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Electricity Spot Price Dynamics:

Beyond Financial Models

Abstract

An increasing number of researchers attempt to model the behavior of electricity spot prices

using statistical models commonly used to model financial asset prices. In this paper we

reveal properties of electricity spot prices which such models cannot capture. Using six

years of half-hourly price data from the New Zealand Electricity Market, we find that the

half-hourly trading periods fall naturally into five groups corresponding to the overnight

off-peak, the morning peak, daytime off-peak, evening peak, and evening off-peak. The

prices in different trading periods within each group are highly correlated with each other,

yet the correlations between prices in different groups are lower. Models, adopted from the

modelling of security prices, that are currently applied to electricity spot prices are incapable

of capturing this behavior. We use a periodic autoregression to model prices instead, showing

that shocks in the peak periods are larger and less persistent than those in off-peak periods,

and that they often reappear in the following peak period. In contrast, shocks in the off-

peak periods are smaller, more persistent, and die out (perhaps temporarily) during the peak

periods. Current approaches to modelling spot prices cannot capture this behavior either.
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Electricity Spot Price Dynamics:

Beyond Financial Models

1 Introduction

The last ten years have seen a wave of deregulation sweep through the world’s electricity markets.

As a result, electricity prices in many regions are now determined by the forces of demand and

supply. Industry participants need to understand the behavior of deregulated prices in order to

price the growing array of electricity derivatives being traded and in order to implement the real

option models that are increasingly being advocated for investment and generation decisions in

the electricity sector.1 Modelling prices has therefore become an active area of research, and the

use of statistical models commonly applied to financial time series is popular.2 In this paper we

argue that the models used to date are not capable of capturing key price behavior, which we

document.

The starting point for our analysis is the recognition that its non-storability means that

electricity traded at a particular time of the day is a distinct commodity, quite different from

electricity traded at different times. This leads us to analyze the behavior of prices in individual

trading periods, an approach made possible by the availability of six years of half-hourly price

data from the New Zealand Electricity Market.3 We find that the half-hourly trading periods fall

naturally into five groups corresponding to the overnight off-peak, the morning peak, daytime

off-peak, evening peak, and evening off-peak. The prices in different trading periods within

each group are highly correlated with each other, yet the correlations between prices in different

groups are lower.4 These intra-period correlation patterns cannot be captured by standard

financial models of spot prices, which assume that the correlation between prices in different

trading periods depends only on the length of time between these periods, and not on the time

at which the prices are observed. In fact, the presence of these patterns in conventional financial

markets would be taken as evidence of market inefficiency, since they would allow investors to

make abnormal profits from buying and selling securities at different times of the day. Such

strategies are not feasible in electricity markets because electricity is not storable.

The correlation structure identified here is of practical importance for the way generation

1See, for example, Deng (2000) on derivative pricing and Tseng and Barz (2002) on real option valuation.
2Examples of statistical models of electricity spot and forward prices include Bhanot (2000); Burger et

al. (2004); Karolyi and Goto (2004); Knittel and Roberts (2004); Lucia and Schwartz (2001). Bessembinder

and Lemmon (2002) develop an equilibrium model of electricity forward prices. Longstaff and Wang (2003) test

some of their predictions and analyze other properties of forward and spot electricity prices in the PJM market

in the mid-Atlantic area of the US.
3Some other authors have followed a similar approach when analyzing high frequency electricity price data.

For example, Bhanot (2000) models peak and off-peak prices separately. Longstaff and Wang (2003) use a vector

autoregression to model the behavior of the 24 individual series of hourly spot prices in their data set.
4Li and Flynn (2004a, 2004b) identify intraday patterns in average prices for a large number of international

electricity markets. Knittel and Roberts (2004) and Lucia and Schwartz (2002) find similar patterns in price data

from California and the Nordic Power Exchange respectively.
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decisions should be made. For example, if the price is higher than average at midnight, it is likely

to be higher than average for the remainder of the overnight period. However, the midnight

price reveals little about the price in the morning peak period. For plants which cannot be

turned on and off instantaneously, there is an advantage in delaying generation decisions until

after the start of one of these intra-day markets. For example, there is likely to be some value in

keeping a moderately inflexible plant operating past the end of the morning peak period, since

the mid-morning price reveals a great deal of information concerning prices through until the

evening peak.

