
Structural Econometric Methods in Auctions:

A Guide to the Literature∗

forthcoming, Journal of Econometric Methods (inaugural issue), Berkley Electronic Press

Brent R. Hickman†

Timothy P. Hubbard‡
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1 Introduction

Over the past 15 years, a literature concerning the econometrics of auction data has emerged

and quickly developed into one of the most successful areas of structural econometric research.

Powerful methods of estimation and inference have been developed which have not only added

to our understanding of human behavior, but have also provided useful tools for policy analysis.

This survey is an attempt to uncover the evolution of auctions research that has used structural

models and to catalog important contributions. Our focus on structural research is motivated by

two important considerations. First, structural work allows for counterfactual studies of situations

not observed in the data such as alternative pricing mechanisms or auction formats. Second,

leveraging economic theory provides access to information that would not be accessible from the

data alone such as efficiency of the observed allocations, bidder risk aversion, information rents,

and dependence among bidders’ private information.

In keeping our discussion general, we attempt only to provide a guide to the literature, so there

will be less emphasis on the technical nuances of the works we discuss. Rather, our intent is to

provide a broad synthesis of the various aspects of this sizeable literature. Our specific objectives

of this survey are to identify and catalog the following five aspects of the field: (i) the modeling

frameworks (informational paradigms) often employed; (ii) the types of questions these models are

used to address; (iii) econometric identification of these models; (iv) general estimation methods

used in bringing these models to real-world data; (v) types of data used and the general findings

researchers have produced. A natural trade-off underlies our objectives: in allowing for breadth, we

are forced to compromise the detail in which we discuss a particular piece of research. The interested

reader is therefore directed to the original works for discussion of the econometric methods in their

full splendor.

We have chosen to organize major contributions by partitioning the general affiliated values

model model of auctions into subcategories based on commonly used informational structures (de-

fined below) in hopes of complementing the book-length treatments of this topic in Paarsch and

Hong (2006) or Athey and Haile (2007), who partitioned the literature by different auction formats.

To our knowledge, no one has formally tied together the informational paradigms studied in empir-

ical work in a unified way that is consistent with theoretical research. While our discussion of any

one piece of research is no substitute for a thorough reading of the original work (we did not intend

it to be), we have tried to provide enough insight into each piece of research we discussed so that

readers can understand the fundamental contributions and have an understanding of how it fits in

with previous and subsequent research. We think our discussions of the fundamental information

paradigms not only provide a good introduction to researchers new to auctions and/or structural

econometric methods, but that they also provide a perspective that will appeal to experienced

researchers as well.

Auctions are typically modeled as games of incomplete information, so a primary concern to an

auction researcher is the information structure; that is, how a given bidder receives and assimilates

information about her own valuation(s) for the object(s) for sale as well as what each bidder
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knows concerning her rivals’ valuations. Given that the econometrician’s task in analyzing auction

data involves characterizing the distribution over bidder heterogeneity, assumptions on the type

of information structure will profoundly influence results and interpretation of empirical analyses.

Therefore, we begin our survey by outlining a general framework proposed by Wilson (1977) as well

as Milgrom and Weber (1982) which nests the various information structures that are encountered

in the literature. We then use the various distinctions between environments to organize our guide

to the literature on structural econometric research in auctions.

Another primary concern deals with the rules of the auction. Beginning with the work of Vickrey

(1961), economists have systematically applied tools from game theory to investigate equilibrium

behavior under four common formats in auctions for a single object: the oral, ascending-price or

English auction; the oral, descending-price or Dutch auction; the first-price, sealed-bid auction; and

the second-price, sealed-bid or Vickrey auction; as well as three common formats used in auctions for

multiple objects: the sequential English auction, the uniform-price auction, and the discriminatory

auction. Fundamental contributions to this effort were made by Wilson (1977, 1979) as well as

Milgrom and Weber (1982) who, following the work of Harsanyi (1967), modeled auctions as games

of incomplete information and adopted Bayesian–Nash equilibrium as the solution concept. Since

then, the vast majority of empirical work in auctions has chosen to follow this approach. Equilibrium

strategies, henceforth denoted by a function β, shall be briefly described in the various sections

of the paper below, but only to the extent that will facilitate discussion of model identification

and structural estimation. For a more in-depth discussion of the theory on equilibrium behavior in

auctions, the interested reader is directed to excellent texts by Krishna (2002) and Milgrom (2004).

Given a set of data, a structural researcher must first identify which of these common auction

formats apply. In addition to selecting an informational paradigm, a researcher must also specify

whether bidders are ex-ante symmetric; that is, whether the marginal distributions of their private

information (and/or their utility functions) are identical. After doing so, the researcher must argue

that an equilibrium exists for the auction game of interest and, moreover, that one particular

equilibrium uniquely corresponds to observed bidder behavior. Because structural researchers rely

heavily on the model they adopt, this is where the work of auction theorists is most helpful. Proofs

of existence and uniqueness are most often developed by theorists and are only related indirectly to

the estimation process—they are beyond the scope of this survey. However, as our target audience

will likely need to confront these issues at some point, we have included a table with a list of papers

that deal with them in the Appendix.

This survey is organized as follows: in Section 2, we define the affiliated values paradigm and

relate it to information structures that can be nested within this general framework. The four

sections of the paper that follow explore how structural econometricians have identified and esti-

mated these models using real-world auction data. In Section 7, we discuss special topics that have

received substantial attention in recent years, including auctions for multiple objects, auctions with

risk averse bidders, testing between common- and private-value paradigms, unobserved auction-

specific heterogeneity, and accounting for an unobserved number of bidders as well as endogenous
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entry. We conclude our survey in Section 8.

2 Affiliated Values Paradigm

Pioneering theoretical work on general models of auctions within the affiliated values (AV)

paradigm was done by Wilson (1977) as well as Milgrom and Weber (1982).1 In what follows,

we shall adopt notation that bridges these two seminal pieces. In the AV model, there are N
bidders competing for an object. Bidders’ valuations depend on a common component with a

definite but unknown value V , and an idiosyncratic component, Si. Bidder i’s ex-post utility of

consuming the object for sale is ui(si, v), where we make explicit our notational choice of denoting

random variables by capital letters and realizations of these random variables by lowercase letters.2

Similarly, in what follows we denote vector-valued variables in bold font and scalar-valued variables

in standard mathematical font.

The general AV information structure has the following components:

• Si is private information to each bidder i.

• Conditional on v, the vector of signals S is viewed by all as a draw from a commonly known

distribution, where

S ∼ FS|V (s|v),

with corresponding density fS|V and non-negative support [s, s]N . Conditioning on v here

provides greater generality, but it also forms an intuitive link between the theory and many

real-world phenomena. For example, Hendricks, Pinkse, and Porter (2003) study oil lease

auctions in which, prior to bidding, oil firms independently hire geological consultants to

estimate the mineral content of a certain tract of ocean floor. In this case, the random

variable V is (a function of) the actual mineral content, and Si is the estimate of V resulting

from the ith geological survey. It is natural in this case to assume that the distribution of S

varies with each realization v.

• As V is unknown, it is modeled as a random draw from a distribution

V ∼ FV (v),

with corresponding density fV and non-negative support [v, v].

1Our focus in this section, and, throughout most of the paper is on single-object auctions. However, the informa-
tional structures we discuss extend intuitively (but with substantially more complexity) to the multi-object setting,
which we discuss in Section 7.

2Whenever we use the terms ex ante or ex post, they refer to the point in time when bidding takes place. Thus,
the ex-post utility of the winner is her utility of consuming the object after bidding has concluded. A bidder’s ex-ante
utility is her expected ex-post utility.
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• In general, all information contained in FS|V and FV can be summarized by a joint distribution

(S, V ) ∼ FS,V (S, V ),

with corresponding affiliated joint density fS,V having support [s, s]N × [v, v].

• The Si’s are affiliated random variables (hence the name “affiliated values”). Briefly, stochas-

tic affiliation is a strong form of positive correlation, and is defined as a set of random variables

(S1, S2, . . . , SN ) having joint density function f which is log-supermodular; that is, f satisfies

f(S ∨ S′)f(S ∧ S′) ≥ f(S)f(S′), where ∨ (∧) denotes the coordinatewise minimum (maxi-

mum) among vectors S and S′. When f is twice continuously differentiable, then equivalently,

(S1, . . . , SN ) are affiliated if and only if for all i 6= j, ∂2

∂si∂sj
ln f ≥ 0, in which case f is said

to be affiliated. For a discussion of stochastic affiliation and its implications for auctions, see

Section 3 as well as the Appendix of Milgrom and Weber (1982) or Appendix D of Krishna

(2002). It should be noted that, although affiliation only infrequently arises explicitly as part

of discussion in structural models of auctions, it arises implicitly in the majority of the papers

we shall discuss: until only recently, all theory on existence and uniqueness of equilibria in

Dutch and first-price auctions was based on the assumption of affiliation (see Govindan and

Wilson (2010a,b) and de Castro (2010) for recent departures from this norm).

The general AV model is often partitioned into two branches: the common values (CV) paradigm

and the affiliated private values (APV) paradigm. However, some researchers have adopted another

information structure which overlaps both CV and APV structures: the conditionally independent

private information (CIPI) paradigm. In Figure 1, we present a visual representation of this par-

tition of the AV framework along with some important subcases. In the subsections that follow,

we discuss the CV, APV, and CIPI models in more detail with particular emphasis on relating

the models to the informational structure we’ve outlined above. One drawback of the general

AV paradigm is that distinctions between its two main branches are not testable empirically. In

particular, Laffont and Vuong (1996) showed that any CV model is observationally equivalent to

some APV model. For this reason, estimation within the general AV paradigm has been sparse.

Moreover, this result implies that additional sources of model variation are needed in order to test

between the two main branches of the AV family of models, such as (exogenously) varying numbers

of bidders across different auctions.

2.1 Common Values Paradigm

The CV paradigm, also known as the mineral rights model or the interdependent values model,

is a special case of AV in which Si does not perfectly reflect the intrinsic worth of the object for

sale, but rather, it is just a noisy signal of value. That is, ex-post utility is given by

ui(si, v) = ui(v).
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Figure 1: A Venn Diagram Relating the AV Paradigm to its Subcases

These potentially asymmetric ex-post utility functions are common knowledge, but Si is privately

known and, in the model, represents private information the bidders might have concerning the

realization of V . Note that, before bidding occurs, V is unknown to the bidders but after the

outcome of the auction is determined, its realized value v is often assumed to be observable to the

winner. In general, the ex-ante utility for bidder i is a function of the signals of all bidders, as each

signal provides useful information concerning the realized value of V :

Ui = Ui(S).

A key distinguishing feature of CV models is the presence of the winner’s curse. The winner’s

curse occurs in an equilibrium with monotonic strategies as bidders realize that winning delivers the

unwelcome news that their signal was the most optimistic estimate of the object’s worth. Wilson

(1977) showed that rational bidders will respond by conditioning on the event that their signal is

the highest, which imposes a downward pressure on their bidding strategies. The winner’s curse

is also known to intensify as N increases, which amplifies the tendency to shade bids. The result

is that equilibrium bids in CV auctions need not be monotonic with respect to the number of

bidders and expected revenue may potentially decrease with higher levels of participation. This

phenomenon is empirically important because it places restrictions on equilibrium bidding when

the number of bidders varies across observed auctions. It has become the basis for many empirical

tests of what is known as the symmetric pure common values (PCV) model against independent

private values models (discussed below). The PCV model imposes one additional restriction on the

common values structure we’ve outlined. Specifically,

ui(Si, V ) = u(V ), i = 1, . . . ,N ;

6



i.e., all bidders’ ex-post appraisals of the item’s true value are identical. The PCV model is the

most commonly studied model within the CV paradigm in the empirical literature.3 Note, too, as

shown in Figure 1, the PCV model is also a special case of the CIPI paradigm which we discuss

below.

2.2 Affiliated Private Values

The APV model is a special case of the AV model where ex-post utility of having won the object

is fully characterized by the private signal Si. That is, ex-post utility is given by

ui(si, v) = ui(si).

Hence, all bidders value the object differently, ex post. In APV settings, V is a signal that conveys

information on the values of one’s opponents. The APV paradigm is often an attractive framework

for empirical research because of the generality that it affords as it nests any private values model,

including the popular independent private values paradigm (see below) as a special case.

Pinkse and Tan (2005) showed that, in any information structure with affiliated private informa-

tion, there exists a strategic affiliation effect which causes bidders to behave as if they were subject

to the winners curse, as in a CV model (see discussion in Section 7.6.1 below). The affiliation

effect has important implications for efforts to distinguish between common- and private-values

environments. It implies that APV models are not distinguishable from CV models based solely on

observations that might appear to be generated by the winner’s curse. Given the strategic similar-

ities in the APV and CV paradigms, the APV paradigm can naturally produce bidding patterns

that arise in either of the two polar extremes of independent private values or pure common values,

as well as models that lie in between. Of course, a downside of this generality is that identification

of the structural elements of the model is often difficult to achieve—something we later discuss.

Two special cases of the APV paradigm deserve particular attention: the conditionally inde-

pendent private values (CIPV) model and the independent private values (IPV) model. The CIPV

model is a special case of APV in which the Sis are independently distributed, conditional on un-

known realizations of V , which are assumed to be affiliated with the Sis. Here, the random variable

V serves to introduce correlation into the otherwise unrelated private signals of the bidders. When

V is irrelevant to bidders’ decisions and the joint density of signals is a product of independent

marginal densities,

fS(s) =

N∏
i=1

fSi(si),

then the IPV model applies. In this case, the inequality that defines log-supermodularity of f

3Athey and Haile (2002) noted that sometimes the class of models we characterize as CV are referred to as
“interdependent values,” with the term “common values” being reserved specifically for the PCV model. While
both taxonomies are used in the literature, Athey and Haile chose to follow the one which emphasizes the distinction
between statistical properties (independence, affiliation, etc.) of bidders’ private information and the economic nature
(private vs. common value) of this information. We adopt the same convention in this survey.
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holds with equality. Note that the IPV model is a special case of CIPV model in which V does not

create strict correlation among private signals. The nesting relationship, IPV ⊂ CIPV ⊂ APV, is

depicted in Figure 1.

While the IPV model is fairly restrictive, it is the most widely adopted model by applied

researchers. IPV models have some special characteristics which are important empirically. Namely,

when bidders are symmetric and risk-neutral, and when a single object is for sale, the IPV paradigm

exhibits a special characteristic called the revenue equivalence property (REP): for any auction

format in which the highest bidder wins the auction with certainty, any symmetric and increasing

equilibrium where bidders with signal s have expected utility of zero renders the same expected

revenue to the seller; see Riley and Samuelson (1981) as well as Myerson (1981). Hence, choice

of auction format becomes irrelevant, although only under this set of fairly restrictive conditions.

Therefore, observations of significant revenue dominance among different auction formats can be

used to reject the symmetric IPV model with risk neutral bidders. Milgrom and Weber (1982)

showed that for the general AV framework with risk-neutral bidders, the four traditional auction

formats can be revenue ranked as follows: expected revenue from English auctions weakly exceeds

expected revenue from Vickrey auctions, which weakly exceeds expected revenue from first-price,

sealed-bid or Dutch auctions. Maskin and Riley (1984) showed that when bidders’ preferences for

the object involve risk-aversion, expected revenue from a first-price, sealed-bid auction dominates

that of a Vickrey auction. See Chapter 4 of Krishna (2002) for more examples of REP failures.

Finally, it should be mentioned that for every private-value model there exists an analogous

private-cost procurement auction where bidders are not consumers, but firms bidding for a con-

tract to provide a service, and where the low bidder is dubbed the winner. The two settings are

very similar, with most qualitative intuition on information environment and equilibrium behavior

carrying over seamlessly. To avoid confusion we shall frame our discussion in terms of the private

value setting whenever possible, but this is without loss of generality.

2.3 Conditionally Independent Private Information

The CIPI model is a special case of the AV framework in which a particular form of affiliation

among the random variables (S, V ) is assumed. Specifically, signals Si are distributed indepen-

dently, conditional on realizations of V . Thus, the joint density f(S,V ), assumed to be affiliated, is

given by

f(S,V )(s1, . . . , sN , v) = fV (v)

N∏
i=1

fSi|V (si|v).

The model studied by Wilson (1977) actually falls into this category, and Milgrom and Weber (1982)

generalized Wilson’s framework to allow for a broader variety of affiliation in the random variables

(S, V ). To the best of our knowledge, Li, Perrigne, and Vuong (2000) were the first to introduce this

information structure into empirical work. They considered only the case where signals are both

independent and identically distributed, conditional on V , because such an assumption guarantees

that (S, V ) are affiliated. One can certainly imagine an asymmetric CIPI structure, but additional
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assumptions on the marginal densities of private information may be necessary to preserve affiliation

of the joint density.

The structure imposed in CIPI models allows them to nest as special cases both the CIPV, when

ui(si, v) = ui(si), and the PCV, when ui(si, v) = u(v). This also means that this special family of

models overlaps both of the two traditional divisions of the AV paradigm. In fact, Li et al. (2000)

(in their footnote 3) showed that by de Finetti’s theorem any symmetric APV model is nested

within the CIPI family. For this reason the CIPI model is an attractive model for empirical work—

especially when bidders are symmetric. Li et al. (2000) (in their Proposition 1) also showed that

CIPI inherits a common characteristic from its AV parent: just as any AV model is equivalent to

some APV model, any CIPI model is observationally equivalent to some CIPV model. Therefore,

a difficulty of adopting a CIPI assumption is that additional restrictions are needed in order to

obtain identification. One strategy employed by Li et al. (2000) as well as Hong and Shum (2002)

is to assume that private signals can be decomposed in the following way:

Si = ηiV

where the ηis and V are mutually independent and the ηis are identically distributed.

2.4 Additional Comments on the Informational Paradigms

Before moving on we introduce a few final pieces of notation: let t ∈ {1, 2, . . . , T} index a set

of auctions for which the econometrician is able to observe relevant data. The set of observables

gleaned from each individual auction can vary along several dimensions. One study may incorporate

data on only the winning bid, denoted Wt, from each auction, whereas another may incorporate data

on all bids, {b1t, b2t, . . . , bN t} into estimation. Moreover, some papers assume the number of bidders

is known and some do not. Finally, it can also be useful at times to incorporate sets of auction-

specific covariates, denoted by a vector Z—e.g., the condition and characteristics of the object for

sale—into estimation, though such information is not always available or even feasible to include in

estimation. Naturally, different sets of observables will lead to identification (or non-identification)

of different aspects of an auction model, and will play a significant role in the discussion below.

Generally speaking, as model complexity increases, either richer sets of observables or more stringent

assumptions (or both) are required for model identification.

