] for the (10 0) orientation.

2.3. Self-energy of misfit dislocations

Because the misfit dislocations exist when epitaxial layer
grows over the critical thickness, the contribution of misfit
dislocation to the Gibbs free energy should be taken into account.
The energy of misfit dislocations of per unit volume is given as
follows [12]:

Gdis ¼ ðf � eÞ b

pð1� uÞ
m0m

m0 þ m
ð1� u cos2 aÞ ln

h

b

� �
þ 1

� �
ð5Þ

where e is the strain of epitaxial layer over critical thickness, m0

the shear modulus of the substrate. a the angle between the
dislocation and its Burgers vector b
,

. The Burgers vectors of the
dislocations that generated in III–V semiconductor thin films
grown on the (10 0) substrate, usually inclined at 601 to the
dislocation lines (601 type misfit dislocations), which was
observed in Ref. [13]. Thus, the 601 type misfit dislocation is
assumed in this paper. In this case, b ¼ a=

ffiffiffi
2
p

, a ¼ 601.

2.4. Surface energy

2.4.1. Surface energy of the liquid phase

The liquid surface of a molten solution can be treated as a
‘surface phase’, the surface tension of the liquid phase can be
given using Butler’s [14] equations as follows:

s ¼ si þ
RT

Ai
ln

as
i

ab
i

ð6Þ

where s and sI are the surface tensions of the molten solution and
pure component i, respectively. Ai the molar surface area of the
species i, which can be derived from:

Ai ¼ 1:091 N1=3
A V2=3

i ð7Þ

where Vi is the mole volume of component i. ai
s and ai

b the
activities of component i in bulk and surface phases, respectively.
The activities in bulk and surface phases were approximately
replaced with the mole fraction in this work. Therefore, the
surface energy of the liquid phase of per mole layer contribution
to Gibbs free energy can be written by:

Gsur
L ¼ ASs ð8Þ

where AS is the surface area of the film.

2.4.2. Surface energy of the solid phase

The surface energy between the vapor and solid phases can be
estimated by the bond-cutting theory. The surface energy per unit
area of zinc-blende phase can be given approximately by [15]:

gs ¼ ð1�w=uÞDHv0N2=3
0 ð9Þ

where u is the number of nearest neighbors of an atom in the bulk
of the solid, w the number of neighbors in the solid of an atom on
the face. The term (1�w/u) means the number of dangling bonds
of an atom on the surface. DHv0 the enthalpy of evaporation of the
material, and N0 the number of atoms per unit volume. It was
assumed that the maximum surface energy before reconstruction
of dangling bonds on the surface is the energy to break all of the
nearest neighbor bonds across a given plane. The number of atoms
per unit surface area (NS) can be related to the number of atoms
per unit volume N0 as follows:

NS ¼ N2=3
0 ð10Þ

For the (10 0) surface of zinc-blende phase, N0
2/3 is given by:

N2=3
0 ¼ 2=a2 ð11Þ

DHv0 is given by the enthalpy of evaporation DH per mole as
follows:

DHv0 ¼
DH

2NA
ð12Þ

The details of expression for DH are given in the Appendix A.
The molar surface energy depends on the layer thickness, since
the total volume per mole is constant. Thus, the surface energy of
per mole layer contribution to Gibbs free energy can be written as
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follows:

Gsur
S ¼ aAS gS ð13Þ

where a is the reconstruction parameter on the surface, which
means the ratio of the surface energy between after reconstruc-
tion and before reconstruction of dangling bonds on the surface.
The values of a used in this paper are listed in Table 1 [16–18].

2.5. Total energy of the film

Total Gibbs free energy of the liquid and zinc-blende phases
were given by the sum of the chemical energy and the additional
free energies as follows:

for liquid phase,

Gfilm ¼ Gliq þ Gsur
L ð14Þ

for zinc-blende phase,

Gfilm ¼ Gx þ Gst þ Gsur
S for hohc ð15Þ

Gfilm ¼ Gx þ Gst þ Gsur
S þ Gdis for hZhc ð16Þ

On the basis of Eqs. (14)–(16), the phase diagrams of the AlAs–
InAs, AlAs–AlSb and AlSb–InSb pseudobinary section with
different film thicknesses can be calculated.
3. Calculated results

3.1. Evaluation of parameter

The thermodynamic parameters of the Al–In–As, As–Al–Sb and
Al–In–Sb systems [19,20] are listed in Table 2, the elastic
parameters and some required parameters of pure elements
used in the calculation are respectively listed in Table 3 [9,21] and
Table 4 [22]. The value of surface tension of pure arsenic is
assumed to be zero, because of no experimental information. The
thermodynamic data used to calculate DH were obtained from
Ref. [23].
Table 1
Surface reconstruction and reconstruction parameter (a) for ternary alloys [16–18].