We believe that a new approach is required if these patterns in prices are to be modelled

satisfactorily. One possibility, which we illustrate in this paper, is the use of a periodic au-

toregressive model. We use this approach to show that shocks in the peak periods are larger

and less persistent than those in off-peak periods, and that they often reappear in the following

peak period. In contrast, shocks in the off-peak periods are smaller, more persistent, and die

out (perhaps temporarily) during the peak periods. A simple AR(1) process, which ignores the

different behavior of prices in different trading periods, can be calibrated to capture the low

persistence evident in peak periods, or the greater persistence in off-peak periods, but not both

simultaneously. Nor can it capture the reappearance of shocks later in the day when they first

appear.

2 Data

The New Zealand Electricity Market (NZEM) operates a network comprising 244 nodes, each

with its own price calculated for each of the 48 daily half hour trading periods. The pricing

algorithm used to calculate these nodal prices implements a uniform price auction using ac-

tual metered data, final energy and reserve offers, and grid configuration. The price at each

node equals the marginal cost of supplying one additional unit of electricity to that node, with

differences in nodal prices caused by transmission losses and grid constraints.

This paper uses all 48 final spot prices each day at the Haywards node, located between large

scale generation in the south of the South Island and high load areas in the north of the North

Island.5,6 Our data set comprises every price in the period 1 January 1997 to 12 December 2002,

or 105,168 observations in total. From the raw time series data we extract 48 separate series of

prices, each one corresponding to a different trading period, with trading period one beginning

at midnight, period two beginning at 12:30 a.m., and so on. Each series has one observation a

day for each trading period for six years.

There are strong seasonal patterns in the data, so our analysis uses filtered prices, taken as

5There are three types of prices in the NZEM: forecast prices, which are calculated during the 36 hours before

the particular trading period; dispatch prices, which are calculated in the final few hours before electricity is

dispatched; and final prices, which are generally available on the following day and are used for settlement. This

study uses final prices as they most accurately reflect the prices which industry players face.
6Other studies, notably Escribano et al. (2002) and Wolak (1999) also examine the behavior of prices at this

node.

2



Figure 1: Intra-day correlation structure
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Notes. The graph displays the correlation matrix for filtered prices at the Haywards node over the

period 1997–2002. The cells shaded in black correspond to those combinations of trading periods for

which the correlation between filtered prices is in the upper quartile of all correlation coefficients,

the cells shaded dark gray have correlations in the upper middle quartile, and so on.

the residuals from the regression

pn,t =
7

∑

i=1

αn,idi,t +
71

∑

i=1

γn,imi,t + εn,t, εn,t ∼ N(0, ψ2
n), (1)

where pn,t is the price in trading period n on day t, dj,t is a dummy variable that takes the value

1 on day j and 0 otherwise, mj,t is a dummy variable that takes the value 1 in month j and 0

otherwise (January 1996 is month 1, January 1997 is month 13, and so on).

3 Intra-day correlations

Our prime focus in this paper is the structure of correlations between prices in different trading

periods.7 The 48 × 48 correlation matrix for our sample period is displayed graphically in

Figure 1. The cells in the grids each correspond to an element of the correlation matrix. The

shade of the cell indicates the strength of correlation: cells shaded in black correspond to those

combinations of trading periods for which the correlation between filtered prices is in the upper

quartile of all correlation coefficients, the cells shaded dark gray have correlations in the upper

middle quartile, and so on. The graph reveals a remarkably rich structure, with the trading

periods falling naturally into groups: the prices in different trading periods within each group