As for a brief description of equilibrium bidding in auctions, it can become quite complex in

general settings, but it is useful to build intuition from the simple case of IPV with symmetric, risk-

neutral bidders, where bidding behavior under standard auction formats is simple and intuitive.

For second-price auctions (including both English and Vickrey), the dominant-strategy equilibrium

is to bid one’s private value, or β(si) = si for all bidders i. In first-price auctions, equilibrium

bidding is given by the following relation:

β(si) =

∫ si

s
q

(N − 1)FS(q)N−2fS(q)

FS(si)N−1
dq.
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Although bidding is generally nonlinear in this case and closed-form solutions rarely exist, the above

expression has a very simple interpretation: each bidder selects as her bid the expected highest

competing private value, conditional on all competitors’ values being less than her own. This

interpretation no longer applies to equilibrium bidding in more general private value settings, but

it is still useful to think of them in relation to the simple benchmark model. For example, bidders

will bid strictly higher for a given s if they are risk averse, but if there is positive affiliation in their

private values then they will bid strictly less. On the other hand, all private-value second-price

auctions for a single object have the same dominant-strategy equilibrium.

It is worth noting that our above discussion of the theoretical models allows for bidders to have

heterogeneous utility functions. In econometric practice, however, this level of generality creates

substantial difficulties in model identification and would require bidder-specific information to be

extracted from a given data set, something which is often difficult to achieve. Throughout this

survey, we focus on the case in which all bidders share the same utility function because no paper

that we are aware of considers the heterogeneous utility case. Moreover, most researchers consider

estimation of the distribution(s) of latent characteristics for risk-neutral bidders. We discuss work

that relaxes this assumption in our special-topics section concerning bidders who are risk averse.

Having outlined the different information structures in auctions, we now turn our attention

toward research that has developed empirical methods within each of the respective paradigms.

Hereafter, we organize the literature according to the information structure that is studied in a

given work. In order to give a rough sense of how the literature has evolved, for the most part

we attempt to organize papers within each information structure chronologically, according to

publication date or latest-version date for unpublished works.4 Exceptions to this policy occur

only in cases where expositional flow is enhanced by chronological digressions, such as when follow-

up papers are produced which have strong connections to earlier works (e.g., Donald and Paarsch

(1993), Donald and Paarsch (1996), and Donald and Paarsch (2002)). We begin by discussing the

most specialized paradigm described above—the IPV setting, in the next section. We follow this

by discussing the CV paradigm in Section 4 as well as the APV and CIPI models in Sections 5

and 6, respectively. We postpone discussions concerning work that focus on the special topics we

consider until Section 7.

3 Independent Private Values Paradigm

We begin with the IPV paradigm for two reasons. First of all, estimation in this case tends

to be the most straightforward, relative to the other information structures. A second reason is

that the IPV paradigm has often served as a laboratory for developing new estimation methods

which have then been adapted to handle more complex circumstances. Two prominent examples

of this are IPV estimation techniques developed by Laffont, Ossard, and Vuong (1995) and Guerre,

4The experienced reader will realize that this need not perfectly reflect the actual chronology, as publication
ordering need not correspond to the order in which the ideas actually appeared as working papers for the first time.
Thus, this organization is intended only to convey a rough sense of evolution.
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Perrigne, and Vuong (2000) that have been extended to allow for estimation in more general APV

models, and even in models of auctions for multiple objects. In this section, we only cover papers

which have explicitly assumed IPV when specifying the structural model of bidding. There are

other papers not covered here, which have estimated IPV models as a special case of an estimation

procedure designed to handle more general informational paradigms. These will be covered in later

sections.

Paarsch (1992) is widely considered to be one of the founding works of the structural empir-

ical auctions literature. In this pioneering work, Paarsch employed parametric methods to study

procurement auctions for tree-planting contracts in British Columbia, Canada. In his procure-

ment model, signals took the form of privately-known production costs among firms competing

for contracts. The contract was awarded to the firm submitting the lowest bid. Paarsch derived

expressions for the data generating process of winning bids within three simple distributional spec-

ifications that admit explicit solutions: Pareto, Weibull and Exponential. From these derivations

he was able to estimate the model by deriving explicit formulas for several objects tied to the dis-

tribution of winning bids—which is itself a function of the private-value distribution—under these

three specifications. The derivations then facilitate two alternative estimation procedures. First,

maximum likelihood (ML) may be applied to estimate model parameters using the derived density

of winning bids to construct the likelihood function. Alternatively, a nonlinear least squares (NLS)

approach, based on

wrt = Rr(θ) + et

may be applied, where wt is the observed winning bid for the tth auction in the sample, θ is a vector

of parameters, Rr is a function representing the rth raw moment of the distribution of winning bids

and et is an independent random variable with zero mean.

Donald and Paarsch (1993) recognized that standard ML estimation is problematic in first-price

auction models, as the support of the distribution of bids depends on parameters of the valuation

distribution. Such problems obtain in other econometric models whenever the support of a random

variable depends on some of the parameters of its density function; e.g., for uniform and Pareto

random variables. In the first-price auction setting, the researcher observes one random variable

(bids) but is interested in estimating parameters of another (the latent valuation distribution).

Using a change of random variables to map bids to valuations implies the Jacobian of the bidding

function appears in the likelihood of interest, making computation difficult. More importantly, the

finite upper bound of support of the bid distribution depends on the parameters of the valuation

distribution (even if its support is unbounded). In this event, a regularity condition required to

apply the standard (asymptotically normal) ML estimator does not hold which makes it difficult

to derive the estimator’s asymptotic distribution or even to show consistency; see, for example,

Amemiya (1985).

Rather than abandon maximum likelihood, the authors suggested a modification based on

order statistics which they termed piecewise pseudo-maximum likelihood (PPML) estimation. The

estimation scheme proceeds as follows: partition the observed data by the number of rivals at each
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auction (hence the piecewise part) and take the most extreme winning bid from that subsample.

One parameter of the valuation distribution can be recovered from each subsample by requiring

that, for a given parameter vector, the implied bid support must contain even the most extreme

observed bids. This condition allows one parameter to be expressed as a function of the others

which, when written this way, can be substituted into the (now) pseudo likelihood function which

can be maximized with respect to the other parameters. Framing the objective as a constrained

optimization problem allowed Donald and Paarsch to link distribution theory of order statistics

with how the estimator is computed in practice to establish its asymptotic theory. In order to

demonstrate the properties of the estimator, Donald and Paarsch derived a set of conditions under

which it is consistent and asymptotically normal. It turns out that the estimator is also well-behaved

in small samples, as shown by a Monte Carlo study.

Donald and Paarsch (1996) followed up on this initial research by discussing identification of the

four common auction formats using parametric methods. They extended the work of Donald and

Paarsch (1993) to fully solve the support-related problem, allowing for discrete covariates.5 Donald

and Paarsch (2002) proposed a new extreme-order, generalized methods-of-moments (MOM) esti-

mator which retains some important properties of ML estimators but has the advantage of being

easier to compute and is superconsistent having exponential limiting distributions. By means of

Monte Carlo experiments, they demonstrated that their estimator performs well in small samples.

Finally, they used it to re-evaluate the tree-planting data from Paarsch (1992), finding evidence

consistent with his original findings.

Laffont et al. (1995) proposed a new estimation method called simulated nonlinear least squares

(SNLS), which addressed a criticism of parametric methods such as ML, NLS, and MOM that arises

when the inverse-bid function has no closed-form solution: they are computationally burdensome.

This difficulty occurs due to the need to solve integrals numerically for each trial value of the

parameter vector during optimization of the empirical criterion function. Laffont et al. proposed

replacing direct computation with a simulation method based on the revenue equivalence principle.

Suppose the researcher observes a sample of winning bids, {wt}Tt=1, where, for simplicity sake, the

number of bidders is fixed at N in each auction. She wishes to minimize the average quadratic

distance between the members of the sample and the theoretical average winning bid m(θ) (θ

contains the parameters of the private value distribution), but the trouble is that m(θ) has no

closed-form solution. However, since revenues in a first-price auction within the risk-neutral IPV

paradigm are the same, on average, as in a Vickrey auction, it follows that the expected winning

bid in a first-price auction is the same as the expected second highest valuation among N bidders

(i.e., the sale price in a Vickrey auction).

Thus, for given values of the parameters, a replacement for m(θ) may be simulated by drawing

5Chernozhukov and Hong (2004) developed Bayesian likelihood-based estimation and inference methods in econo-
metric models with general regressors for which there are jumps in the conditional density and discontinuous likelihood
functions. They noted that the models considered by Donald and Paarsch are an example in which the conditional
density of winning bids jumps from zero to a positive value. Depending on one’s notion of loss functions, Bayesian
methods can often be more efficient.
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K samples of size N from the value distribution fS(s;θ) and computing the average of the second-

highest valuation over all the simulated samples, XK(θ). Once again, by the REP, it follows that

E
[
XK(θ)

]
= m(θ). A natural estimator then becomes

arg min
θ

{
1

T

T∑
t=1

[
wt −XK(θ)

]2}
. (1)

One remaining problem is that the estimator implied by equation (1) is inconsistent for any fi-

nite K, for reasons similar intuitively to errors-in-variables bias in standard regression models.

Luckily though, in this case, a relatively straightforward (but tedious) expression for the bias can

be derived which depends only on the variance of the simulation estimator XK(θ). Once this

correction term is added into equation (1) (see Laffont et al. for further details), a consistent and

computationally-inexpensive estimator results. Although this is the basic idea behind the approach,

Laffont et al. actually put forward a slightly more complicated simulation scheme involving impor-

tance sampling, which ensures differentiability of the empirical objective function. They showed

that their estimator is consistent and asymptotically normal, and they derived the limiting form

of the variance-covariance matrix. Moreover, they also outlined how estimation may be adapted

to deal with unobserved heterogeneity or imperfect knowledge of the total number of bidders—two

issues we return to in the last section of this survey. They also illustrated the procedure by applying

it to a sample of descending auctions for French agricultural products (eggplants).

Elyakime, Laffont, Loisel, and Vuong (1997) studied first-price, sealed-bid auctions in which

the reservation price is unknown to bidders—this has become known as a “secret reserve price.”

Similarly as in auction theory, the reservation price is modeled as a random variable from the

bidders’ perspective. The authors allowed for the possibility of a Nash-bargaining process under

complete information between the seller and the highest bidder if the auction does not result in a

sale. Equilibrium strategies involve rational bidders taking into account the possibility of second-

round negotiations when formulating their first-round bids. The authors derive these strategies for

both bidders and sellers and showed that the distributions characterizing the buyers’ and sellers’

private values are identified nonparameterically from observations on bids and reservation prices.

Elyakime et al. proposed estimating these structural elements of the model parametrically by joint

NLS while using a backward differentiation formula to solve for the equilibrium biding strategy for

a given guess of the parameter vector. Specifically, the authors assumed the bidders’ and sellers’

valuation distributions followed Weibull laws. The parameters of these were chosen to minimize

a NLS objective which weighted equally the squared differences between the first moments of the

observed bids, reservation prices, and transaction prices (for items not sold during the first-round

auction process) and their respective expectations given the parametric structure. They performed

this procedure on a sample of French timber auctions and found that this strategic model achieves

a better fit than one with myopic bidders who ignore the possibility of second-round negotiations.

A common thread in all of the above papers is that they all employed parametric methods to re-

cover the structural elements of the model. Such methods have been criticized on two main grounds,
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one statistical and the other computational. The former criticism is that they require explicit distri-

butional assumptions on bidder heterogeneity and, thus, may be subject to misspecification errors.

The latter is that parametric estimators are expensive computationally and/or difficult to imple-

ment. Guerre et al. (2000, GPV) addressed both of these issues by proposing a fully nonparametric

two-stage estimation strategy which eliminates the need of iteratively optimizing an empirical cri-

terion function. Indeed, while the importance of the misspecification criticism has been debated,

the computational advantage truly makes the work of GPV a landmark accomplishment—one need

only reflect on the fact that only a few parametric specifications of private signals render explicit

solutions for equilibrium bidding, to see how important this new advance was to empirical auction

work.

The main innovation of GPV stems from the following observation: in equilibrium within a

first-price auction it holds that (letting B = β(S) denote an equilibrium bid)

FB(b) = Pr (B ≤ b) = Pr
(
S ≤ β−1(b)

)
= FS(β−1(b)) = FS(s),

thus,

fB(b) =
fS(s)

β′(s)
.

With this transformation of random variables in mind, the standard differential equation for equi-

librium bidding within the IPV paradigm with symmetric, risk-neutral bidders,

1 = (s− β(s)) (N − 1)
fS(s)

FS(s)

1

β′(s)
,

may be transformed into the following equation:

s = ξ(b, FB,N ) ≡ b+
1

(N − 1)

FB(b)

fB(b)
. (2)

In other words, just as equilibrium bidding can be expressed as a monotone function of the (un-

observed) private signals and their unknown distribution, private signals may alternatively be

expressed as a monotone function of observed equilibrium bids and their (directly estimable) distri-

bution. Thus, in the first stage proposed by GPV, the econometrician directly recovers an estimate

F̂B(b) of the bid distribution and its density nonparametrically. At this point a sample of pseudo-

private values can be constructed using the above inverse-bidding function ξ(·). These estimates

are dubbed “pseudo-values” rather than values because they are recovered using an estimate of

the density of bids, rather than the actual density itself. In the second stage, the econometrician

may use this sample of pseudo-values to nonparametrically recover the density and distribution of

private values.

One final comment on the statistical efficiency of their strategy is worth mentioning before

we move on. It is well-known that kernel density estimators display a considerable amount of

downward bias near the boundaries of the support, a phenomenon known as the boundary effect.
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Simply stated, a kernel density estimator at a given point averages kernel function values within a

neighborhood of that point, but for points within a bandwidth length of the extremes of the support

no data can exist on the other side of the boundary. Thus the kernel density estimator naturally

penalizes the estimate downward within that neighborhood. Since boundary effects would cause

problems for the second stage of estimation, given that pseudo-values are based on such estimates,

GPV proposed a solution to this problem by sample trimming, or discarding first-stage pseudo-value

estimates based on kernel density estimates in the problematic region of the support. They showed

that by performing this intermediate step, the estimated distribution F̂S(s) achieves the optimal

rate of convergence to FS(s). Of course, the optimal rate of convergence comes at a price—throwing

out some of the data near the extremes of the sample of pseudo-private values gives rise to a larger

region of bias at the extremes of the support of S for finite samples.

The method developed by GPV has since been extended to several more general frameworks

outside the symmetric IPV paradigm. GPV is the most widely-cited paper in the structural econo-

metric literature concerning auctions and often serves as a benchmark which current research

continues to build off or which new methods are compared to, as will be clear from the discussions

that follow.

In more recent work, Hickman and Hubbard (2012) proposed a modification to GPV which

circumvents certain complications arising due to sample trimming. One is straightforward: sample

trimming implies a loss of data. However, two additional complications are more nuanced; for

simplicity, we shall concentrate our discussion of these on the upper bound of the support of

private values. First, sample trimming precludes the possibility of nonparametric estimation or

inference within the following set: (ξ̂(Bmax − hB), s], where ξ̂ once again denotes the estimated

inverse bidding function, Bmax denotes the highest observed bid, and hB denotes the first-stage

bandwidth. Moreover, because the sample of pseudo values is also kernel smoothed in the second

stage, there is an additional, adjacent region where f̂S will exhibit excessive downward bias due

to boundary effects. Thus, for a given pair of first- and second-stage bandwidths (hB, hS), sample

trimming causes inference to be either problematic or impossible within the following set:

(ξ(b− hB)− hS , s],

where b denotes the upper bound on the bid support, and with a similarly-defined interval at the

lower boundary as well. Let Υ denote the union of the upper and lower problematic intervals.

Hickman and Hubbard noted a final complication from sample trimming: it invalidates standard

bandwidth selection criteria (derived with single-stage estimators in mind), because optimal band-

width selection in the first stage involves a trade-off between the size of the set Υ and the statistical

properties of f̂S on the interior. Hickman and Hubbard proposed a solution to these problems by

replacing sample trimming with recently-developed statistical techniques for boundary correction

which allow kernel density estimators to have uniform bias and variance on the closure of the sup-

port of the distribution. In Monte Carlo studies involving various private value distributions, they

demonstrated the finite-sample gains to be had from replacing the standard kernel estimator with
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sample trimming by a boundary-corrected kernel estimator in each stage of GPV.

A major contribution to the literature, once GPV had shown that symmetric first-price auctions

could be identified (and estimated) nonparametrically, was establishing a set of results concerning

nonparametric identification in more general settings. Athey and Haile (2002) did so within various

different auction formats and information structures and also explored questions of what minimal

samples of observables would allow for nonparametric identification in the various combinations of

the former and the latter. Athey and Haile argued that these identification results provided valuable

insights concerning use of both nonparametric and parametric techniques. On the one hand, they

indicate which models may be estimated without resorting to distributional assumptions. On the

other hand, they also better inform our use of parametric assumptions. In the authors’ own words,

When a model is nonparametrically identified, one can view a parametric specification

as a parsimonious approximation rather than a maintained hypothesis...conversely, non-

identification results can both demonstrate why the data fail to enable inferences of cer-

tain types and suggest the range of models that could generate the same observables—

something valuable for policy-makers interpreting results obtained with strong identi-

fying assumptions. (Athey and Haile (2002, pg. 2109))

Not surprisingly, in the simple case of IPV, identification is a very simple matter. In the English

and Vickrey action formats with symmetric bidders, identification requires only observations of

the transaction price. When bidders are asymmetric, information on the identity of the bidder

is also required. Athey and Haile derived an extensive set of identification results within more

general information structures, to which we will refer later on in the survey. Finally, in addition to

identification, they also studied the issue of testability, that is, whether equilibrium behavior in a

given model involves refutable restrictions on the distribution of observables in a variety of settings.

The primary focus of our discussion thus far, as well as in going forward, concerned first-price

auctions. One reason for this is, regardless of whether bidders are symmetric or not, the weakly

dominant strategy at a second-price auction is for players to bid their valuations. As such, the

structural exercise simply requires mapping order statistics to their parent distribution (for details,

see Chapter 3 of Paarsch and Hong (2006)). However, Haile and Tamer (2003) addressed what

they argued is an important discrepancy between standard theoretical models of oral, ascending

auctions and those observed in practice. The standard theoretical model, known as the Milgrom–

Weber “clock model,” is one in which the sale price rises continuously as bidders reaffirm their

willingness to pay, dropping out precisely once the price exceeds their private value. However, they

argued that in practice sale prices adjust discretely by increments of varying sizes, as competitors

call out bids at will. This may result in sale prices being not perfectly equated with the second-

highest private value, making precise recovery of the value distribution problematic.