Alloy Surface reconstruction (10 0) Nd
r Nd

b Nd
r /Nd

b (a)a

AlxIn1�xAs (2�3) [16] 4/3a2 4/a2 0.333

AsxSb1�xAl (1�3) [17] 2/a2 0.500

AlxIn1�xSb (1�3) [18] 2/a2 0.500

a Nd
b and Nd

r are the numbers of dangling bonds of surface before and after

reconstruction, respectively.

Table 2
Thermodynamic parameters for ternary alloys [19,20].

System Phase

Al–As–In Liquid phase

Zinc-blende compound (x)

Al–As–Sb Liquid phase

Zinc-blende compound (x)

Al–In–Sb Liquid phase

Zinc-blende compound (x)
3.2. The excess free energies of AlxIn1�xAs film grown on InP

substrate

The surface energy, strain energy and self-energy of disloca-
tions of AlxIn1�xAs layer grown on the InP substrate were
calculated. Fig. 1(a) shows the calculated strain energy of the
AlxIn1�xAs film at various thicknesses. The strain energy below
critical film thickness (the dash line) and the sum of the strain
energy and the self-energy of dislocations over critical thickness
(the solid line) at different film thicknesses were calculated. It can
be seen that the energies increase as the film thickness increases
over hc. Fig. 1(b) illustrates the lattice constants of the substrate
and films as a function of the composition of the component AlAs,
where the lattice-matched composition (LMC) between AlxIn1�xAs
layer and the substrate InP is 47.7%. This means that the values of
strain energies at the LMC disappear, and increase as the AlAs
composition increases or decreases from xAlAs ¼ 47.7%, due to the
stress relief and the dislocation generation. Fig. 2 shows the solid–
gas surface energies of solid film, where the surface energies
increase as the AlAs compositions increase. Fig. 3 shows the
curves of different energies calculated by considering the
chemical energy, surface energies, strain energy and self-energy
of dislocations, where the dash line is the chemical Gibbs free
energy curve of the system, the dashdotted line indicates the
contributions of strain energy and self-energy of dislocations and
the solid line is the total energy including strain energy, self-
energy of dislocations, surface energy and chemical Gibbs free
energy. It is seen that the strain energy heighten the energy curve
on both sides of the LMC, while, the surface energy raises the
whole energy curve.
3.3. Phase diagrams of AlxIn1�xAs/InP film at various thicknesses

Fig. 4 shows the calculated phase equilibria of the AlxIn1�xAs
epitaxial film grown on the (10 0)-oriented InP at various
thicknesses. The dash lines are the pseudobinary phase diagram
of bulk AlxIn1�xAs, and a spinodal decomposition appears at lower
temperature. The calculated results indicate that there are three
characteristics for the phase diagram of AlxIn1�xAs film: (1) three
phases of AlAs, InAs and x0 appear at lower temperature and all of
Thermodynamic parameters (J mol�1) Ref.

LAl,As,In
lig

¼ �74112.5 [19]

LAl,In:As
x

¼ 6250 [19]

LAl,As,Sb
lig

¼ 0 [20]

LAs,Sb:,Al
x

¼ 17560 [20]

LAl,In,Sb
lig

¼ �7450yAl�39116yln�30296ySb [20]

LAl,In:Sb
x

¼ 1105 [19]

Table 3
Elastic parameters for binary compound [9,21].

Lattice parameter

a (nm)

shear modulus

m(�1010(N/m2)) (10 0)

Poisson’s

ratio n(10 0)

AlAs 0.5661 2.945 0.32

InAs 0.6058 1.980 0.35

InP 0.5869 2.280 0.36

AlSb 0.6136 2.488 0.31

InSb 0.6479 1.510 0.34
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Table 4
Mole volume and surface tension data for pure elements [22].