7Lucia and Schwartz (2002) find that the 24 series of hourly prices on the Nordic Power Exchange are all

highly correlated (ρ > 0.94), but do not report the existence of pattern to the correlation structure.
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Table 1: Average correlation coefficients across the day

Correlation Overnight Morning peak Daytime Evening peak Evening

Overnight 0.64 0.34 0.36 0.23 0.34

Morning peak 0.69 0.38 0.27 0.34

Daytime 0.61 0.38 0.46

Evening peak 0.70 0.39

Evening 0.61

Notes. The entries in the table report the average correlation coefficients for filtered prices in

different trading periods at the Haywards node over the period 1997–2002. The overnight period

contains trading periods 1–14 (midnight until 7:00 a.m.), the morning peak contains trading periods

15–17 (7:00–8:30 a.m.), the daytime period contains trading periods 18–35 (8:30 a.m.–5:30 p.m.),

the evening peak contains trading periods 36–38 (5:30–7:00 p.m.), and the evening period contains

trading periods 39–48 (7:00 p.m. until midnight).

are highly correlated with each other, yet the correlations between prices in different groups are

lower.8 These intra-period correlation patterns cannot be captured by standard financial models

of spot prices — that is, in models which assume that the behavior of prices is constant over

the course of the day. Specifically, models which assume that the correlation between prices in

periods m and n depends only on n − m, and not m or n individually, would have correlation

matrices with the same value down each diagonal. The graph corresponding to Figure 1 would

show a series of downward sloping stripes.

There appear to be five distinct groups of trading periods in Figure 1: overnight (periods

1–14), morning peak (periods 15–17), daytime (periods 18–35), evening peak (periods 36–38),

and late evening (periods 39–48). As reported in Table 1, the average correlation coefficient

between prices in different trading periods during the overnight period is 0.64.9 The average is

0.69 within the morning peak period, 0.61 during the daytime period, 0.70 in the evening peak

period, and 0.61 in the evening period. In contrast, the average correlation between overnight

prices and those in the morning peak period is 0.34, and with those in the evening peak period

is 0.23. In fact, the daytime and evening periods could almost be combined into a single daytime

off-peak period interrupted by a brief evening peak period.

Further evidence on this correlation structure can be found using principal components

analysis. When applied to the 48 price series, the first five principal components account for

73% of the variance over the six year period. When applied to individual years, the percentage

explained by the first five principal components varies from a low of 68% in 1998 to a high of

89% in 2002.10

8An even clearer picture emerges when we focus on individual years. See the appendix for details.
9We calculate the average correlation coefficient for pairs (pi,t, pj,t) with i 6= j in the same group.

10High correlations between the prices of different commodities indicates that the commodities trade in the

same economic market (Stigler and Sherwin, 1985). Thus, we speculate that there are perhaps five separate

intra-day markets operating in the NZEM.

4



4 A periodic regression model

In this section we use a variant of a standard autoregression, known as a periodic autoregression

(PAR), to model our spot price data. PAR models appear similar to AR models except that

the AR coefficients take different values in different trading periods. In our case the filtered

price in any trading period is assumed to potentially depend linearly on the filtered prices in

the preceding 48 trading periods:

p∗n,t+1 =
n−1
∑

i=1

βn,ip
∗
n−i,t+1 +

48
∑

i=n

βn,ip
∗
n+48−i,t + un,t+1, (2)

where p∗n,t = pn,t − p̂n,t is the residual from the regression in (1). We focus on four different

specifications of the PAR model:

Model (i) The price in a particular trading period is regressed on the price in the same trading

period on the previous day:11

p∗n,t+1 = βn,48p
∗
n,t + un,t+1.

Model (ii) The price is regressed on the price in the previous trading period:12

p∗n,t+1 = βn,1p
∗
n−1,t+1 + un,t+1.

Model (iii) The price is regressed on the previous day’s price in the same trading period and

the price in the previous trading period:

p∗n,t+1 = βn,48p
∗
n,t + βn,1p

∗
n−1,t+1 + un,t+1.