Rather than recover an exact estimate, Haile and Tamer (2003) instead established partial

identification of an incomplete model of bidding based on two weak assumptions that are required

by (but not sufficient for) Nash equilibrium bidding: first, bidders never bid more than their private

value and, second, bidders never allow an opponent to win at a price they would have been willing
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to beat. Using the first assumption, they obtained an upper bound on the distribution of private

values and similarly, the second assumption provided a lower bound. Moreover, they showed how

the resulting set estimates could be used to bound optimal reserve prices. Finally, they used Monte

Carlo experiments and an example with U.S. timber auction data to demonstrate that meaningful,

tight bounds may be obtained. Furthermore, they showed that the assumption of continuous price

adjustments can lead to estimates that lie outside of their bounds.

Li and Perrigne (2003) analyzed first-price auctions with secret reserve prices. Like Elyakime

et al. (1997), they modeled the reserve price as a random variable drawn from a distribution which

is common knowledge to bidders. Thus, the structural elements to be estimated include both the

bidders’ private value distribution and that of the seller. Given this extra latent variable, the

differential equation characterizing equilibrium bidding is different from the canonical case where

the reserve price is known. The authors derived this condition and extended GPV by reworking

their original two-step estimation procedure with this more complicated differential equation in

mind. Li and Perrigne then applied their proposed estimator to a sample of French timber auctions

in which reserve prices were actually chosen at random and withheld from bidders’ knowledge prior

to bidding. After estimation, they concluded that implementation of the optimal reservation price

would render higher revenues to the French government.

Flambard and Perrigne (2006) extended the GPV method to the case where bidders’ private

values are asymmetrically distributed. This method is particularly advantageous in the presence

of asymmetric bidders because of the intractability of equilibria in such auctions. Specifically, with

heterogeneous bidders a system of differential equations arises which does not satisfy a Lipschitz

condition needed for integration. Solving these models requires advanced numerical methods to

solve the system of equations given the value of parameters at each iteration (say, within a nested-

fixed point procedure). As such, computational difficulties are exacerbated significantly in such

settings—see Hubbard and Paarsch (2011). To circumvent this, Flambard and Perrigne transform

this system of equations in a way similar to GPV for the symmetric (single equation) case to solve

for private values in terms of bids and the bid distributions. Once the first stage of estimation is

complete, the trimming phase and second stage remain basically unchanged. To illustrate their

approach, Flambard and Perrigne applied their estimator to auctions for snow removal contracts in

Montréal, Canada in which observable differences between bidders are correlated with bid levels.

While Flambard and Perrigne (2006) extended GPV to an asymmetric environment, identifi-

cation and estimation of their model require knowledge of which bidders submitted the observed

bids. Lamy (forthcoming) extended GPV to first-price and second-price auctions in which bidders’

identities, for whatever reason, are not observed, but for which the econometrician might want to

allow for bidders to be asymmetric. He showed a model with anonymous bids is identified up to a

permutation of the potential bidders’ identities and his identification argument suggests an estima-

tion routine which adapts that of GPV. Given a sample of auctions, a researcher can construct an

estimate of the distribution of the order statistics of the bids. In an IPV setting, the distribution

of each bidder’s bids at a given bid can be expressed as the roots of a polynomial whose coefficients
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are a linear combination of these estimated distributions of order statistics. He proposed recovering

a pseudo private value for every possible realization of the identity of the bidder and estimating

a vector of pseudo probabilities mapping each observed bid to each potential identity, after which

the distributions of valuations are estimated. Lamy’s multi-step adaptation of the GPV algorithm

achieves the optimal rate of convergence.

4 Common Values and Pure Common Values

As in the previous section, here we only cover papers which have explicitly assumed CV or

PCV when specifying the structural model of bidding. As mentioned previously, it is well-known

that in CV auctions, the winner of an auction is faced with the bad news that she had the most

optimistic signal of any competitors, giving rise to the winner’s curse. As Wilson (1977) showed,

rational bidders will compensate for the winner’s curse by conditioning their bid on being the most

optimistic.

Thiel (1988) was perhaps the first to directly incorporate a derived expression for equilibrium

competitive bidding into an econometric auction model with pure common values. By assuming

that the private signal distribution is a member of the location-scale family of distributions, he

was able to derive a bidding function which is linear in its parameters. From this starting point,

he constructed an empirical specification of bidding that could be estimated by least squares.

Estimation of the magnitude of the winner’s curse then translated into a simple hypothesis test on

the regression parameters. Thiel (1988) applied his empirical model to a sample of 150 auctions

for highway contracts across 33 various U.S. states.

McAfee and Vincent (1992) developed a simple test that is asymptotically distribution free for

whether the reserve price set by the seller is inefficiently low in first-price, CV auctions. Roughly,

they showed (Theorem 2) that the reserve price is too low if the seller’s expected value of the object

exceeds the expected value of the object, conditional on the highest bid being the reserve price.

Note, however, that this result provides only a necessary condition for reserve price optimality, and

not a means of producing a precise estimate of the optimum. Nevertheless, McAfee and Vincent

showed that their test can have practical significance by applying it to a sample of outer continental

shelf (OCS) wildcat auctions in which they found that the reserve price set by the U.S. Department

of the Interior (DOI) was far too low.

As in the IPV case, Paarsch (1992) was the first to derive explicitly the data generating process

of winning bids within the CV information structure. He did so for two specifications of the

distribution of private signals—Weibull and normal—and proposed estimating these distributions

via NLS or ML. He also suggested a method of testing between common and private values, which

we later discuss. After Paarsch (1992), work on estimation in the CV paradigm has since been

sparse, and results proved by Athey and Haile (2002) shed some light on why this might be the

case. Specifically, identification within the CV paradigm is considerably more difficult than under

private values. For example, even in the second-price, sealed-bid case, the simplest auction format
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for estimation purposes, identification of the private signal distribution requires observation of all

bids, rather than just the winning bid. Even then, the joint distribution of private signals and the

common value is unidentified. Naturally, identification of more complex auction formats such as

the open, Dutch, or first-price, sealed-bid become even more difficult.

Some authors have used actual observations of the ex-post realization of the common value to

overcome these difficulties. For example, Hendricks et al. (2003) analyzed data on auctions for

mineral extraction leases on the Gulf of Mexico, in which bidders are unsure beforehand about the

mineral content of a particular tract of ocean floor. These OCS auctions are special in that reliable

estimates were available for the ex-post value of each tract. The authors were primarily interested

in leveraging the realized value of the auction to test an hypothesis concerning bidder rationality.

When the ex-post value of the object is observable, it is possible to test directly how well bidders

compensated for the possibility of the winner’s curse.

Hendricks et al. (2003) developed three tests for bidder rationality using these insights. The first

test simply considered whether bidder rents were, on average, positive. The second test extended

this to determine whether firms earn positive rents, conditional on submitting a winning bid—

that is, profit margins should also be positive on average. Both of these tests were consistent

with rationality, illustrating the remarkable power of the market to aggregate private information.

However, the authors noted that both tests involved aggregation and argued that additional and,

perhaps, stronger evidence could be found through a test on the individual level. Thus, the authors

developed a test of individual rationality based on two observations. First, given the presence of

the winner’s curse, bidders should bid less than their expected tract value. It follows then that a

rational bidder will submit a bid that is lower than her expected value, conditional on the number of

potential bidders and her private signal. We shall call this expectation E1. Second, a rational bidder

will anticipate that, given a win, she will have, on average, overestimated the object’s worth. Hence,

she must also submit a bid that is less than her expected value of the object, conditional on the

number of potential bidders, her private signal, and conditional on having the highest bid. We shall

call this expectation E2. Rationality requires E1 ≥ E2. If the winner’s curse is present and bidders

are rational, then it must follow that the difference E1−E2 > 0 is also strictly increasing in N , the

number of potential bidders. Hendricks et al. (2003) proposed using this difference as an estimate of

the winner’s curse. Specifically, the authors computed estimates of the conditional expectations via

a locally linear regression.6 Inference is performed using a block-bootstrap procedure to compute a

one-sided 95% confidence band for the estimate of the winner’s curse.7 The OCS data again proved

consistent with the rationality hypothesis.

Hong and Shum (2003) developed an econometric model of English auctions within the CV

paradigm. They considered risk-neutral bidders with distinct, unknown values for the object which

depend on their own private information as well as that of their opponents. Moreover, their

model allows for bidders’ private signals to be distributed asymmetrically. English auctions in the

6Details concerning this nonparametric estimation procedure are in Appendix B of Hendricks et al. (2003).
7For details, see Appendix C of Hendricks et al. (2003).
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CV paradigm are exceedingly rich models in a strategic sense, and pose a formidable challenge

to empirical researchers due to the way in which bidders learn and adapt their strategies as the

auction progresses. Hong and Shum applied theoretical insights due to Wilson (1998) to make

econometric implementation of the model feasible. Wilson discovered that the inverse-bid functions

are pointwise defined implicitly by a system of nonlinear equations, and that the existence of a

monotonic equilibrium is equivalent to conditions which deliver an increasing solution to the system.

This discovery created enough parsimony to facilitate econometric implementation, provided that

the latent distributions allow for workable, closed-form expressions.

Hong and Shum (2003) adopted a parametric assumption—log-normal private signals—which

allowed them to derive the equilibrium bidding function and the likelihood function for the model.

Moreover, they showed that the support of private signals does not depend on model parameters,

so the ML regularity conditions hold and standard asymptotic theory applies. However, as imple-

mentation of ML involves the computation of a difficult, high-dimensional integral, they suggested

optimizing the likelihood function using simulation techniques. They also adopted an alternative

approach, based on simulated moments. This second method is effectively an extension of the

SNLS estimator of Laffont et al. (1995) to the current model, but to preserve differentiability of

the SNLS objective function, Hong and Shum abandoned the importance sampler used by Laffont

et al. (1995) in favor of another based on the independent, probit kernel-smoother of McFadden

(1996). Finally, using Monte Carlo simulations, Hong and Shum performed a sensitivity analysis

of both methods to check for effects of changes in the bandwidth and the number of simulations.

They found that, while both procedures performed fairly well, the SNLS estimator appeared more

stable.

There are two notable papers based off the idiosyncracies of PCV auctions administered elec-

tronically through the online auction website eBay. Bajari and Hortaçsu (2003) used data on

collectible coin auctions in which the CV assumption is motivated by informational asymmetries

between buyers and sellers, along with the existence of a highly liquid resale market and the pres-

ence of speculative collectors. Due to the presence of speculative bidders who presumably have

expertise in appraising coins, the authors also modeled bidders’ private signals as being distributed

asymmetrically. Like Hong and Shum (2003), Bajari and Hortaçsu were confronted with the fact

that dynamic CV auctions pose a considerable computational challenge to the empirical researcher.

They employed two coping strategies to make estimation more plausible. First, following Roth and

Ockenfels (2002), they used the fact that eBay auctions terminate at a specified point in time to

simplify auction dynamics. They modeled time as passing continuously during an initial period in

which bidders may drop out and re-enter at will, after which there is a final period when they may

submit only one bid; at this point the game is equivalent to a static second-price auction. Their

second coping strategy was to estimate the model using a simulation-based Bayesian approach.

They specified a prior distribution for model parameters and applied Bayes’ theorem to study the

properties of the posterior. Then they simulated the posterior using Markov-chain Monte Carlo

methods. They offered several arguments in favor of this method over classical estimation, including
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relative computational simplicity, valid inference with fewer assumptions, and findings by Hirano

and Porter (2003) as well as Chernozhukov and Hong (2004) that Bayesian methods in parametric

auction models may be asymptotically more efficient than frequentist methods in some relevant

cases; see also footnote 5 of this survey.

Lewis (2011) used eBay data concerning automobile auctions. Here the CV assumption is

motivated by information asymmetries between buyers and sellers giving rise to an adverse selection

phenomenon à la Akerlof (1970). Lewis assumed bidders to be symmetric as he was primarily

concerned with the way in which sellers overcome the adverse selection problem. He found that

the amount of information supplied to buyers and the sale price were highly correlated. This is

consistent with a model in which sellers’ optimal policy isto report only information that reflects

positively on the condition of the sale item. Lewis rendered his model dynamics more tractable by

employing the same abstraction as described above in Bajari and Hortaçsu (2003). In his model,

this implied that the game essentially unravels to a static Vickrey auction in which bids are based

on private signals, the number of competitors, and the number of signals received from the seller.

Lewis proposed a new pseudo-maximum likelihood estimation routine in which optimization is a

mixture of weighted least squares and quasi-Newton algorithms. He argued that the advantage of

his method over Hong and Shum (2002), which we discuss below, or Bajari and Hortaçsu (2003) is

that it deals with the curse of dimensionality remarkably well, allowing him to include over thirty

covariates in the model. He found that sellers can significantly affect the sale price by providing

large amounts of information to buyers.

5 Affiliated Private Values

Athey and Haile (2002) provided better news concerning the APV paradigm relative to the CV

framework, although working in this general model is still more difficult than its special IPV case.

The minimal set of observables needed to deliver nonparametric identification in symmetric APV

first-price auctions are the two highest bids, from which the joint distribution of the two highest

private values is identified (Theorem 7). If the identity of the winner is also available, then in the

asymmetric case, the bidding functions for all bidder types are identified (Lemma 1). However, if

any bid is not observed in symmetric APV first-price auctions, then the joint distribution of all

private values is unidentified (Corollary 1). Athey and Haile proposed that in such cases where

parametric assumptions will be necessary to obtain identification, if the identity of the winner

is known then bidding functions may be nonparametrically estimated and compared to the ones

obtained parametrically as a specification test.

Athey and Haile (2002) also showed that similar difficulties arise in second-price auctions within

the APV: if even a single bid is unobserved, then the joint distribution of bidder valuations is

nonparametrically unidentified. This is particularly troublesome in the second-price setting as the

bid submitted by the winner is often unobserved by the econometrician. Komarova (2011) studied

this issue further by developing partial identification results based on increasingly severe restrictions
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on the observables in models where bidders may be asymmetric. Take a given subset of bidders

J , Komarova showed how information on prices when all members of J lose the auction can be

used to derive an upper bound on the joint distribution of valuations for bidders belonging to the

subset J . She also showed how one can use information on prices when a member of J wins to

derive a lower bound for this joint distribution. Komarova demonstrated via a numerical exercise

that, when a majority of bids are observed, bounds on the marginal private value distributions can

be fairly informative if the bounds are tight.

Li, Perrigne, and Vuong (2002) extended the two-step estimation method of GPV to the case of

symmetric, first-price auctions within the APV paradigm. Allowing for affiliation complicates the

first step of estimation, as there is dependence among the observed bids. As such, the first-order

conditions involve the ratio of the conditional bid distribution to its conditional density, which

the authors showed can be estimated by the ratio of the (unconditional) joint bid distribution to

its joint density. These latter terms can be estimated nonparametrically by computing a product

of univariate kernels of the bid of interest and the maximum of that bidders’ rivals’ bids. The

authors, in their Proposition 1, also highlighted a remarkable property of first-price auctions within

the APV paradigm that produces a specification test. The result has to do with what is known in

the literature as rationalizeability. A sample of observables is said to be rationalizeable by a model

if there is an equilibrium of that model that induces the observed distribution over the observables.

Li et al. showed that a sample of bids is rationalizeable by a symmetric APV model if and only

if the joint distribution of bids is symmetric and affiliated and if the inverse-bidding function is

strictly increasing. This result implies that not all distributions may be rationalized by an APV

model, despite its characteristic generality. This proposition provides the basis for a formal test

of the symmetric APV specification, characterizing all of the game-theoretic restrictions posed by

the model on the distribution of observed bids. The test is convenient as well, as computation

of the inverse-bidding function already required for recovery of pseudo-private values in the first

stage of estimation. The second stage of the estimation follows that of GPV or, if the researcher

is interested in the joint density of valuations, a product of univariate kernels can be estimated.

The authors proposed modified bandwidths for use in the second stage and, like GPV, showed that

their nonparametric estimator is uniformly consistent on arbitrary open subsets of the interior of

the support of private values.

Campo, Perrigne, and Vuong (2003) extended Li et al. (2002) to handle asymmetrically dis-

tributed private values. A difficulty arises because of interdependence among the asymmetric

bidders, which precludes a strict application of the method developed by Li et al. to each group

separately. Specifically, each bidder evaluates the probability of winning the auction by considering

the joint distribution of maximal rival bids from each type of player, conditional on those bids

being less than her own bid. A complication is that the modified first-order condition associating

observables with pseudo-values now depends on this conditional bid distribution as well as its total

derivative. Thus, if there are K bidder types, then the econometrician must effectively estimate

a K-dimensional joint density, giving rise to the curse of dimensionality when conventional ker-
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nel smoothing techniques are employed. For this reason, Campo et al. confine their empirical

implementation to auctions only involving two or fewer bidder types.

Another aspect of this paper that also deserves attention here. These stem from the fact that

asymmetry in this model has a behavioral origin, and is not imposed exogenously. Campo et al.

(2003) studied a set of OCS auctions during a time period in which the U.S. DOI allowed oil firms

to form ad hoc cartels (at their own discretion) for the purpose of bidding and mineral extraction.

This was an effort by the DOI to encourage participation by smaller firms. This type of asymmetry

gives rise to a series of tests for the presence of bidder asymmetry and even of unobserved auction-

specific heterogeneity. As for the former, preliminary evidence for, or against, bidder asymmetry

may be uncovered via a standard Z-test on the probability of joint bidders winning the auction. The

idea here is that under the null hypothesis of symmetry, all bidder types should be just as likely to

win a given auction. A second test for asymmetry comes after the second stage of estimation, when

the marginal distributions of private values for each bidder type have been recovered. Campo et al.

proposed applying a standard Kolmogorov–Smirnov test to these marginal densities to evaluate the

null hypothesis of bidder symmetry.

Li, Perrigne, and Vuong (2003) developed a semiparametric estimation strategy of the optimal

reservation price in first-price auctions when bidders are risk-neutral. In their model, the private

values of bidders come from an affiliated joint distribution, meaning that each bidder’s private

value affects the conditional marginal densities of the other bidders’ private values. The traditional

expression for the optimal reservation price is a function of the distribution of private values; see,

for example, Myerson (1981) as well as Riley and Samuelson (1981). However, within the APV

paradigm they derived an expression characterizing the seller’s expected revenue as a function

of the bid distribution, from which it follows that a simple maximization routine gives rise to a

natural estimator of the optimal reserve price. The authors studied OCS wildcat auction data

for which they estimated the symmetric bidding function nonparametrically and incorporated this

estimate into the seller’s profit function. Li et al. then recovered the optimal reservation price via

extremum estimation (also known as M-estimation). In light of Athey and Haile (2002), this was a

significant breakthrough, as recovery of the optimal reserve price required identification of only the

(inverse-) bidding function, which may be obtained even in some situations where the latent value

distributions are nonparametrically unidentified.