VAl (m3/mol) ¼ 26.98/(2.385�106
�280� (T-933.15))

VAs (m3/mol) ¼ 74.9216/(5.22�106
�535� (T-1090.2))

Vln (m3/mol) ¼ 114.818/(7.032�106
�679.8� (T-429.75))

VSb (m3/mol) ¼ 121.76/(6.483�106
�565� (T-903.65))

sAl (N/m) ¼ 0.914–0.00035� (T-933.15)

sln (N/m) ¼ 0.556–0.00009� (T-429.75)

sSb (N/m) ¼ 0.367–0.00005� (T-903.65)
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them have the same crystal structure. AlAs and InAs are the AlAs-
rich and InAs-rich solid solution. x0 is a new strain-induced zinc-
blende phase. (2) The liquidus of the film is lower than that
of the bulk materials, but the solidus of the film is lower or higher
than that of the bulk materials at the left and right sides of the
LMC (47.7%), respectively. (3) There exist two peritectic reactions
of the AlAs+liquid-x0 and x0+liquid-InAs in the AlxIn1�xAs phase
diagrams, and temperatures of these peritectic reactions increase
as the film thickness decreases.

3.4. Phase diagrams of AsxSb1�xAl/InP and AlxIn1�xSb/InSb films

Fig. 5 shows the calculated phase diagrams of the AsxSb1�xAl/InP
film with different thicknesses of 30, 50 and 100 nm, where the dash
lines are the pseudobinary phase diagram of bulk AsxSb1�xAl. The
changes of liquidus and solidus have the same characteristics with
those of the AlxIn1�xAs/InP film, and the LMC is 56.27%. The calcula-
ted results indicate that AlSb-rich (marked by AlSb), InSb-rich
(marked by InSb) solid solution and x0 phase also appear at lower
temperature. Two peritectic reactions of the AlAs+liquid-x0 and
x0+liquid-AlSb exist in the AlxIn1�xAs/InP film phase diagrams. The
x0 phase region enlarges as the film thickness decreases. The calcula-
ted phase diagrams of AlxIn1�xSb/InSb film with thicknesses of 30
and 50 nm are shown in Fig. 6, where the dash lines are the
pseudobinary phase diagram of bulk AlxIn1�xSb. The temperatures of
liquidus and solidus of the film are lower than that of the bulk mate-
rials, and the peritectic reactions of the AlSb+liquid-InSb appears.

4. Discussion

We systemically studied the various defects that may exist in
preparing films and their contributions in total energy of the
system. The strain energy increases as the strained film grows
thicker. When the strain energy is large enough, the misfit
dislocations generate at the interface between the film and
the substrate. However, the strained film only appears in the
compositional range as shown by the dash line in Fig. 1, where the
strain-induced zinc-blende (x0) phase appears in the calculated
phase diagrams, because there are two strain-induced spinodal
decompositions on both sides of the LMC due to the strain energy
in this compositional range (for AlxIn1�xSb/InSb system, there is
one strain-induced spinodal decomposition). While in the compo-
sitional ranges as shown by the solid lines in Fig. 1, the film
becomes relaxed because of the appearance of misfit dislocation.

Table 5 lists the calculated results of the temperatures and
equilibrium compositions of peritectic reactions in the film/
substrate system. It is seen that both of the temperatures and
equilibrium compositions of peritectic reactions of the AlAs+liquid-
x0 and AlSb+liquid-InSb increase as the film thicknesses decrease.
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While these of the peritectic reactions of the x0+liquid-InAs and
x0+liquid-AlSb decrease with the film thicknesses.

In this calculation, we also considered the effect of surface
energy after surface reconstruction on the phase diagram in
the film system. Fig. 7 shows the effect of surface energy of the
zinc-blende phase on phase equilibria, where the dash and solid
lines indicate the Gibbs free energies without and with the
contribution of surface energy, respectively. The equilibrium
compositions of the strain-induced zinc-blende phase as shown
by dash line are almost the same with that as shown by solid line.
Although the surface energy heightens the Gibbs free energy
curve in the entire compositional range (Fig. 3), there is no change
in the shape of the Gibbs free energy curve. Accordingly, the
surface energy can increases the total energy of the system, but
has small effect on the phase equilibria.
5. Conclusions