This model combines the features of our first two restricted models, and might provide

a parsimonious means of capturing the relationship between prices in different trading

periods and on different days.

Model (iv) The price is regressed on all 48 prices recorded in the previous 24 hours. This is

the unrestricted model (2).

Pargano (1978) discusses PAR models in detail, and proves that each component equation

of a PAR model can be estimated separately. Table 2 reports Akaike’s information criterion

(AIC) for each of the four models described above, for each trading period. The second column

reveals that the price in the previous trading period provides more information than the price

in the same period on the previous day. However, while the AICs fall when both of these lagged

prices are included, comparison with the fourth column reveals that including all 48 lagged

11This is similar to the approach of Bhanot (2000), who models the behavior of daily peak and off-peak prices

using separate AR(1) processes.
12We are not aware of any previous study using this approach. Knittel and Roberts (2004) regress prices on

their one-hour lag, but in their case the autoregressive coefficient, βn,1 in model (ii), takes the same value for all

values of n.
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Table 2: Performance of various periodic autoregressive models

AIC AIC AIC

n (i) (ii) (iii) (iv) n (i) (ii) (iii) (iv) n (i) (ii) (iii) (iv)

1 8.90 8.82 8.77 8.56 17 10.28 9.11 9.11 8.82 33 9.50 8.06 8.06 7.97

2 8.17 7.80 7.71 7.47 18 9.52 8.97 8.93 8.46 34 9.60 9.05 9.05 8.85

3 8.12 7.31 7.30 7.15 19 9.10 8.41 8.36 8.00 35 9.91 9.28 9.28 9.06

4 8.15 7.26 7.22 7.03 20 9.08 7.82 7.81 7.63 36 10.57 10.11 10.11 9.95

5 8.11 6.97 6.94 6.74 21 8.97 7.35 7.34 7.13 37 10.49 9.88 9.83 9.72

6 8.14 6.87 6.86 6.64 22 9.11 8.23 8.23 7.94 38 10.34 9.23 9.21 9.08

7 8.07 6.22 6.22 6.17 23 9.09 7.02 7.02 6.96 39 9.94 9.67 9.64 9.37

8 7.83 6.38 6.36 6.24 24 8.92 7.98 7.96 7.62 40 9.69 9.19 9.06 8.82

9 7.76 6.19 6.19 6.12 25 8.89 7.47 7.47 7.39 41 9.62 8.09 8.03 7.93

10 7.80 6.09 6.09 6.00 26 8.76 7.58 7.56 7.39 42 9.54 8.83 8.79 8.31

11 8.01 6.67 6.66 6.39 27 8.91 8.09 8.08 7.89 43 9.23 8.27 8.22 7.91

12 8.12 7.09 7.08 6.93 28 8.61 7.53 7.50 7.23 44 9.34 8.68 8.67 8.49

13 8.24 7.68 7.64 7.48 29 9.03 7.93 7.93 7.85 45 9.43 8.25 8.26 7.79

14 8.63 8.23 8.04 7.65 30 8.98 7.61 7.61 7.48 46 8.61 7.92 7.87 7.47

15 9.39 8.69 8.66 8.35 31 8.99 6.93 6.92 6.78 47 8.66 7.37 7.35 7.15

16 10.60 10.02 10.02 9.92 32 8.95 7.39 7.39 7.12 48 8.51 7.37 7.36 7.07

Notes. The numbers reported in the table are Akaike’s information criterion for regressions of

special cases of equation (2). In case (i), only the 48th of the spot price is included; in case (ii) only

the first lag is included; in case (iii) both the first and 48th lags are included; in case (iv) all 48 lags

are included. All regressions use observations from the Haywards node during the period 1 January

1997 to 31 December 2002.

prices improves the AIC in all cases. This shows that we lose useful information if we ignore the

relationships between the prices in different trading periods. We therefore use our estimate of

the unrestricted system in (2) to investigate the dynamics of spot prices in more detail.