Hubbard, Li, and Paarsch (forthcoming) proposed estimating first-price models in the symmetric

APV paradigm semiparametrically. While the model is nonparametrically identified, assuming

some additional structure allows the authors to address the curse of dimensionality (concerning the

number of bidders at auction) and to “impose” affiliation in their estimation strategy, ensuring an

equilibrium is satisfied by the first-order condition. Specifically, the authors employed Archimedean

copulas to characterize the joint distribution of valuations. Copulas are functions that express the

joint relationship between random variables as a function of their marginal distributions, and they

allow the researcher to separate estimation of the marginal distributions from estimation of the joint

distribution; see Nelsen (1999) for an introduction to copulas. This family of copulas is attractive as
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statisticians have identified conditions which arbitrary members must satisfy in order to guarantee

affiliation holds.

Hubbard et al. estimated the marginal empirical distribution function and probability density

function of bids nonparametrically, just like GPV. However, unlike GPV, they used the empirical

distribution of bids in a (pseudo) maximum likelihood routine to estimate the copula parameter(s).

These estimates allowed the authors to use the first-order condition characterizing equilibrium

behavior in this model to recover pseudo values corresponding to each observed bid. They then

suggested following GPV in the second step of their estimator. The authors showed their estimator

of the joint density of private values achieves the optimal uniform rate of convergence for a two-step

nonparametric estimator à la GPV—that is, the joint density of private values can be estimated

at the same rate as the marginal density of private values. The copula parameterization allows

for this asymptotic gain as the dimension of the joint density of private values is reduced to one

which avoids the curse of dimensionality problem concerning the number of bidders and associated

with the nonparametric approach of Li et al. (2002). The extra copula-related work in the first

step appears to pay dividends in small samples: they used Monte Carlo experiments to show their

estimator is on par with GPV when data are independent and that their estimator performs well on

affiliated data, even if the researcher chooses the wrong copula. Furthermore, they found significant

(and high) affiliation in cost signals using procurement data from a sample of Michigan Department

of Transportation highway paving contracts.

6 Conditionally Independent Private Information

To our knowledge, there exist but two structural auctions papers within the CIPI paradigm,

both of which were based off first-price auctions with symmetric risk-neutral bidders. However,

together they represent a well-rounded sample of both parametric and nonparametric methods.

Li et al. (2000) introduced the CIPI paradigm into empirical research. They applied nonpara-

metric estimation techniques to the two important special cases of CIPV and PCV. A significant

obstacle they encountered was the fact that identification within the CIPI paradigm requires addi-

tional assumptions on the informational structure, due to the presence of the common component

influencing all bidders’ values alike. Thus, a researcher must recover not only the distribution over

bidders’ idiosyncratic signals, but also that of the common component. The authors accomplished

this through a log-additive specification of firm costs, following Wilson (1998), where private infor-

mation is decomposed as the product of the (unknown) common factor and a random idiosyncratic

factor:

Si = V ηi.

Moreover, they assumed the ηi’s and V are mutually independent and that the ηi’s are identically

distributed with mean one. Using this assumption, along with a regularity condition from work in

nonparametric deconvolution methods by Li and Vuong (1998), they showed that the CIPV model

is nonparametrically identified from a sample of bids. Moreover, CIPV can rationalize a sample of
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bids if and only if the inverse-bid function is monotonic. As in Li et al. (2002), the power of this

last result lies in the fact that their estimation procedure allows for verification of monotonicity,

which in turn implies that the CIPV assumption is partially testable (subject, of course, to other

sources of model misspecification).

On the other hand, in the PCV case, bidders use their private signals Si to estimate the common

cost V , making identification difficult. As a step toward that direction, Li et al. (2000) imposed

the additional restriction

E [V |S(N : N ) = S(N − 1 : N ) = si] = C +D log si.

In other words, they assumed that bidders’ appraisals of costs, conditional on winning, are log-

linear in their individual signals. Note that this makes the treatment of PCV here semiparametric,

as it places parametric restrictions on the joint distribution of (η, V ). Despite this additional as-

sumption, Fη(η) and FV (v) are still only partially identified up to the location and scale parameters

(C,D). However, this problem is less worrisome in light of the fact that any CIPI model is ob-

servationally equivalent to some CIPV model, meaning that any phenomena occurring within a

PCV information structure may be modeled within a CIPV framework without loss of explanatory

power; see Proposition 1 in Li et al. (2000).

The authors’ estimation procedure combined methods developed by GPV with those of Li and

Vuong (1998). Specifically, in the first stage of estimation they constructed a pseudo-sample of pri-

vate signals using the inverse-bidding function and nonparametric estimates of the bid distributions.

The second stage involves an application of nonparametric deconvolution methods to disentangle

Fη(η) and FV (v) from the sample of pseudo-signals. This same procedure applies equally to the re-

covery of the CIPV model or the partial recovery of the PCV model. Li et al. considered estimation

of both models using a sample of OCS auctions conducted by the U.S. DOI.

Hong and Shum (2002) developed and applied a fully parametric approach to estimation in the

CIPI model using a sample of auctions for road construction contracts conducted by the New Jersey

Department of Transportation. An appealing characteristic of their model is that it has a built-in

method to test between the polar extremes of PCV and IPV, but can also allow for elements of

both to be present simultaneously. We follow up on this observation later in the special section on

testing between common and private values.

Hong and Shum (2002) also adopted the log-additive specification of firm costs considered by

Wilson (1998), although with some differences from Li et al. (2002). Here, firm costs have both

idiosyncratic and common components, and are given by Ci = AiV. Furthermore, firms do not

directly observe their costs, but rather a noisy signal of costs Si = Ciei, where ei is a positive error
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term. Ai, V and Si are assumed to be log-normal, so that

logSi = log ci + εei ∼ N(log ci, σ
2
e),

log V = m+ εv ∼ N(m,σ2v),

logAi = a+ εai ∼ N(a, σ2a).

Thus, the logarithm of private signals can be decomposed as

logSi = (m+ a) + εv + εai + εei

and the parameters σ2v , σ
2
a and σ2e serve the double purpose of characterizing the joint distribution

of signals (and hence driving bidder behavior), and parameterizing the relative importance of,

respectively, the common-values component, the private-values component, and affiliation in the

information structure. Hong and Shum showed informally using numerical examples that different

combinations of values for these three parameters cause significant changes in both the shape and

magnitude of the equilibrium bidding function. This, combined with the fact that variability in the

number of bidders will also affect equilibrium bidding behavior, suggests that the model parameters

are identified and estimable.

Hong and Shum (2002) employed a robust quantile estimator to recover the parameters of the

latent signal distributions. The estimation procedure capitalizes on two important observations.

The first is that the quantiles of a distribution FS(s) are invariant to monotonic transformations

of S. The second is that equilibrium bids are merely monotonic transformations of S. Hence, the

model parameters are chosen in such a way as to minimize a weighted average distance between

observed bids and the equilibrium bid function evaluated at the quantiles of FS(s).

One of the authors’ goals of their structural model was to uncover winner’s curse effects in

common-value auctions. Their estimates suggest a large winner’s curse effect is present in the

data. In auctions for highway contracts, as the number of bidders increases from two to ten, the

median bid rises from $200,000 to $350,000. Moreover, the authors argued that this increase is

entirely attributable to the winner’s curse rather than the affiliation effect via a numerical exercise

in which they shut down the common-values component while preserving other parameters at their

estimated levels; see footnote 35 in their paper. This highlights one advantage of the above model

specification. Namely, it achieves a high level of of explanatory power through explicitly separating

the three components of the CIPI information structure (CV, IPV, and affiliation).

7 Special Topics

Our discussion thus far has partitioned the empirical auctions literature by informational

paradigms nested within an AV structure. In this section we relax some of the assumptions that

are maintained within canonical auction models and we try to deal with other econometric issues

which, until this point, we have not discussed explicitly. As such, the structure of our presentation
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now shifts from one in which we focused on a given informational paradigm to one in which we

focus on a specific topic. We try to discuss any work, regardless of the information structure, that

relates to the topic of interest. Specifically, we address risk averse bidders, unobserved auction-

specific heterogeneity, accounting for an unobserved number of bidders, endogenous entry, dynamic

aspects of auctions, testing informational paradigms, and auctions for multiple objects. Each of

these topics have received particular attention in the literature.

Of course, there are a myriad of other special topics that could also have been included here such

as bidder collusion, eBay, auctions for display advertising, scoring auctions, as well as numerous

interesting structural econometric applications and case studies. The reader may think that our

choice of which topics to cover was somewhat arbitrary: this point is well-taken and we offer as

a defense the argument that the special topics we have chosen to include in this section are less

specialized, which we feel allows for them to be considered in a number of different scenarios.

7.1 Bidder Risk Aversion

A maintained assumption in the papers discussed above is that a bidder’s utility (if she wins)

is simply her monetary surplus from the sale, or u(s, p) = s − p, where p is the price she paid.

However, if bidders are risk averse, then estimates based on this assumption will be biased and will

lead to incorrect policy prescriptions. For example, it is well known from auction theory that risk-

averse bidders bid more aggressively than risk-neutral ones. Therefore, a seller’s mechanism design

problem will be very different, depending upon which kind of bidders populate her auction. One

well known example from auction theory is the fact that the first-price auction revenue dominates

the Vickrey auction when bidders are strictly risk averse. This is because in the latter format

truthful bidding is still a dominant-strategy equilibrium, while in the former risk-averse bidders

will be willing to trade off some expected surplus to hedge against the risk of losing the auction.

On the other hand, when bidders are risk-neutral, the revenue-maximizing mechanism is a Vickrey

auction with an appropriately chosen reserve price. For these reasons, researchers have tried to

adapt structural econometric methods to the case where u is a concave von Neumann–Morgenstern

utility function of unknown form. Donald and Paarsch (1996) were the first to consider identification

of a model with risk averse bidders in a fully parametric setting. In our discussion here, we focus

on recent work that has tried to identify models with risk averse bidders under minimal sets of

assumptions.

Guerre, Perrigne, and Vuong (2009) studied nonparametric identification of first-price auction

models within this setting, in which case equation (2) used by GPV to identify the risk-neutral

model now becomes

1 = (N − 1)
fB(b)

FB(b)
λ(s− b), (3)

where λ(·) = u(·)/u′(·). The authors show that equation (3) is insufficient to identify (FS , u)

from observations of bids alone. In order to achieve identification in this more difficult setting, they

adopt a strategy of including additional data on the number of bidders at auction. Specifically, they

27



assume that the private value distribution is invariant to the number of bidders, so that participation

in the auction must be exogenous. As it turns out, this assumption, which is standard in much of

the literature, buys quite a bit of mileage: it implies that bidding strategies are strictly increasing

in the number of bidders, so the quantiles of FB vary with N while those of FS do not. Intuitively

then, for some α ∈ [0, 1] one can compare the α quantile bid for auctions with N and N ′ bidders

to infer the level of risk aversion present. Remarkably, their results extend to much more general

cases, such as binding reserve prices, APV, asymmetric bidders—where asymmetry may arise either

from private signals in the usual way or from heterogeneous utility curvature—and even situations

where N is endogenous, provided that suitable instruments are available.

While enlightening, one difficulty with the above method is that reliable measures of the number

of bidders at auction are notoriously difficult to come by in practice (see our discussion below in

the subsection on coping with unobserved numbers of bidders). Campo, Guerre, Perrigne, and

Vuong (2011) developed an alternative approach for recovering bidders’ private values and utility

curvature in IPV, first-price auctions. Their analysis is based on an exploration of the minimal

set of parametric restrictions necessary to identify the model from observations of bids. As it

turns out, the nonidentification problem is somewhat deep: Campo et al. showed that specifying a

parametric family for either the utility function or the private value distribution alone is insufficient

to identify the model. However, they overcame this problem by adding another light assumption

and including additional data that are more readily available in most contexts. Specifically, they

assumed a functional form of the utility function while exploiting a parametric restriction of a single

quantile of the private value distribution, in conjunction with data on auction-specific covariates

to identify utility curvature. Moreover, they showed that dropping either of these two restrictions

leads to loss of identification.

Now, estimation occurs in three stages. In the first, the conditional bid density is nonparamet-

rically estimated at its upper boundary, being the quantile they chose to restrict in practice. In

the second stage, the utility function parameters are recovered via NLS, using the nonparametric

estimates from stage one. In stage three, the utility function estimate is plugged into equation

(3) (where FB is now conditional on covariates) to recover a sample of private value estimates.

Campo et al. established asymptotic theory for their estimator, showing that it converges at the

fastest possible rate for any semiparametric estimator of the model, which is the usual
√
T rate

if u is analytic, and slightly slower otherwise. They also demonstrated how their method can be

adapted to handle bidder asymmetry, APV, or binding reserve prices. They applied their method

to a sample of US Forest Service timber auctions, and found evidence for significant levels of risk

aversion among participants.

Lu and Perrigne (2008) sought to avoid the necessity of imposing additional identifying assump-

tions for recovery of bidder preferences by exploiting the availability of data from both English and

first-price auctions for similar objects. Given the availability of such rich data, the econometrician

may employ a fully nonparametric approach to estimating bidder risk aversion. The intuition here

is that truthful bidding is an equilibrium in dominant strategies for the English auction, regardless
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of risk aversion, whereas in the first-price auction, risk-averse bidders will bid more aggressively

than will risk-neutral ones, so as to hedge against the risk of losing the auction. Lu and Perrigne

proposed using data on winning bids from English auctions to nonparametrically recover private

value estimates, which then can be plugged into equation (3) to nonparametrically identify u. Note,

however, this procedure requires that the same set of bidders participate in both types of auctions,

otherwise estimates from the first and second stages are incompatible. Lu and Perrigne estimated

the model using a sample of US Forest Service timber auctions for which both pricing mechanisms

were used. They also used a semiparametric adaptation of the estimator to asses how well some

popular utility specifications fit the data, finding that CRRA provided a reasonable fit, while the

CARA specification did not.

7.2 Unobserved Heterogeneity

Often auction researchers assume that they have access to the same information about the items

at auction as the participants at the auctions. As such, variation in observed bids across objects

that are considered to be the same (after conditioning on observables) is attributed to variation in

bidder valuations. In reality, bidders may have access to some information about the object (or

project in a procurement setting) being auctioned which may not show up in the data and, hence,

is unobserved to the econometrician. Failing to account for this unobserved heterogeneity may bias

estimates of the structural parameters or the unconditional empirical distribution of bids, which

can propagate through the model and lead to incorrect inference concerning bidder valuations and,

hence, poor policy recommendations. While some authors have attempted to deal with unobserved

heterogeneity (for example, the issue was recognized by Laffont et al. (1995)), we describe in this

subsection researchers that have put unobserved heterogeneity at the center of their work and have

proposed ways of dealing with it explicitly. Note, too, that the issue is inherently an econometric

one—it’s not a modeling issue or of importance to theorists.

Some previous researchers considered unobserved heterogeneity but it was tightly linked with

bidder participation; see, for example, Hong and Shum (2002). In such settings, the researcher may

control for unobserved characteristics by conditioning on the bidder makeup of an auction (i.e.,

the number of total bidders, the number of bidders of different types, etc.). Campo et al. (2003)

suggested a means for testing for unobserved heterogeneity along these lines. Remember that the

authors considered OCS wildcat auctions with two types of bidders: solo and joint bidders. The

behavioral nature of cartel formation by joint bidders provides a basis for a test of unobserved

heterogeneity. Here, the underlying idea is that there are a set of characteristics observable to

bidders which motivate their decisions to form cartels or to act on their own. Campo et al. assumed

essentially that bidder makeup in an auction forms a sufficient statistic for these characteristics,

which are unobservable to the econometrician. It follows then that a test for the presence of

unobserved heterogeneity may be afforded by a Kolmogorov–Smirnov test applied to the marginal

densities of joint bidders estimated from auctions in which they face solo bidders and also when

they face other joint bidders. If these densities differ significantly, then the researcher may reject
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the null hypothesis of no unobserved heterogeneity. Finally, the authors argued that additional

evidence may be found by examining and comparing estimates of information rents across auctions

with different bidder makeups.

Krasnokutskaya (2011) provided the first characterization of a model with auction-specific unob-

served heterogeneity. She focused on identification and estimation, and even allowed for unobserved

heterogeneity to be present across auctions with the same profile of bidders. Krasnokutskaya mod-

eled bidders’ values as the product of a private component and a common component which is

observable to bidders but not to the econometrician. If these two components are independent of

each other and, when multiplied, comprise the bidders’ valuations, identification obtains as long as

two bids are observed at each auction. By assuming multiplicatively-separable components, she was

able to relate her work to and leverage results from Li and Vuong (1998) as well as Li et al. (2002).

Krasnokutskaya cleverly reduced the econometric problem to a measurement error problem with

multiple indicators, as first studied by Li and Vuong; she also invokes the asymptotic properties of

the estimators they established.

A difficulty obtains in the presence of unobserved heterogeneity: the first-order conditions ex-

press valuations as a function of both bids and the realized value of the unobserved heterogeneity.

A consequence of this is that the standard GPV identification results based off the first-order

conditions cannot be applied. Instead, Krasnokutskaya focused on the joint distributions of bids

submitted in the same auction. The marginal density of the unobserved heterogeneity can be iden-

tified from the joint distribution of two bids sharing the same common valuation (cost) component.

Intuitively, the component corresponding to unobserved auction heterogeneity induces dependence

among bids at a given auction and this dependence can be used to recover the marginal distribu-

tions under some independence assumptions (the bidders’ individual valuation/cost components are

independent of each other and of the common component). In estimation, Krasnokutskaya followed

her identification strategy by estimating the joint characteristic functions of bids and then used a

deconvolution technique to separate out the densities of the common and private bid components;

that is, the marginal distribution of unobserved heterogeneity and of bids, respectively. She then

used the bid densities to estimate nonparametrically the distribution of the individual valuation

(cost) component much in the same way as GPV. After providing Monte Carlo evidence that her

estimation procedure performs well, she applied these techniques to a sample of Michigan Depart-

ment of Transportation highway procurement auctions. She showed that unobserved heterogeneity

may be of significant concern in practice and is an important one for optimal auction design.

The approach taken by Krasnokutskaya employed results from the classical measurement error

literature: with multiplicatively-separable components, equilibrium bids scale multiplicatively in

the unobserved heterogeneity (or, taking logarithms, the log of unobserved heterogeneity acts as

an additive mean shifter of the distribution of the log of bids for a given item). In contrast, Hu,

McAdams, and Shum (2010) proposed an approach that is rooted in the more recent literature on

nonclassical measurement error. The authors provided an approach for identifying bidder valua-

tions in an asymmetric IPV framework in the presence of unobserved heterogeneity. Their approach
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is more flexible than Krasnokutskaya’s in that the unobserved heterogeneity can affect bidders’ val-

uations in a nonlinear way, but requires observation of a third instrument (in addition to the two

bids) at each auction. In the case where this instrument is a bid, three bids must be observed

at each auction—the third bid plays the role of an instrument for the unobserved heterogeneity.