The model of phase diagram calculation of thin film was proposed
by considering the contributions of strain energy, self-energy of
dislocations and surface energy to Gibbs free energy, and the phase
diagrams of the AlxIn1�xAs/InP, AsxSb1�xAl/InP and AlxIn1�xSb/InSb
nano-film systems were calculated. It is found that a new strain-
induced zinc-blende phase appears and the phase diagrams in nano-
film system are largely different from that in bulk systems.
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Appendix A. Calculation methods of the expression DH

The enthalpy change (DH) of one mole of solid AxB1�xC transfe-
rring to the ternary A–B–C vapor at temperature T can be given by

DH ¼ Hg
ABC � HS

ABC ðA:1Þ

where HABC
g and HABC

S are the enthalpies of vapor and solid phase,
respectively. HABC

g can be obtained from the summation of
enthalpy of the pure A, B and C gases at equilibrium temperature
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Fig. 5. Calculated phase diagram of AsxSb1�xAl/InP film at thicknesses of (a) 100 nm, (b) 50 nm and (c) 30 nm.
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T, and is given by:

Hg
ABC ¼ x

�
Hg;298 K

A þ

Z T

298 K
CA

p ðTÞdT
�

þð0:5� xÞ
�

Hg;298 K
B þ

Z T

298 K
CB

p ðTÞdT
�

þ0:5
�

Hg;298 K
C þ

Z T

298 K
CC

p ðTÞdT
�

ðA:2Þ

HABC
S is given by:
HS
ABC ¼ xHs

AC þ ð1� xÞHs
BC þ DHs

mixðABCÞ ðA:3Þ

where HAC
s and HBC

s are the enthalpy of the binary A–C and B–C
compound, respectively. HAC

s and HBC
s are given by:

Hs
ABC ¼ xHs;298 K

AC þ x

Z T

298 K
CAC

p ðtÞdT þ ð1� xÞHs;298 K
BC

þ ð1� xÞ

Z T

298 K
CBC

p ðTÞdT ðA:4Þ
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Table 5
Calculated results of peritectic reactions in the film/substrate system.

Film/substrate system Peritectic reactions Phase equilibria Thickness (nm) Temperature (K) Equilibria composition (at%)

Phase I/phase II/phase III Phase I (%) Phase II (%) Phase III (%)

AlxIn1�xAs/InP AlAs+liquid-x0 Liquid/x0/AlAs 1000 1326 1.2 51.8 54.1

100 1399 3.1 60.6 65.8

50 1451 5.5 65.9 70.9

30 1509 9.2 71.1 74.6

x0+liquid-InAs Liquid/InAs/x0 1000 1270 0.5 41.3 43.6

100 1218 0.2 29.7 34.2

50 1191 0.1 24.7 28.3

30 1168 0.05 21.2 22.2

AsxSb1�xAl/InP AlAs+liquid-x0 Liquid/x0/AlAs 100 1492 3.6 65.5 79.4

50 1546 6.2 70.0 82.8

30 1601 10.1 74.6 84.9

x0+liquid-AlSb Liquid/AlSb/x0 100 1323 0.5 23.3 47.9

50 1293 0.3 18.1 43.8

30 1263 0.2 14.7 39.2

AlxIn1�xSb/InSb AlSb+liquid-InSb Liquid/InSb/AlSb 50 860 1.5 28.4 29.7

30 889 3.3 35.9 43.5
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Fig. 7. Phase equilibria of AlxIn1�xAs/InP film calculated by two descriptive

methods of Gibbs free energy.
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the enthalpies of mixing DHmix(ABC)
s can be written using simple

solution model as follows:

DHs
mixðABCÞ ¼ xð1� xÞOs

AC�BC ðA:5Þ

where OAC�BC
s is the interaction parameter of the ternary alloy

AxB1�xC. DH can be given using Eqs. (A.1)–(A.5) as follows:

DH ¼ xHg;298 K
A þ ð0:5� xÞHg;298 K

B þ 0:5Hg;298 K
C

þ

Z T

298 K

�
xCA

p þ ð0:5� xÞCB
p þ 0:5CC

p ðTÞ
�

dT

�ðxHs;298 K
AC þ ð1� xÞHs;298 K

BC

þ

Z T

298 K
ðxCAC

p þ ð1� xÞCBC
p ÞðTÞdT þ xð1� xÞOs

AC�BC

�
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