To identify their model the authors assumed there is a monotone relationship between bids and

the unobserved heterogeneity. Whereas Krasnokutskaya (2011) required this relationship be multi-

plicative, here the effect can be non-separable as well as asymmetric on the different bidders. The

assumption allowed the authors to identify the distribution of the unobserved heterogeneity as well

as the conditional distribution of bids, given the unobserved heterogeneity, from the observed joint

distribution bids alone. The intuition is that this joint distribution is decomposed into a mixture

of conditionally independent bid distributions (hence, it would be difficult to allow for affiliation

using this strategy). Of course, the distributions of valuations, conditional on the unobserved het-

erogeneity, is identified from the conditional distributions of bids. The authors discussed settings in

which monotonicity concerning unobserved heterogeneity obtains naturally (such as product qual-

ity, reservation price, bidding cost, or the number of bidders) and suggested a nonparametric sieve

ML estimation procedure.

While many researchers leverage changes in the number of bidders at auction to help identify any

unobserved heterogeneity, Roberts (2011) offered a novel approach by exploiting choices made by the

seller—who is assumed to observe all auction characteristics—to identify a symmetric, IPV, English

auction model in the presence of unobserved heterogeneity. To do this, he modeled sellers who set

reserve prices that are not necessarily optimal by assuming a relationship between the reserve price

and unobserved heterogeneity: higher realizations of unobserved heterogeneity induce the seller to

set a higher reserve price. Doing so allowed him to identify the distribution of valuations conditional

upon observables and the realized unobserved heterogeneity from observing data on winning bids

and reservation prices alone. In estimation, an econometrician would first use the reserve prices

and auction covariates to estimate the distribution of unobserved heterogeneity and a reserve price

function (used by sellers); in a second step, the distribution of valuations can be estimated given the

observable covariates and the implied realization of the unobserved heterogeneity from the first-step

estimation. He studied an application in which unobserved heterogeneity is likely important and

his approach attractive: used car auctions from South Korea for which the number of bidders at

each auction is unknown. After estimating his model semiparametrically (he imposed structure on

the reserve price function but estimated valuations in the second step nonparametrically), Roberts

argued that too much emphasis is put on identifying the optimal reserve price and too little put on

the value of adding another bidder.

Aradillas-López, Gandhi, and Quint (2011) noted that real-world auction data often contain

heterogenous objects and researchers who assume independent private values must condition esti-

mates of the latent private value distribution(s) on observable covariates. However, such a strategy

does not adequately address any unobserved heterogeneity which might affect demand for the ob-

jects at auction. Specifically, these unobservables might cause bidders’ valuations to be correlated
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and this has important implications for optimal auction design. The authors obtain identification

of a model with correlated private values in which private values are independently and identically

distributed draws from a distribution that depends on observable as well as unobservable covariates.

The authors showed that the unobservables introduce correlation into private values, and moreover,

when the correlation is properly accounted for the implied optimal reserve price suggested by an

IPV model would be too high.

Aradillas-López et al. considered U.S. Forest Service data from ascending timber auction data.

Krasnokutskaya’s (2011) approach for a first-price setting allowed her to observe multiple bids for a

given auction which she could exploit given her structural model. A difficulty with English auctions

is that equilibrium bidding places structure on only one bid (and often only one bid is observed).

Aradillas-López et al. leverage variation in winning bids across auctions with different numbers

of bidders (different size) to partially identify their model. Specifically, assuming valuations are

stochastically higher in auctions with more bidders allowed them to construct an upper bound on

the seller’s expected profit, while assuming valuations are independent of the number of bidders

provides a lower bound. The authors then introduced a nonparametric test with known asymp-

totic distribution to decipher which assumption is reasonable. Their method allows researchers to

conduct estimation and inference even if the covariates a researcher includes in her model do not

account for all heterogeneity across auctions.

7.3 Unobserved Number of Bidders

Applied econometricians often assume that the number of potential bidders at auction equals

the number of observed bidders; however, this can be difficult to justify when data come from

auctions in which reserve prices were used or settings in which bidders faced some type of entry

cost. Unfortunately, reliable measures of the total number of potential bidders in an auction are

rare in practice, yet these are critical for empirical work as they are needed to characterize the data

generating process for bids.

Paarsch (1997) achieved a breakthrough in this area while studying English auctions for British-

Columbian timber. Given a set of N potential bidders and reserve price r, we know that bidders

only participate in bidding if their value, s, exceeds the reserve price r. Moreover, in an English

auction, bids are equal to values. Thus, the joint density of the number of actual participants,

denoted N , the ordered set of N observed values and the (N −N) unobserved values is

fS(N),N

[
s(1:N ), . . . , s(n−1:N ), s(n:N ), . . . , s(N :N ), n

]
=(

N
n

)
FS(r)(N−n)n!

n∏
i=1

fS(s(i:N )),
(4)

where the n! counts all the ways in which n values could be ordered, and the
(N
n

)
counts all the

ways in which n of N values could be chosen to have a value greater than r. Paarsch’s innovation

was in noticing that part of this expression bares close resemblance to the binomial density of the
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number of participants, or

fN (n) =

(
N
n

)
FS(r)(N−n) (1− FS(r))n .

Thus, by multiplying the right-hand side of (4) by (1−FS(r))
n

(1−FS(r))
n , one can separate out the proba-

bility of observing n participants, from the joint density of their ordered values, conditional on n,

which is

n!
n∏
i=1

fS(s(i:N ))

(1− FS(r))
. (5)

Note that an expression like (5) can easily be incorporated into a conditional ML estimation scheme

with no precise knowledge of N . This proves a useful contribution from a policy perspective, as it

allowed Paarsch to construct an estimate of the optimal reserve price in timber auctions conducted

by the Canadian government. He concluded that historical reserve prices have been lower than

optimal and, interestingly, the Canadian government has since nearly doubled its reserve prices for

timber.8

Like Paarsch’s work, much of the research addressing the number of potential bidders is con-

cerned with second-price auctions or, perhaps, more appropriately, electronic auctions.9 Specifi-

cally, electronic auctions like eBay and Yahoo! involve bidders vying for an object from their own

computer. It’s difficult to gauge how many potential bidders there might be, but this is important

in characterizing the underlying valuation distribution despite the weakly dominant bidding strat-

egy of bidding one’s valuation. The issue arises because econometricians often only observe (or

can only trust) two bids in such settings. Moreover, these bids have important meanings: they are

(often) the second- and third-highest bids. Thus, pooling these bids across auctions and estimating

the latent valuation distribution from them is not possible because they constitute order statistics

from a distribution in which the number of draws might be changing across auctions.

Song (2004a) was the first to recognize formally and address these concerns. Specifically, she

modeled an electronic auction as a second-price auction in a symmetric IPV framework. She showed

that the bidders’ valuation distribution is identified nonparametrically if the researcher observes

any two valuations and knows their rank ordering, relative to the highest bid (for example, the

researcher sees two bids and knows they represent the second- and third-highest valuations). The

key to her identification argument is a lemma in which she showed the distribution of two order

statistics, from an iid sample, uniquely determines the parent distribution—even if the size of each

sample is unknown and varies across observations. Intuitively, since Athey and Haile (2002) showed

the distribution of one order statistic from a sample of known size identifies the parent distribution,

observing a second draw allows one to characterize a truncated distribution by conditioning on the

8See page 77 of Paarsch and Hong (2006).
9Hickman, Hubbard, and Paarsch (2011) provide an econometric analysis of the commonly-adopted modeling

assumption that electronic auctions are second-price auctions. Specifically, they found that the assumption can lead
to significantly different parameter estimates but that the policy prescriptions stemming from the assumptions lead
to negligible economic differences. Moreover, they showed electronic auctions are nonparametrically identified and
suggested a simple modification involving a correction term to account for the presence of minimum bid increments.
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lower of the draws from a sample of known size (two).

Specifically, Song (2004a) studied an equilibrium in which the two bidders with the highest

valuations always bid their valuation. She proposed a formal test and an estimation strategy of

when the bidder with the third-highest valuation actually bids her valuation based on how late in

the auction the first- or second-highest valuation bidders outbid her. In estimation, Song proposed

using a seminonparametric approach in which the valuation density is assumed to be a series of

Hermite polynomials, the coefficients of which are estimated via ML estimation. She illustrated

her method using Monte Carlo experiments as well as a sample of auctions for university yearbooks

on eBay, for which she estimated the consumer surplus bidders obtained at the auctions. Sailer

(2006) extended the approach of Song to an asymmetric second-price setting but required that

the researcher observe bidder identities as well. Her key observation was that focusing on the

distribution of the second-order statistic conditional on the third-order statistic not only makes

the object of interest independent of the number of potential bidders, but also the distribution

functions from which these rival bidders draw valuations.

In first-price models, Song (2004b) extended her ascending-auction work to a symmetric first-

price setting in which the econometrician observes the first- and second-highest bids which can

be leveraged to identify the valuation distribution as well as the distribution of the number of

potential bidders. Her estimation methodology follows the two-step approach of GPV in which

she modifies the first step to account for the fact that she observes just the maximum of each the

rival bids since she observes the two highest bids at auction. While Song (2004b) assumed that

bidders do not observe the number of active bidders, more recently, An, Hu, and Shum (2010)

considered a first-price model in which bidders observe the number of potential bidders N , but

the econometrician does not. The authors considered a misclassification approach to identify and

estimate nonparametrically the model under this assumption. Allowing the number of potential

bidders to vary across auctions implies that observed bids are drawn from a mixture distribution

with unknown weights. As such, the authors leveraged deconvolution methods (like Krasnokutskaya

(2011) did in a different context) developed in the econometric literature on measurement error.

Their contribution can also be thought of as modifying the first step of the two-step nonparamet-

ric estimation procedures. Specifically, the first step requires estimating a conditional density as

observed bids are essentially truncated because of the presence of a reservation price. To do so, An

et al. required two auxiliary variables: a mismeasured variable for the number of potential bidders

for which the authors used the number of actual bidders and an instrument which they took to be

a discretized second bid from each auction. These provided the authors with a matrix equation

which is an eigenvalue-eigenvector decomposition of a matrix representing something observed in

the data. The authors presented Monte Carlo evidence that accounting for the unknown number of

potential bidders is important and that their method works well. They then applied their estimator

to procurement data from New Jersey and showed that accounting for the unobserved number of

potential bidders leads to differences in bidders’ informational rents.

A direct way to obtain differences in the number of observed bidders and the the number of
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potential bidders is to model explicitly the bidders’ decision to participate in an auction. In the

next subsection, we consider research that deals with endogenous entry.

7.4 Endogenous Entry

Most researchers consider models in which the number of bidders is given or fixed. However,

if entry is endogenous then the number of active bidders is stochastic. Furthermore, in the pres-

ence of reservation prices a truncation problem arises: bids are only observed from players whose

valuations are at least as high as the reserve price at auction. As such, the number of actual

bidders is endogenous and the number of potential bidders is unobservable. This poses as problem

as consistency may no longer hold for standard models as the equilibrium bid functions depend on

this unobserved quantity. Moreover, the entry problem is likely to be quite common: Li and Zheng

(2009) reported that only 28.05% of the bidders requesting official project proposals (which can be

thought of as the set of potential bidders) actually submitted bids.

Li (2005) studied estimation and identification in a IPV model in which bidders must incur an

entry cost in order to observe a private valuation (thus becoming a potential bidder), and then, in

the second stage pf the game, they bid optimally at a first-price, sealed-bid auction by following

a symmetric Bayes–Nash equilibrium strategy. The second stage involves auctions with known

reservation prices and so, even after incurring and initial cost, some bidders may not submit bids. Li

developed moment conditions concerning the observed bids and the number of actual bidders which

take into account the effects of entry and the binding reservation prices. He proposed a method-of-

simulated-moments approach in the spirit of the simulated NLS approach of Laffont et al. (1995),

as opposed to a generalized MOM estimator which would require computing the equilibrium bid

function for each trial parameter vector. However, Li’s method-of-simulated-moments approach

has advantages over that of Laffont et al. (1995), as the number of bidders can vary across auctions

and it does not require a bias correction to be consistent for a fixed number of simulations. In

addition to providing a way to estimate simultaneously the structural parameters in both the

bidding and entry processes, Li provided formal tests of binding reservation prices, of validity of

the structural approach (the theoretical model), and of mixed-strategies of entry (as he assumed

that after incurring a cost each bidder entered the auction with some probability). Li did not

consider an empirical application but used Monte Carlo experiments to show the importance of

taking into account the entry process in estimation.

Li and Zheng (2009) used data on highway procurement contracts (mowing services) from the

Texas Department of Transportation to estimate three models of endogenous entry. The authors,

like Li (2005), considered a symmetric IPV framework but expanded the set of entry models to

include: (i) a mixed-strategy entry model in which bidders first decide whether to incur a common

cost in order to acquire a signal and submit a bid; (ii) a pure-strategy entry model in which bidders

first decide whether to incur a bidder-specific entry cost, drawn from a common distribution of

entry costs, in order to acquire a signal and submit a bid; (iii) a pure-strategy entry model in which

bidders learn their signal before deciding whether to enter the auction. While the models differ in
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their assumptions concerning the timing and informational structure of the entry game, all of them

yield some simple comparative static predictions. For example, in all models, as the number of

potential bidders increases, all else equal, equilibrium bids are more aggressive (the “competition

effect”), but the probability of entering the auction decreases and, since for a fixed number of

potential bidders this implies less actual bidders in expectation, an “entry effect” predicts the

opposite sign. As a result, the relationship between the equilibrium bids (or the expected winning

bid) and the number of potential bidders may be positive or negative (in all models) depending

on the size of these effects. To estimate the models structurally the authors proposed using recent

semiparametric Bayesian methods to recover the entry cost distribution as well as the bidders’ cost

distribution (parametrically) and the distribution of unobserved heterogeneity (nonparametrically).

Specifically, the authors leveraged data augmentation and Markov chain Monte Carlo methods to

develop an estimation algorithm and then used mean-squared errors of the predictions to select

the model that best fits the data. The authors found the first model, accounting for unobserved

heterogeneity, fit the data best and used the structural estimates to conduct counterfactual analysis

by quantifying the effects of changing the number of potential bidders on the individual bid as well

as on the procurement cost. The authors found the positive entry effect dominated the negative

competition effect and, as such, policies which encourage more potential bidders might actually

increase costs for the government! An implication of their findings is that policies that reduce

entry costs will save the government money whereas policies that increase the number of potential

bidders might actually cause procurement expenses to increase.

Given the opposing competition and entry effects, it suggests there may be an optimal number

of potential bidders. Zheng (2009) investigated the empirical importance of missing this optimal

target using a sample of Michigan Department of Natural Resources timber auctions. Specifically,

he estimated the structural parameters of the entry model selected by Li and Zheng (2009), although

he favored the model without unobserved heterogeneity in his application, using an iterative multi-

step ML estimation procedure. Specifically, the first step involves a likelihood function based only

on the number of actual bidders, the second step recovers private values, and the third step considers

the likelihood of a truncated density. Zheng then used his parameter estimates to calculate the

optimal number of potential bidders at each auction he observed in his timber auction data. He

simulated auction outcomes under the optimal policies to compute the increase in the winning

bid as well as social welfare—defined as the sum of the seller’s expected revenue and the bidders’

expected profits—finding the loss due to market thickness (too many potential bidders) to be on

the order of 3% of the median winning bid he observed.

Li and Zheng (forthcoming) considered a unified Bayesian approach in which the two canonical

entry models could be estimated and distinguished. Specifically, a key distinction between models

of endogenous entry is whether signals are learned before (in which case entry costs might be

interpreted as bid preparation costs) or after (in which case the entry costs would constitute both

signal acquisition and bid preparation costs) the decision to enter the auction is made. Like Li and

Zheng (2009), the authors used Bayesian methods in estimation. One contribution of this work
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is that they used (log) Bayes factor to compare different models’ fits using the same data. The

Bayes factor can be thought of as the posterior odds in favor of one model over another, given

both are equally probable a priori; or, alternatively, it can be viewed as the relative success of

two models at predicting the observed data. They applied their approach to Michigan Department

of Natural Resources timber data and selected the model in which signals are learned before the

decision to enter the auction is made (they found “very strong” evidence against the model in

which signals are learned after the entry decision). They used this model to quantify the entry

and competition effects, to estimate the optimal reserve price, and to measure gains if an optimal

policy were used. Interestingly, here they found the competition effect dominates the entry effect

suggesting the auctioneer should encourage potential bidders.

Krasnokutskaya and Seim (forthcoming) considered an empirical study of bid preference policies

used under the California Small Business Bidding Preference Policy to estimate a model of bidding

and endogenous entry as well as to consider alternative policy designs. The authors argued, and

found, that programs which treat bids asymmetrically for evaluation purposes can induce effects

on firms’ incentives to participate in an auction. As such, any evaluation of bid preference pro-

grams that treat participation as fixed can yield misleading results. The authors considered an

entry model in which potential bidders do not observe cost (or valuation) realizations at the time

in which they decide whether or not to enter the auction. In estimation, the authors accounted for

unobserved heterogeneity by using the approach of Krasnokutskaya (2011) and parameterized the

distributions of the bidder-specific bid component and the distribution of the unobserved hetero-

geneity (both of which were assumed to be log-normal) as well as the distribution of entry costs

(which was assumed follow a left-truncated normal distribution). The authors used a first-step

simulated generalized MOM estimation approach and adopted the nonparametric second-step of

GPV in considering highway and street maintenance projects let by the California Department of

Transportation. Krasnokutskaya and Seim found that the current bid preference program generates

only small increases in procurement costs but does not achieve the state’s allocation goal concerning

the dollar-share of contracts awarded to small businesses (a higher preference rate is required and

raises costs of procurement by 1.4 percent relative to no intervention).

Li and Zhang (2010a) considered estimation of an asymmetric first-price model with endogenous

entry in the APV paradigm. The authors extend the approach of Hubbard et al. (forthcoming) by

employing a copula-based approach but estimation is complicated by the presence of asymmetric

bidders as well as endogenous entry. To accommodate these features the authors resorted to a

fully parametric approach by assuming the marginal distributions of private values to be truncated

exponential distributions and the distributions of entry costs to be (untruncated) exponential dis-

tributions, each of which are linked by a Clayton copula to construct the joint valuation and entry

cost distributions which have different dependence parameters. The authors estimated their model

via indirect inference. Specifically, the optimal parameters were found by generating data from their

model for a given parameter choice and minimizing the distance between parameters of an auxil-

iary model using the original and simulated data. Of course, simulating data from an asymmetric
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model is complicated by the fact that the inverse-bid functions cannot be computed analytically

and require numerical methods. Li and Zhang’s auxiliary model included two regressions: a linear

model concerning the average bids and a Poisson model concerning the number of actual bidders,

both of which used the same set of auction-specific covariates. The authors estimated their model

using timber sale auctions conducted by the Oregon Department of Forestry and found small, but

significant, dependence in the private signals but much higher dependence in the distribution of

entry costs. They conducted counterfactual analyses to consider the effects of different reservation

prices and dependence levels as well as the effects of merger activity among the bidders.

Athey, Levin, and Seira (2011) recently provided a nice case study which links many of the

issues and methods we’ve discussed in our survey, which are often studied in isolation. The authors

observed differences in expected revenues and participation across English auctions and first-price,

sealed-bid auctions at U.S. Forest Service auctions for timber near the Idaho-Montana border,

and in California. They constructed a private values model in which bidders incur information

acquisition costs (bidders must pay a random entry fee in order to observe their private value)

and draw valuations from asymmetric distributions to reconcile the differences as, in a symmetric

IPV model, theory predicts that auction format has no effect on entry or revenue. However, when

bidders are asymmetric the open, ascending auction format discourages entry by “weak” bidders, as

competitors with the highest value always win.10 In contrast, first-price auctions provide “strong”

bidders with incentive to shade bids when competing against weak bidders, and the possibility of

inefficient outcomes encourage entry by weak bidders, as it shifts allocations in their favor; see

Maskin and Riley (2000a). The asymmetry assumption is attractive as there are likely two types of

bidders at these auctions: loggers (small firms with low capacity) and mills (larger firms with high

capacity). Lastly, the authors also allowed bidders to cooperate in the English auctions—a setting

where collusion is of concern given participants can witness and react to their partners’ actions.

Athey et al. constructed a structural econometric model of first-price auctions within the IPV

paradigm with asymmetric, risk-neutral firms to achieve three goals: (i) to see whether the esti-

mated model predicts expected revenues that are different across auction formats; (ii) to measure

how competitively bidders behave in the open auctions; (iii) to investigate welfare implications

under the different auction formats. The authors used a parametric version of GPV to recover the

distributions of bidder valuations and followed Krasnokutskaya (2011) to account for unobserved

heterogeneity in the sale characteristics. Specifically, the authors abandon the nonparametric ap-

proach of the first stage in favor of a Gamma–Weibull specification of bids and unobserved het-

erogeneity. Note that, to apply the GPV estimator, one can specify either the bid distribution

and estimate the valuation distribution nonparametrically or specify the valuation distribution and

estimate the bid distribution nonparametrically. However, a researcher cannot make parametric

assumptions at both stages or an internal inconsistency will obtain in the bidding strategies. The

second stage was also complicated by the fact that the distributions of valuations depend on un-

10The authors assumed that there are two types of bidders, “weak” and “strong.” The former are so named
because the distribution of their private values is assumed to be stochastically dominated by that of the latter. This
is standard language used by auction theorists.
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observed heterogeneity. By averaging over realizations of unobserved characteristics, the authors

estimated the typical markup for weak and strong bidders. In their model, the distribution of

logger entry is binomial and the authors estimated the probability of entry by ML using observed

logger entry patterns and a multinomial logit model. An attractive feature of their data is the

variation in auction format, which is what allows the authors to asses the competitiveness of the

English auctions by using out-of-sample predictions based off the first-price estimates which are

compared with the actual outcomes. They found that asymmetries alone led to little differences in

the properties of the different auction formats, but that when endogenous entry was accounted for,

the first-price format favored the loggers (small bidders).

7.5 Auction Dynamics

In this section we briefly discuss models of repeated bidding where time dynamics play a promi-

nent role. These models are best thought of as special cases of the recent literature on estimation

of dynamic games, but where estimation of an auction model is of primary interest. The papers

we discuss in this section are distinct from auctions for multiple objects in that there is typically

a state variable—e.g., production capacity in procurement settings—that imposes constraints on

bidding in later rounds.

Jofre-Bonet and Pesendorfer (2003) estimated a model of infinitely repeated (i.e., sequential),

first-price procurement auctions with bidder capacity constraints to capture the essential features

of highway construction procurement. They constructed a dynamic model to account for the effects

of previously won but not completed projects. These have a two-fold effect. On the one hand, they

may occupy some capital resources (e.g., machinery) so costs increase. On the other hand, these

contracts increase firms’ experience in highway construction, thus leading to a reduction in costs.

As a result, they may lead to some inefficiencies. To investigate which effect would dominate, they

set up a first-price procurement auction model, where bidders are asymmetric during periods in

which they stay in the game. Regular bidders stay forever, while fringe bidders enter the game for

one period and then exit. They adopted numerical methods to approximate the value function of

a firm, and for estimation they proposed a two-stage estimator that builds off of ideas developed

in Elyakime, Laffont, Loisel, and Vuong (1994) and GPV. In the first stage they computed the

bidding function conditional on the state variables, and in the second stage they computed both

the expected sum of future profits conditional on the distribution of bids as well as the costs using

the first-order condition from the dynamic model. They concluded that the first effect explained

above dominates the second effect, thus leading to an increase in firms’ costs.

Ji and Li (2008a) exploited a multi-round feature of procurement auctions conducted by the

Indiana Department of Transportation. Specifically, if a contract is not awarded (perhaps because

all bids exceed a price ceiling in a low-price setting) the government may re-auction the contract in

additional rounds. The authors constructed a dynamic multi-round model in which bidders account

for the possibility of the contract being reauctioned when setting their bids in a given round. The

auctioneer sets a secret reserve price which bidders learn about through bidding rounds—they know,
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for example, that if the contract goes unawarded the reserve price is below the lowest submitted bid.

As such, bidding gets more aggressive over time. They estimated their model under the assumption

that bidders act myopically which allows the dynamic model to be treated like a static model.

Their structural model includes three primitives to be estimated: a distribution characterizing the

government’s reserve price as well as two private cost distributions, one for each of the two rounds

they observe in their data. While these distributions are identified nonparametrically under their

assumption that bidders are not forward looking, the authors opted for a parametric approach since

they did not observe many second-round auctions.

Ji and Li considered estimation in two stages. First, they used a simulated ML approach to

recover the parameter characterizing the government’s reserve price distribution and a parameter

corresponding to unobserved heterogeneity which they accounted for in their application. The un-

observed heterogeneity prevents a closed-form likelihood function which the authors dealt with by

using importance sampling in numerical integration. In the second step, they estimated the first-

and second-round cost distributions using moment conditions, here using a method of simulated

moments to deal with unobserved heterogeneity. The authors fail to reject the hypothesis that cost

draws come from different distributions. They also investigated whether it was best to hide or an-

nounce the reserve price, finding that it depends on the specification of the latent cost distribution.

In their data they found that keeping the reserve price secret could allow cost savings relative to

the case where it is disclosed.

7.6 Testing Informational Paradigms

A critical modeling choice that the structural researcher must make concerns the information

paradigm. A key distinction on which the literature has concentrated is that between common

versus private values. Does a bidder’s private information correspond to her idiosyncratic preference

for the good, or is it a signal of an unknown value, which could be refined if she had access to her

rivals’ private information? These distinctions have a profound impact on counterfactual results

and policy prescriptions. Even more generally, as evident from our discussion in this survey, nearly

all structural econometric work has taken place within the general AV model. As such, researchers

may wish to provide evidence that implications of an AV model are consistent with their data. In

this subsection, we first discuss testing between common and private values and then we discuss

recent work that has considered testing for affiliation.

7.6.1 Testing Common versus Private Values

Three noteworthy papers employ parametric methods to distinguish between common- and

private-values paradigms. To our knowledge, Paarsch (1992) was the earliest attempt. Recall

from the above discussion that Paarsch derived the data generating process under several different

specifications of the latent variables for both the IPV and PCV models. This derivation included

the distribution over winning bids as well as expressions for the raw population moments of winning

bids. Two alternative estimation methods are implemented: a ML estimator, using the density of
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winning bids to construct the likelihood function; and a NLS estimator, using an expression for the

rth raw moments given by W r = Rr(p) + e. The testing procedure which Paarsch (1992) proposed

first estimates the IPV and PCV models using both methods and then seeks to rule out cases

according to different criteria. Within a particular paradigm, a Hausman (1978) type test may

be used to evaluate whether the ML and NLS estimates are close to one another. Alternatively,

a White (1982) test may be applied to the ML parameter estimate(s). If neither CV nor PV are

rejected by these tests, then the non-nested hypothesis testing methods of Cox (1961, 1962) can be

applied to decide between IPV and PCV. Alternatively, the methods of MacKinnon, White, and

Davidson (1983) may be used to overcome the heteroskedasticity and non-normality of the NLS

errors.

As discussed in the Section 6 on the CIPI paradigm, Hong and Shum (2002) constructed a para-

metric empirical specification with a built-in test of PCV versus IPV. Recall that Hong and Shum

(see section 6 of this survey) assumed that firm costs have both idiosyncratic and private compo-

nents and that they adopted Wilson (1998) log-additive specification of firm costs for tractability.

Thus, costs are given by Ci = AiV . Furthermore, recall that firms do not directly observe their

costs, but a noisy signal of costs Si = Ciei, where ei is a positive error term. Ai, V and Si are

assumed to be log-normal, so that

logSi = log ci + εei ∼ N(log ci, σ
2
e),

log V = m+ εv ∼ N(m,σ2v),

logAi = a+ εai ∼ N(a, σ2a).

Hence, log private signals can be decomposed as

logSi = (m+ a) + εv + εai + εei

and the parameters σ2v , σ
2
a and σ2e serve the double role of characterizing the joint distribution

of signals (and hence driving bidder behavior), and parameterizing the relative importances of,

respectively, common-values components, private-values components, and affiliation in the infor-

mation structure. It is this latter role that is relevant to model testing. Once the variances of the

three types of errors are recovered from their proposed quantile estimation method (see Section 6

above), their standard errors may also be calculated, after which standard t-tests then reveal the

significance of common-value components, private-value components and affiliation in the informa-

tion structure. Thus, an appealing characteristic of their model is that it has a built-in method

of testing between the polar extremes of PCV and IPV, while allowing for elements of both to be

present simultaneously.

Bajari and Hortaçsu (2003) studied eBay auctions, which they argued correspond to the English

auction format. They were motivated by features of the sale objects in their data—rare collectible

coins with unknown future resale value—to assume a CV information structure. However, to be sure

they proposed a simple reduced-form test based on results proven by Milgrom and Weber (1982),
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who pointed out that in English auctions, bids based on private values are unaffected by changes

in competition, whereas CV bids are decreasing in the number of bidders. This distinction can be

easily verified by regressing bids on the number of bidders N and performing simple hypothesis

tests on the coefficient of N .

Several other papers have attempted to test between common and private values without impos-

ing parametric assumptions. Athey and Haile (2002) proved sets of sufficient observables that will

allow for nonparametric testability of private values models against the common values alternative

(see Theorems 9, 10, 11 and 12). Another important theoretical econometric paper by Laffont and

Vuong (1996) informs the model testing endeavor by providing insights into how the AV subcases

relate to one another. As shown in their Proposition 1, if the number of potential bidders is held

constant, then any model within the symmetric AV framework is observationally equivalent to

some symmetric APV model. This means that any symmetric common values model is empirically

indistinguishable from some symmetric private values model on the basis of bids alone. Moreover,

(see Laffont and Vuong (1996, Proposition 9)), when the number of bidders is held constant, any

asymmetric CV model is also observationally equivalent to some asymmetric IPV model. These

two surprising results imply that unless the number of observed bidders varies, it is impossible to

distinguish between private values and common values models, without imposing parametric re-

strictions on the model. For this reason, tests of common versus private values that were developed

after Laffont and Vuong (1996) were mostly based on observations of varying numbers of bidders

across different auctions.

Campo et al. (2003) discovered a method for testing the appropriateness of the PCV information

structure when bidders are asymmetric. Since in a PCV model it is only bidders’ signals of value

which differ, it turns out that bidding strategies do not actually differ across bidder types. This

leads to their Proposition 2, which states that a sample of observed bids can be rationalized by

the PCV model only if their joint distribution is quasisymmetric. Quasisymmetry requires that

conditional on both observed bids being less than any arbitrary value b, the likelihood of a type j

bid being less than a type k bid must be one half; otherwise the PCV model is rejected by the data.

There currently exist no methods for performing this test over all levels of b simultaneously, but

tests at individual values of b are easily performed with standard hypothesis testing techniques.

Under assumptions of bidder symmetry, affiliation and equilibrium bidding, Haile, Hong, and

Shum (2003) develop a testing strategy for comparing hypotheses of common versus private values

without the use of parametric assumptions. This method differs from other methods in that it

doesn’t test any particular PV or CV models (e.g., Paarsch (1992); Campo et al. (2003)); but

rather, it enables testing of a null hypothesis including all PV models within the standard AV

framework against an alternative including all CV models within that framework. These tests are

developed for the case of exogenous bidder entry but they extend to settings of endogenous entry

as well. Additionally, methods are provided to incorporate covariates into the testing procedure.

The tests they developed are based on theoretical results concerning the winner’s curse. Recall

that in equilibrium within the CV paradigm, the most optimistic signal of the unknown common
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value will lead to the winning bid. Hence, winning a CV auction entails receiving the potentially

bad news that one had the most optimistic estimate of value. The magnitude of this bad news

increases with the number of bidders. As argued by Wilson (1977), a rational bidder will anticipate

this bad news, and adjust her expectation of the value of the object downward, as the number

of bidders increases.11 This is in contrast to the APV information structure where a bidder’s

expectation of the value of the object is unaffected by their rivals’ private information.

Therefore, Haile et al. proposed evaluating bidders’ expected valuations in auctions with varying

numbers of bidders. In a PV environment, these distributions should not vary with the number of

bidders, whereas the CV alternative implies a first-order stochastic dominance relation. Of course,

it is impossible to compare distributions of bidders’ expectations, conditional on N , so they relied

on nonparametric methods developed by GPV, Li et al. (2000, 2002), as well as Hendricks et al.

(2003) to compare empirical distributions of estimates of these expectations. First, under the null

hypothesis of PV, the nonparametric methods mentioned above are employed to estimate pseudo-

private values that underly each one of the bids. Second, three tests were proposed to evaluate

the null hypothesis of PV against the alternative of CV. Two are tests for first-order stochastic

dominance, one based on quantiles, and the second based on means. The final test computes a

Kolmogorov–Smirnov statistic for distributional equivalence against the alternative of strict first-

order stochastic dominance.

Pinkse and Tan (2005) pointed out an important theoretical feature of the APV paradigm

that must serve as a guide for future efforts to distinguish between private and common values

information structures in first-price auctions. Prior to their work, it was believed that in general

private values auctions, bids levels were strictly increasing in the number of potential bidders. It

turns out however, that this is true only for the special case of IPV. Pinkse and Tan discovered a

feature of general APV models which they call the affiliation effect. The affiliation effect is similar

to the winner’s curse, but is strategic in nature and has no bearing on the ex-post value of the

sale object. Roughly, bidders realize that winning the auction reveals that competition was less

fierce than a priori expected. Given the affiliation in their private information, they expect their

opponents’ values to be distributed roughly around their own. However, winning reveals that their

opponents’ values were all less, meaning that they were actually facing a set of opponents who

were less aggressive than expected. Accordingly, they shade their bids by an additional margin

in response. Moreover, just as with the winner’s curse, the affiliation effect becomes greater as

the number of bidders increases. Pinkse and Tan also showed that in first-price auctions with

conditionally independent private values (a subcase of APV), equilibrium bids can actually be

locally decreasing in the number of bidders, although at the upper bound of the support of values,

bidding will still be monotonic. Thus, since bids in private value auctions may be (pointwise) non-

monotonic in the number of bidders, empirically distinguishing APV auctions from CV auctions may

11Granted, there is an additional competitive effect as number of bidders increases, which also drive bids upward;
however the authors appealed to economic theory to separate these two effects, deriving estimates of the actual
valuations given observations on bids, for the purpose of testing whether observed bids exhibit any significant response
to the winner’s curse. The interested reader is directed to the original work for further details.
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be more difficult than previously thought. Indeed these results imply that empirical observations

of non-monotonic bidding (in N ) may only be taken as a rejection of the extreme IPV case, but

not necessarily of other APV subcases.

Sareen (1999) is, to the best of our knowledge, the only example of Bayesian techniques being

applied to the task of distinguishing private- and common-values models. Sareen’s test is based on

a comparison of posterior marginal likelihoods via the posterior odds ratio in order to see which

specification the data favor most. Roughly, the posterior marginal likelihood under a given model

indicates the degree of updating produced between specification of the prior distribution over model

parameters and calculation of the posterior distribution after the data have been observed. The

posterior odds ratio between two models is the ratio of their posterior marginal likelihoods. If equal

prior probability is assumed for two models, M and M ′, but M has a significantly higher posterior

marginal likelihood than M ′—in other words, if the posterior odds ratio of M to M ′ is significantly

greater than one—then the interpretation is that the learning from data that has taken place under

M was greater. Hence it can be said that the data favor model M over M ′ or that M was more

informative as to the actual data generating process.

Sareen (1999) argued that there are distinct advantages to using the posterior odds ratio as

a means of testing between pure common and independent private values. First, estimation and

inference in many frequentist parametric auctions models is complicated by the fact that the support

of the underlying distribution often depends on the model parameters, whereas a posterior odds

ratio approach circumvents this problem. Second, a comparison of the polar extreme cases of PCV

and IPV via the posterior odds ratio can potentially tell us something about their parent model, the

general AV paradigm. If the posterior odds ratio is close to one, meaning that the data produces

comparable learning in both models, then the researcher may conclude that elements of both are

present in the actual data generating process, hence the appropriate structural model is affiliated

values. If the posterior odds ratio or its reciprocal are close to zero, then the data reject the parent

model in favor of one of the two polar cases. The one drawback to this method is that there is

no well-defined criterion for establishing a threshold between significant differences between the

posterior odds ratio and the benchmark values of one and zero.

7.6.2 Testing for Affiliated Values

A primary reason that so much attention has been given to the APV paradigm is because

Milgrom and Weber (1982) showed that a unique equilibrium exists when the dependence between

signals satisfies affiliation. Recently, de Castro (2010) demonstrated that weaker conditions are suf-

ficient to guarantee existence and uniqueness of a monotone pure strategy equilibrium—specifically,

such results are guaranteed as long as the inverse hazard rate is decreasing. Given most researchers

impose affiliation, a natural question once weaker conditions can be used to guarantee uniqueness

is whether the predictions of models with affiliation actually hold; for example, under affiliation the

linkage principle provides a clear ranking of auction formats based on expected revenue which need

not hold if affiliation in not satisfied. Such observations motivated de Castro and Paarsch (2010)
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who proposed testing for affiliation using grid distributions—a discretized version of a joint prob-

ability density function. Specifically, the authors allowed for an asymmetric private values model

of a first-price auction, but considered in estimation bidders drawing valuations from the same

marginal distribution due to data limitations. In estimation, they partitioned an unit hypercube

[0, 1]N into Y cells, normalized the observed bids to be between zero and one, and counted the

number of N -tuples that were observed in each cell. These quantities (counts) follow a multinomial

distribution, the parameters of which can be estimated by standard methods. Thus, de Castro

and Paarsch estimated the multinomial probabilities via ML under two scenarios: first, an uncon-

strained (standard) multinomial likelihood function and, second, a constrained likelihood function

subject to constraints that the probabilities (parameters) satisfy affiliation. Their approach allowed

the authors to use a likelihood ratio test to determine if affiliation was rejected for a given data

sample. The authors considered the Michigan Department of Transportation data used by Hubbard

et al. (forthcoming) and failed to reject a hypothesis of affiliation.

Jun, Pinkse, and Wan (2010) developed a test for affiliation which does not require the researcher

to take a stance on the joint distribution of valuations, and is thus nonparametric. Moreover, the

authors test is based off a mapping between the definition of affiliation and empirical distribution

functions which do not require a bandwidth choice (as in kernel density estimation). However,

the authors do advocate introducing an input parameter based on the sample size to obtain an

asymptotically standard normal null distribution, which helps make inference easy. The input

parameter essentially restricts an integral over weighted differences of products of indicator func-

tions. Its choice involves a trade-off between optimal power of the test statistic, which suggests

low values but involves lots of truncation, and a distorted size of the test for small values. The

authors suggested choosing the input parameter so as to truncate ten percent of the observations in

expectation; for this choice, the rejection frequency would be about 0.06 for a test of size 0.05. Jun

et al. investigated the choice of the input parameter and performance of the test in various Monte

Carlo studies to better understand the behavior of their test statistic under the null hypothesis and

the power of the test. Their experiments support their heuristic method for choosing the input

parameter and the authors applied their test to a sample of OCS auctions, in which they found

that bids were affiliated and that bids are affiliated with the number of bidders (both the actual

and potential number of bidders).

While only one application was published in Jun et al. (2010), the authors considered three

applications in a working version of their paper with the same title and failed to reject the hypothesis

of affiliation between bids and the number of bidders in each case. The authors concluded that,

“by far the most likely explanation for our results is that the number of bidders is endogenous.” Li

and Zhang (2010b) investigated affiliation within specific entry models and found that affiliation in

the joint distribution of valuations or the joint distribution of entry costs leads to affiliation among

potential bidders’ entry decisions. They leveraged this implication to construct a test for affiliation

(as well as asymmetry among potential bidders) based on a simulated ML estimation procedure

of a multivariate probit model. Their test is based on entry behavior and does not use bidding
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information like most of the structural work we have discussed. Li and Zhang studied two entry

models, one in which potential bidders draw private signals after an entry decision is made and

one in which bidders draw private signals before deciding whether to enter the auction. Rather

than test for the appropriate entry model, the authors note that both involve threshold rules: in

the former model the entry cost of a bidder must be sufficiently low while in the latter the private

signal must be sufficiently high. Affiliation in the entry costs or valuations make thresholds more

stringent and lead to affiliation in the entry decisions. The authors then proposed reduced-form

estimation of a binary latent variable model to explain the entry decision of a bidder in a given

auction (after controlling for auction-specific and bidder-specific covariates as well as unobserved

auction heterogeneity). Specifically, they assume the idiosyncratic errors follow a join normal

distribution with zero mean but might have some positive correlation. Their hypothesis test is to

see if this correlation is nonnegative (against a negative correlation alternative). To avoid multiple

integrals which are computationally intensive they estimate the appropriate likelihood function via

a simulated ML approach. The authors apply their test to a set of first-price, sealed-bid timber

auctions conducted by the Oregon Department of Forestry and find that bidders are both affiliated

and asymmetric.

7.7 Auctions for Multiple Objects

Up to this point, all of our discussion has focused on econometric methods developed for auctions

of a single, indivisible good. We now conclude our survey by covering another important class of

models which has received increasing attention in recent years by practitioners and researchers alike:

auctions for multiple objects. We begin this section by introducing some key distinctions between

auctions for multiple objects and their single-object cousins. This class of auctions is divided

into two main categories: the simplest is called multi-unit auctions, or settings where multiple

units of identical goods are sold; and the other is multi-object auctions, or settings where multiple

distinct objects sold. The main difference between the two categories is that in the former, any

set of objects is entirely characterized by it’s cardinality, whereas in the latter, two sets containing

the same number of goods may be valued differently to a given bidder. Therefore, in multi-unit

auctions there is a well-defined ordering (common to all bidders) over all subsets of goods, whereas

the same is not true, in general, for multi-object auctions (note also that the former is a special

case of the latter). This distinction between the two settings also implies certain differences in

the corresponding information structures. In the multi-unit setting where L units are sold, private

information held by bidder i is usually modeled as a set of signals (Si1, Si2, . . . , SiL) of the marginal

valuations of each unit consumed, or in other words, bidder i values a single unit at Si1, a bundle

of two units at Si1 + Si2, and so forth. In the multi-object setting where L objects are sold, in

order to allow for complementarity or substitutability of goods, bidder i’s private information can

be as complex as a complete set of signals Sil, l = 1, 2, . . . , 2L, one each pertaining to the individual

value of all 2L possible bundles (subsets) of objects. In different situations, however, it may be

appropriate to reduce this complexity by restricting the information structure in some way. In
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either case, one can easily imagine analogs to the information structures outlined in Section 2,

which would determine whether private signals are correlated across bidders, and whether those

signals represent idiosyncratic valuations of goods, or signals of common, but unknown valuations.

Concerning pricing rules, for multi-unit settings where items are simultaneously auctioned, bids

come in the form of a demand schedule p(y), which indicates the price at which a bidder would

be willing to buy y units. The two main pricing mechanisms that are employed in practice are

the discriminatory auction and the uniform-price auction. Both mechanisms start by aggregating

all bids into a single market demand curve. The former then awards the yth unit to the bidder

whose individual demand was highest for that unit, (i.e., pi(y) ≥ pj(y), ∀j 6= i), and sets a price

according to that bidder’s demand schedule. In that sense, the discriminatory format is the multi-

unit analog of the first-price auction. The uniform-price auction sets a single price p∗ according

to the intersection of the market demand curve and the (fixed) supply line, making it the multi-

unit analog to the second-price auction. A final possibility is that the auctioneer may sequentially

auction each unit off, one at a time, using any of the four canonical one-shot formats mentioned in

the introduction. As for more general multi-object settings, pricing rules get a bit more complex

and will be discussed below.

Before moving on, it is worth mentioning a few things about identification and estimation in

multi-object settings. There are several reasons why these tasks become more challenging than in

the single-object case. First of all, bidding strategies and private information are high-dimensional

objects, and therefore more complex. In multi-unit auctions with L goods for sale, bidders’ pri-

vate information and strategies are usually L-dimensional, and in multi-object auctions, they can

be up to 2L-dimensional. Secondly, and as a result of this complexity, relatively little is known

theoretically about equilibrium characterization, aside from existence. Often the first-order con-

ditions of a bidder’s decision problem are only necessary for optimality, unlike in the single-unit

first-price auction, where they can be shown to be sufficient as well. This can often lead to various

multi-object models being non-identified. Coping techniques for partial identification based on the

first-order conditions (e.g., Cantillon and Pesendorfer (2007)), or more basic optimality conditions

(e.g., Hortaçsu and McAdams (2010)) are discussed below.

A final practical challenge in auctions for multiple objects has to do with statistical and compu-

tational complexity, which arises both during estimation, as well as in computation of counterfactual

experiments. Due to the high dimensionality of the observables, nonparametric kernel-smoothing

techniques are less applicable for tasks like estimating distributions of bids and signals, as before.

Kernel smoothing techniques, while flexible, suffer the curse of dimensionality: their statistical

convergence rate slows rapidly (see Silverman (1986) for details) and the associated computational

cost grows exponentially with the dimension of the distribution to be estimated. In practice, it is

extremely rare for researchers to attempt kernel smoothing on any joint distribution of dimension

three or higher.

Because of this difficulty, researchers have often chosen to employ a modified version of the GPV

method, where costs are inferred from bids using some form of a necessary optimality condition,
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after which counterfactual exercises are based directly on the sample of estimated costs, rather

than on their underlying distribution (e.g., see Hortaçsu and McAdams (2010) and Cantillon and

Pesendorfer (2007)). Coping techniques for computing counterfactuals have also been developed,

but as these are highly context-specific. Suffice it to say that significant progress has been made in

auctions for multiple objects, but much work yet remains for future research. The various difficulties

described above lead to tradeoffs of one form or another between model flexibility and tractability;

these tradeoffs will be a central focus of the discussion in this section.

7.7.1 Sequential Multi-Unit Auctions

Donald, Paarsch, and Robert (2006) were among the first to analyze data on multi-unit auctions.

They studied a setting in which L units of a homogeneous good are auctioned off sequentially, with

each individual unit priced identically as a one-shot English auction. Bidders are assumed to

have private, multi-unit demands, and private information for player i exists in the form of non-

increasing marginal valuations Si1 ≥ Si2 ≥ · · · ≥ SiL. Despite the seemingly simple rules of this

game, strategies available to players are quite complex because of the multi-unit nature of demand.

For example, in a simple setting with two bidders and two units, bidder 1’s decision of how to

compete for the first unit balances several contingencies against one another. On the one hand,

she could bid aggressively for the first unit, and have a chance to win both; on the other hand,

she could choose not to compete for the first unit, meaning she would only have player 2’s second

valuation S22 ≤ S21 to compete with in the second round, possibly creating high surplus for that

unit. One can easily imagine how strategies become even more complex in the general case with

N bidders and L units for sale.

Donald et al. solved this problem of intractability by showing that if bidders’ valuations are

symmetrically distributed in each round of the auction, then a simple, symmetric Bayes–Nash

equilibrium can be characterized. Moreover, they derived a sufficient condition for symmetry

to hold in each stage; namely, if the number of units valued by bidder i, call it Mi is Poisson

distributed, and all valuations are independent and identically distributed, or Simi ∼ FS(S), ∀mi =

1, . . . ,Mi and i = 1, . . . ,N . As it turns out, this condition is empirically testable, as it implies

that prices follow a submartingale process. However, estimation of the characterized equilibrium

is still impeded by it’s computational intractability.12 For this reason, Donald et al. proposed

an empirical strategy similar to the simulation-based estimator of Laffont et al. (1995). Briefly,

the stage-wise symmetry assumption also implies that the allocation mechanism is efficient, from

which a multi-unit analog of the REP follows. To wit, under the above demand generation process,

the sequential auction renders the same expected revenue to the seller as the generalized Vickrey

auction, for which equilibrium strategies are trivial to compute: bidders truthfully report their

marginal demand schedule (Si1, . . . , SiL).13 Therefore, by specifying a parametric form for the

12See Donald et al. (2006, Section 3) for a full characterization of the equilibrium.
13The generalized Vickrey auction solicits sealed bids from bidders and then awards the L objects to the bidders

who submitted the L highest bids. As for pricing, a bidder who wins li units pays the li highest losing bids, not
including any losing bids player i may have submitted herself.
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private value distribution, FS(s;θ), one can repeatedly simulate sale prices arising from equilibrium

bidding in a generalized Vickrey auction, to calculate the expected prices that would arise in the

sequential English format. In contrast to Laffont et al. (1995), Donald et al. incorporated these

simulated prices into an empirical optimization routine based on the generalized method of moments

(GMM), which seeks to choose values of θ and the Poisson parameter to equate model-generated

price moments with their empirical counterparts. They applied their structural estimator to data

on multi-unit, sequential, English auctions of export permits for Russian timber.

Brendstrup (2007) re-examined the private-value, multi-unit, sequential, English auction set-

ting, exploring alternative methods that may be employed when the stage-wise symmetry assump-

tion of Donald et al. (2006) is inappropriate. Specifically, he attempted to identify and estimate a

similar model as described above, but without the assumption that the number of units demanded

by each bidder is Poisson distributed. Rather, all bidders simply draw L independent and identi-

cally distributed signals from the private value distribution FS(S), and for each bidder the ordered

signals constitute the marginal valuation schedule. The main innovation in this paper stems from

the observation that, despite the strategic complexity arising in early stages of the auction, the

final one is equivalent to a simple one-shot English auction, where bidders simply drop out once

the price reaches the value of their highest remaining marginal value. Thus, Brendstrup used only

data on price information in the final stage, and allocations from previous stages.

The main difficulty to overcome is that, even if bidders’ marginal valuations are symmetrically

distributed before bidding begins, those that remain in the final stage will be asymmetrically dis-

tributed, as they correspond to potentially different order statistics. Brendstrup’s assumption that

marginal valuations are given by an ordered random sample (along with an additional assumption

pointed out by Lamy (2011) and discussed below) allowed for nonparametric identification of the

model using results developed by Balakrishnan and Rao (1998) concerning distributions of order

statistics from an independent but non-identically distributed sample. Even more remarkable (and

once again taking into account additional concerns pointed out by Lamy (2011)) is the fact that

model identification is possible even when bidders are ex-ante asymmetric, as when each valuation

schedule is generated by an idiosyncratic distribution FSi(S). In other words, it is possible to

empirically disentangle fundamental asymmetry from that arising randomly as part of equilibrium

play. These identification results set up a standard estimation strategy from second-price auctions

in which the econometrician maps the distribution of last-stage prices into the latent valuation

distribution nonparametrically, using the fact that the former can be expressed as a function of the

latter.

Brendstrup and Paarsch (2006) built off Brendstrup (2007) and proposed a semi-nonparametric

(SNP) approach to account for observable, auction-specific heterogeneity. Specifically, Brendstrup

and Paarsch based their work on Gallant and Nychka (1987) who showed that any well-behaved

distribution can be precisely expressed using an infinite sum of orthogonal basis polynomials. This

implies that distributions may be estimated via ML using sums of polynomials truncated at some
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finite order that is allowed to grow without bound as the sample size increases.14 The advantage of

SNP over kernel smoothing is that it allows for a tractable way to incorporate auction covariates

Z into estimation. To wit, marginal valuations can be expressed as a flexible single index function

Si = exp (Zβ + Ui) ,

where β is a vector of coefficients to be estimated and Ui is a random idiosyncratic preference com-

ponent for bidder i. By plugging this expression into the likelihood function in terms of signals S,

the number of parameters to be estimated grows at a manageable rate with the number of covari-

ates included. Both Brendstrup (2007) and Brendstrup and Paarsch (2006) (B&BP) implemented

their estimation schemes using data on sequential English fish auctions in Denmark.

In more recent work, Lamy (2011), building on theory developed by Katzman (1999), proved

some important results regarding identification and estimation in sequential English auctions. As it

turns out, one cannot be entirely agnostic about bidding behavior in early stages of the auction, as

in B&BP, or model identification fails and a selection bias will arise when estimating the underlying

private value distribution using second-stage prices. Due to model complexity, Lamy focuses his

analysis entirely on a two-stage, sequential English auction; for our purposes here, we shall illustrate

the intuition behind the selection effect by considering only the two-bidder case. Recall that each

bidder draws two independent valuations from a distribution fS with support [0, s], and then the

ordered valuations become their schedule of marginal valuations. Call the high marginal valuation

for player i S1i and the low marginal valuation S2i. Ex ante, Sji has support [0, s] for each j and

i, and the low marginal valuation is also naturally bound by the constraint S2i ≤ S1i for each i.

However, assume for a moment that first-round bidding is generated by a monotone function of each

bidder’s highest marginal valuation, and that bidder 1 wins the first round. Then the distributions of

the remaining marginal valuations differ from the ex-ante distributions in the following ways: first,

S21, S12, and S22 all now have support [0, S11], meaning S12 is on average smaller than the ex-ante

expectation. Second, S22 is still subject to the additional constraint that S22 ≤ S12, whereas there

are no additional constraints on values achieved by S21, so it is on average higher than S22. Note,

however, that these arguments would change if first-round bidding was generated, for example, by

a monotone function of the lowest marginal valuation, or by random bidding.15 Therefore, one

cannot correct for possible differences between the ex-ante distribution (which affects allocations

and prices in the first stage), and the conditional distributions (which determine the price in the

second stage), without incorporating information from the bidding model of the first round of the

auction.

This subtle insight has several important implications. First, even the simple two-stage version

of the sequential English auction (with N bidders) is non-identified without assumptions on the

14When the support of the distribution is the entire real line, Hermite basis polynomials may be used, when it is
half of the real line, the Laguerre basis applies, and when the support is compact, the Chebyshev basis applies. The
SNP approach of Gallant and Nychka (1987) falls within a wider class of methods known as sieve estimators.

15Though it may seem odd to think about first-stage bidding as a function of each bidder’s low marginal value,
Katzman (1999) showed that there exist equilibria of the game consistent with this idea.
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bidding model in the first stage. In fact, even when the first-stage bidding model is specified,

identification requires that N ≥ 3. Second, the nature of first-stage bidding will determine how

to appropriately specify the distribution of the second-stage price. Lamy showed that B&BP’s

estimators—based on the ex-ante distributions of marginal valuations—implicitly assume random

bidding in the first stage in order for them to be unbiased. He also derived an expression for the

second-stage price which corrects for the selection effect when bidding follows the monotone-in-

high-valuation rule, and demonstrated its superior performance relative to Brendstrup (2007) in a

Monte Carlo experiment.

A final contribution of Lamy (2011) is in showing how estimation and even identification are

aided when data on prices in both stages of the auction become available. First, he showed that

if risk neutrality is assumed along with Bayes-Nash equilibrium bidding based on the highest

marginal valuation, then the model is identified from observations of first-stage prices alone, and

higher statistical precision can be achieved by incorporating this information into estimation as

well. More significantly, Lamy also showed that observations of prices from both stages (along with

a fully specified bidding model) allow one to relax the assumption (used by both Donald et al.

(2006), Brendstrup (2007), and Brendstrup and Paarsch (2006)) that bidders’ marginal valuations

are order statistics from samples of independent draws from a common distribution fS . Instead,

one can identify a more general framework where bidders’ valuations come from a general bivariate

density fS(S1, S2).

7.7.2 Simultaneous Multi-Unit Auctions

Février, Préget, and Visser (2004) is one of the earliest structural papers to study auctions within

the sequential, multi-unit auction setting, and it is the only one of which we are aware to do so

within a PCV information environment. In their model there is one unit of a perfectly divisible good

with unknown value V . Bidders have symmetrically distributed private signals Si ∼ FS|V (Si|V )

of the true value of the good; alternatively, one could think of this model as representing many

homogeneous goods whose individual marginal utilities are all constrained to be equal. Bidders

are allowed to submit demand schedules dictating a complete schedule of prices at which they offer

to buy a certain portion of the good. Février et al. proved parametric identification of the joint

distribution of (V, S), and estimated its parameters via a parametric version of the GPV method

which reduces computational burden. Specifically, they begin by nonparametrically estimating the

marginal distribution of the fraction of the good demanded, conditional on price and auction-specific

covariates. Then, they plugged this estimate into the first-order conditions, which they showed are

equivalent to a set of moment conditions relating the first-stage estimates to the parameters of

the joint distribution of (V, S). This leads to a conceptually simple estimator which they proved

to be consistent and to have a well-behaved asymptotic distribution. Février et al. implemented

this estimator on a sample of French Treasury auctions and found, in a counterfactual exercise,

that the observed discriminatory pricing rule revenue dominates a hypothetical uniform rule by a

substantial margin.

51



Hortaçsu and McAdams (2010) was one of the first papers to study empirically a simultaneous

auction mechanism for L homogeneous goods within the IPV paradigm. Motivated by the example

of Turkish treasury auctions, the authors specified private signals as representing a nonincreasing

marginal value (NIMV) schedule Si = (Si(1), . . . , Si(L)), having a well-defined density over RL.

Bids come in the form of a non-increasing price schedule, pi(l) = (pi(1), . . . , pi(L)), where pi(l)

denotes the price offered by i for the lth unit. The rules correspond to the discriminatory auction,

in which the highest L bids determine the price for each unit. The assumption of NIMV in various

monetary auctions has both practical and technical motivations. On the practical side, profit

maximizing banks that acquire short-term cash reserves will put them first to the most high-value

use.16 On the technical side, McAdams (2008) showed that private-value, multi-unit auctions are

not identified in general, and deriving informative bounds on the distribution of private information

may not be possible without the NIMV assumption.

Concerning Hortaçsu and McAdams (2010), perhaps the most notable aspect of this paper is

that the authors were able to use the NIMV assumption to achieve nonparametric estimation with

informative inferential power on a model with such high-dimensional private information. As men-

tioned above, a principal empirical difficulty in settings such as this is a lack of characterization of

the theoretical equilibrium of the model. However, they were able to get considerable traction from

the definition of a Bayes–Nash equilibrium: since all bidders are behaving optimally in equilibrium,

an observed bid pi(l) must have rendered higher expected surplus than any other p′ 6= pi(l), given

i’s preferences and her competitors’ strategies. Dropping the player subscript, if p > p(l) and all

bidders submit strictly decreasing price schedules, this idea is expressed mathematically as

[S(l)− p(l)]G[l; p(l)] ≥ [S(l)− p]G(l; p), (6)

where G(l; p) denotes one’s probability of winning at least l units in equilibrium with a bid of p for

the lth unit. This and the analogous condition for p < p(l) imply the following bounds on private

values:

p(l) +
[
p(l)− p

] G(l; p)

G[l; p(l)]−G(l; p)
≤ S(l) ≤ p(l) + [p− p(l)] G(l; p)

G(l; p)−G[l; p(l)]
. (7)

One can easily imagine replacing p and p with observations on p(l + 1) and p(l − 1), respectively,

from which a large enough sample size would eventually cause the bounds to collapse to a point.

As the authors pointed out, in the single-unit case, as p↗ p in expression (7) above, the result is

exactly the same as equation (2) that GPV used to identify and estimate the canonical single-unit,

first-price model.

An identification problem arises when bidders submit the same price offer for k > 1 (consec-

utive) units, a commonly observed practice known as step bidding. In that case, the analogous

version of (6) above might involve, say S(l + 1), S(l + 2), . . . , S(l + k) within a single inequality,

16Chapman, McAdams, and Paarsch (2006) put forth this argument in reference to the Bank of Canada’s short-
term cash reserve auctions.

52



which does not provide enough information to point identify k separate private signals. It is still

possible, however, to derive bounds similar to (7) which allow for identification of intervals to which

a bidder’s lth valuation must belong. The authors derived these bounds and estimated them non-

parametrically using a simple resampling approach. Briefly, for a given bid pi(l), they used the

next highest and lowest bids submitted by i, pi(l + k) and pi(l − j), k, j ≥ 1, and then estimated

the corresponding win probabilities by repeatedly sampling from rival bids, with replacement, and

computing the fraction of the time that i would win at least l, (l+k), and (l−j) units. They showed

how the procedure may be modified to incorporate (low-dimensional) covariates using kernel den-

sities to weight sampled opponent bids, and demonstrated consistency of the resulting estimator

of conditional win probabilities. Hortaçsu and McAdams implemented their method using Turkish

treasury auction data. They were able to generate remarkably tight bounds for private valuations,

and they used these bounds to perform a counterfactual revenue comparison to an alternative pric-

ing rule, the uniform-price auction, which is known to induce truthful bidding in equilibrium. The

results suggest that the discriminatory auction format dominates in terms of revenue and involves

little efficiency loss, which provides a rationale for why it is widely favored among national treasury

auctions.17

Kastl (2011) extended the model and resampling estimator of Hortaçsu and McAdams (2010)

to explicitly model bidders’ motivation for step bidding. Specifically, he considered two additions to

the model: institutional constraints on the number of distinct price offers and costly bid formulation.

In the case of bidding constraints, Kastl showed that, in equilibrium, bidders sometimes submit

bids above marginal valuations for some units, if others falling under the same price offer are

valued highly enough. He noted that this may cause Hortaçsu and McAdams (2010)’s estimator

to underestimate the revenue generated by a uniform-price auction, although in his data on Czech

treasury auctions, institutional bidding constraints are never observed to bind. The Czech treasury

constrains bidders to submit a bid schedule with at most ten distinct price offerings. Kastl (2011)

documented that the average price schedule involved roughly three steps, and the maximal number

of steps in his sample was nine.

Another (seemingly more important) source of endogenous step bidding would arise if bidders

had to pay a planning cost to formulate each additional pricing step into their demand schedule.

Kastl derived bounds to partially identify both costs and marginal valuations from a sample of

bids generated by a uniform-pricing mechanism. At the estimation stage, he employs a straight-

forward adaptation of Hortaçsu and McAdams (2010) resampling method. Kastl then compared

the uniform-price auction to a hypothetical ideal mechanism which achieves both efficiency and full

surplus extraction for the seller. His estimates suggested that in the case of the Czech treasury,

the uniform price mechanism nearly accomplished both objectives.

A final word on model testability is worth mentioning here. One might be skeptical as to

whether bidders in complex multi-unit auctions exhibit the required sophistication to engage in

17Thirty-nine out of forty-two countries surveyed by Bartolini and Cottarelli (1997) used the discriminatory auction
mechanism in treasury auctions.
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the demanding best-response behavior required by Bayes–Nash equilibrium. In fact, several recent

papers have attempted to answer this question by devising tests for best responding. The first was

McAdams (2008), who proposed a test based on the fact that the analytic inverse-bid functions (the

first-order conditions) do not restrict their nonparametric empirical counterparts to be monotone.18

Chapman et al. (2006) implemented this test using data from Bank of Canada auctions for short-

term cash reserves. They found statistically significant deviations from best responding, but the

economic significance of the deviations was minimal, suggesting that the Bayes-Nash equilibrium

concept is a reasonable approximation to the real world. An alternative approach by Hortaçsu

and Puller (2008), proposed nonparametric recovery of private information (as described above),

followed by computation of best response to the observed bid distribution for each competitor.

Using data on multi-unit procurement auctions for electricity generation in the State of Texas, they

found that large firms (with large sums of money at stake) did remarkably well at best responding,

while smaller firms’ behavior was more prone to deviation from best responding.

7.7.3 Multi-Object Auctions

Cantillon and Pesendorfer (2007) studied a multi-object, simultaneous, first-price procurement

auction with private costs. As usual, this procurement setting is intuitively similar to a private-value

auction with diverse objects for sale. Before discussing identification and estimation of the model,

it will be helpful to discuss some relevant theoretical nuances that come up in this setting. For

simplicity of discussion, consider an auction for two contracts, call them A and B, and denote the

bundle of both contracts together as AB. All bidders submit sealed bids, and the auctioneer allo-

cates and prices the contracts based on the combination of bids that minimize his total procurement

cost.19 In addition, there may be cost synergies, meaning that a firm’s cost of fulfilling contract

AB may be different from the combined costs for fulfilling A and B separately (in the private value

case, this would be equivalent to different objects for sale being complementary goods). Because of

this, an important policy consideration is whether to allow combination bidding, or submission of a

single bid for the bundle AB, which may differ from the sum of bids on A and B; bidding formats

which allow for combination bidding are known as combinatorial auctions. If cost synergies are

positive, meaning that total costs decrease when contracts are bundled, then combination bids will

be strictly lower than the sum of the bids on individual contracts, or bAB ≤ (bA + bB). It is easy to

see that this can promote efficiency and lower procurement costs. However, combination bidding

can also decrease efficiency as well, due to strategic bid leveraging which arises even in the absence

of cost synergies. Briefly, if a combination bidder suspects that he has an advantage for contract

A, he may leverage this advantage into a more aggressive bid for contract B as he formulates his

18A similar observation was made by Guerre et al. (2000) in the case of single-unit, first-price auctions with IPV.
19Note that when combination bids are allowed, it need not be the case that the lowest bidder always wins a given

item. For example, suppose there are three bidders, call them 1, 2, and 3. Bidder 1 only values contract A, bidder 2
only values contract B (their costs for fulfilling the other contract are prohibitively large), and bidder 3 values both.
Suppose further that 1 bids $5 for A, 2 bids $3 for B, and 3 bids $3 for A and $4 for B but only if contracts A and
B are bundled together. Then 3 wins both contracts, despite overbidding player 2 on contract B.
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bid for the bundle AB.20 In a sense, he is willing to make a lower profit margin on B since his

margin on A is likely to be high. This can lead to inefficient contract allocation and even increased

procurement costs in some cases.

Since bid leveraging puts downward pressure on combination bids, a structural bidding model

is needed to empirically disentangle this effect from that of cost synergies. Moreover, if opponents’

costs are highly correlated or if cost synergies are large, then strategic leveraging becomes less

important, and combination bidding will still result in a welfare improvement; thus, a structural

model can also provide useful policy prescriptions as well. However, identification and estimation

are more difficult in this setting. First, bidding strategies are now determined by a system of

equations—the first-order conditions of a bidder’s decision problem—rather than a single equation,

as in the canonical first-price auction. Moreover, the first-order conditions are now only necessary,

but not sufficient for optimal behavior, having potentially multiple solutions. Cantillon and Pe-

sendorfer showed that this system of equations can only nonparametrically identify a unique cost

distribution if all bidders submit non-trivial bids (i.e., bids having a strictly positive probability of

winning) for all contracts and combinations thereof. Otherwise, the model is partially identified,

and the first-order conditions can be used to bound sets of cost distributions that are consistent

with the data. For example, many equilibria of the model involve bidders not submitting bids on

some contracts, in which case some of the bidders costs would only be set-identified.

Binding reserve prices are another source of under-identification, as in the canonical single-

unit model, but there is yet another source in the multi-object case: restrictions on combination

bidding. Specifically, if only individual bids bA or bB are allowed, or if the auction rules constrain

combination bids so that bAB ≤ (bA + bB), then it becomes more difficult for the econometrician to

make inferences on valuations for bundles of contracts (i.e., cost synergies). The authors derived

bounds on the underlying costs from the first-order conditions in each of the cases discussed above

that can be used to partially identify the model.

As for estimation, Cantillon and Pesendorfer used a similar method to that of GPV, with

adjustments to cope with the challenges of the multi-object environment. In the first stage, they

estimated the bid distribution using a parametric approach, for two reasons. The first has to do

with feasibility: nonparametric kernel smoothing methods, while flexible, are subject to the curse

of dimensionality, as the associated computational cost grows exponentially in the dimension of

the distribution to be estimated. In a multi-object auction, where bidders have separate bids for

each contract and each distinct bundle of contracts, this problem quickly becomes pronounced.

Moreover, the authors also conditioned the bid distribution on contract and bidder covariates,

which further increases the dimensionality of the joint distribution to be estimated. The second

reason for using parametric methods is statistical: as illustrated by Silverman (1986), kernel-

20A similar type of strategic bid distortion was recognized by Athey and Levin (2001) at “scale sales” held by the
U.S. Forest Service. At these auctions, the Forest Service announces the quantity of each species of tree it expects on
a tract of timber. A bid is a sum, over the various species, of the per-unit bids submitted multiplied by the quantities
announced. The highest bidder wins the right to harvest the timber. Since the winner pays based on actual harvests
and given the rates specified in the bidding process, bidders have incentive to skew their bids by overbidding on
species that they feel were underestimated.
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smoothed density estimates require more data than parametric methods to obtain precise estimates,

and the data requirement quickly increases with the dimensionality of the distribution. Thus,

parametric methods can help to not only reduce computational burden—which usually grows with

dimensionality at a polynomial rate—but also to cope with a relatively small sample size. Cantillon

and Pesendorfer specified the joint distribution of bids (conditional on covariates) as a multivariate

lognormal distribution and estimated its parameters by the method of simulated moments.

Just as in the canonical GPV method, their second stage involves inferring costs from bids,

using the first-order conditions in conjunction with the estimated bid distribution. Recall that

their primary research question involved evaluating the nature and importance of cost synergies and

cost correlation across firms, so as to characterize the welfare implications of allowing combination

bidding. As this is the case, there is no need to infer cost distributions from the data, only costs.

However, if such a need arose, the researcher would have to employ a flexible (i.e., nonparametric or

semi-nonparametric) estimator so as to maintain internal consistency within the model. Of course,

such an undertaking would be subject to the difficulties described above.

Cantillon and Pesendorfer applied their estimation scheme to a procurement auction for public

transportation contracts (bus routes) in London, England. Despite the difficulties of partial iden-

tification, they were able to estimate that the median cost synergy is actually negative, implying

decreasing returns to scale for bussing firms. They also found that more than half of the contracts

were awarded to someone other than the low-cost bidder (due to strategic bid leveraging), and that

welfare could significantly increase by allowing bids on individual stand-alone contracts only.

To date, Cantillon and Pesendorfer is the only paper of which we are aware that performs

structural estimation of a combinatorial auction; however, some caveats are worth mentioning.

First, the authors are aided, computationally, by the relatively small size of the London bus route

auctions, in which at most three separate contracts are up for bids at any one time. The only

other paper of which we are aware, currently, that attempts an empirical analysis of combinatorial

auctions is Epstein, Olivares, Weintraub, and Yung (2011). Specifically, the authors studied the

same policy questions as Cantillon and Pesendorfer, in a similar (but much larger scale) setting in

which many school-lunch supply contracts are simultaneously auctioned, and bidders are allowed

to submit bids for packages of up to eight contracts. Some firms in their data set submit thousands

of bids in a single auction. Because of the resulting computational complexity, Epstein et al.

constructed a flexible reduced-form empirical model which attempts to estimate costs from bids

while empirically disentangling the theoretical influences of cost synergies and strategic contract

bundling. The reduced-form estimation precludes computation of counterfactuals, however the

authors are still able to make policy recommendations based on their findings. With auctions

becoming an increasingly important supply-chain procurement tool, further research is needed to

make structural estimation feasible in larger settings.
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8 Conclusion

In this survey, we have detailed structural econometric research that has been developed to

study various types of auctions. We have chosen to organize major contributions by partitioning

the AV model into subcategories based on commonly-used informational structures in hopes of

complementing the book-length treatments of this topic in Paarsch and Hong (2006) or Athey and

Haile (2007), who partitioned the literature by different auction formats. To our knowledge, no one

has formally tied together the informational paradigms studied in empirical work in a unified way

that is consistent with theoretical research. While our discussion of any one piece of research is no

substitute for a thorough reading of the original work (we did not intend it to be), we have tried to

provide enough insight into each piece of research we discussed so that readers can understand the

fundamental contributions and have an understanding of how it fits in with previous and subsequent

research. We think our discussions of the fundamental information paradigms not only provide a

good introduction to researchers new to auctions and/or structural econometric methods, but that

they also provide a perspective that will appeal to experienced researchers as well. We have also

included an overview of several special topics that we hope are helpful to researchers either trying to

allow for one of these extensions to a core model or trying to improve upon the current approaches.

A quick scan through the text of our special topics section shows that most research in these areas

has taken place in the past few years. Our view is that these areas involve not only interesting

topics, but that there are many interesting extensions and developments to come.
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A Existence and Uniqueness

In Table 1, we present a list of important theoretical results on existence and uniqueness in
auctions. Structural research requires such properties to argue that the data generating process
corresponds to a particular model of bidding.

Reference Result
Vickrey (1961) Existence of dominant strategy equilibrium of ascending-price auc-

tion within IPV paradigm
Wilson (1977) Sufficient conditions for existence of equilibrium in sealed-bid first-

price auction when private signals are i.i.d., conditional on an un-
known common component

Milgrom and Weber (1982) Existence of equilibrium in sealed-bid first-price, second-price and
ascending-price auctions under AV

Maskin and Riley (1984) Existence and uniqueness of equilibrium in first-price and second-
price auctions when bidders are risk averse

Lebrun (1996, 1999, 2006) Existence and uniqueness of equilibrium in first-price auctions
when bidders are potentially asymmetric

Maskin and Riley (2000b) Existence of a monotonic equilibrium in the first-price auction when
bidders have (potentially asymmetric) affiliated private values and
Von Neumann-Morgenstern preferences

Bikhchandani, Haile, and Riley
(2002)

Existence and non-uniqueness of separating equilibria in English
auctions with affiliated values

Maskin and Riley (2003) Uniqueness of a monotonic equilibrium in the first-price auction
under the conditions that: (i) bidders have (a)symmetric APV and
VNM preferences; (ii) absolute risk aversion is non-increasing; (iii)
the supports of the different buyers’ distributions of values have
the same upper endpoint.

Reny and Zamir (2004) Existence of a monotonic equilibrium in first-price auctions
Reny (1999) with asymmetric bidders having affiliated common values
Lizzeri and Persico (2000) Existence of pure and mixed equilibria in general games of

incomplete information, including many exotic types of auctions
with non-standard pricing rules, including some results on
existence of monotonic equilibria (see Jackson and Swinkels
(2005))

Athey (2001)
Jackson, Simon, Swinkels, and Zame
(2002)
Jackson and Swinkels (2005)
Govindan and Wilson (2010a,b)
de Castro (2010)

Investigate conditions weaker than affiliation which separately
guarantee existence, uniqueness, and pure monotonic equilibria.

Katzman (1999) Efficiency and revenue equivalence for sequential, second-price auc-
tions with two rounds and based on the link between complete and
incomplete information auction games.

Table 1: Existence and Uniqueness of Equilibrium in Auctions
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