We examine the effects of price shocks in individual trading periods and see how they prop-

agate throughout the day. The system (2) can be written in the form

Γp∗
t+1 = Ap∗

t + ut+1, ut+1 ∼ N(0,D), (3)

where p∗
t = (p∗1,t, p

∗
2,t, . . . , p

∗
48,t)

′,

Γ =





















1 0 · · · 0 0

−β2,1 1 · · · 0 0
...

...

−β47,46 −β47,45 . . . 1 0

−β48,47 −β48,46 . . . −β48,1 1





















, A =





















β1,48 β1,47 · · · β1,2 β1,1

0 β2,48 · · · β2,3 β2,2

...
...

0 0 . . . β47,48 β47,47

0 0 . . . 0 β48,48





















,

and D is diagonal. It follows that the vector of forecast errors when forecasting the next day’s

prices is

p∗
t+1 − Et[p

∗
t+1] = Γ−1ut+1
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Figure 2: Impulse response functions
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Notes. Each panel shows what happens if the price in the indicated trading period receives a

one standard deviation shock. The impulse response functions are derived from our estimates of

equation (3) using prices at the Haywards node for the period 1 January 1997 to 31 December 2002.

at the end of day t. Similarly, the two-day-ahead forecast error is

p∗
t+2 − Et[p

∗
t+2] = Γ−1AΓ−1ut+1 + Γ−1ut+2.

The effect of price shocks for four representative trading periods are plotted in Figure 2.

Each graph shows what happens if the spot price in the indicated trading period receives a one

standard deviation shock; that is, the graph plots the forecast errors when ut+1 takes the value
√

dnn in element n and zero elsewhere, where n is the trading period in which the shock occurs

and
√

dnn is the standard error of un,t+1 in (2). From the top panel, shocks during the morning

peak period last for two or three trading periods, before disappearing, only to reappear (to some

extent) in the subsequent evening peak period. The fourth panel shows that the behavior of

price shocks during the evening peak period is similar: lasting two or three trading periods,

before quickly disappearing, only to reappear (but without the same strength) in the next day’s

morning and evening peak periods. In contrast, the second graph shows that shocks occurring

immediately after the end of the morning peak period tend to be smaller, but last throughout the

day, before permanently disappearing overnight. The third graph suggests that shocks occurring
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in the middle of the day also tend to persist throughout the day and then disappear overnight,

although they reappear the following day.

To summarize these findings, it appears that shocks in the peak periods are larger, less per-

sistent, but reappear in the following peak period(s). In contrast, shocks in the off-peak periods

are smaller, more persistent, and die out (perhaps temporarily) during the peak periods. This

explains the high correlation between prices within off-peak periods, and their low correlation

with prices in peak periods, evident in Figure 1. It also provides compelling evidence that the

intra-day dynamics are much richer than can be captured by standard models. For example,

while a simple AR(1) process (which ignores the different behavior of prices in different trading

periods) can be calibrated to capture the low persistence evident in peak periods, it cannot

simultaneously capture the greater persistence in off-peak periods, nor the fact that shocks

reappear the following day.

5 Conclusion

The unique features of electricity lead us to treat electricity traded at different times as being

distinct commodities. We employ a data set comprising six years of half-hourly price data

from the New Zealand Electricity Market to analyze the behavior of prices in individual trading

periods. We find that the half-hourly trading periods fall naturally into five groups corresponding

to the overnight off-peak, the morning peak, daytime off-peak, evening peak, and evening off-

peak. The prices in different trading periods within each group are highly correlated with each

other, yet the correlations between prices in different groups are lower. We argue that the models

currently applied to electricity spot prices are incapable of capturing this behavior.

We illustrate a new approach to modelling electricity prices, the use of periodic autoregres-

sions, in this paper. We use this approach to show that shocks in the peak periods are larger

and less persistent than those in off-peak periods, and that they often reappear in the following

peak period. In contrast, shocks in the off-peak periods are smaller, more persistent, and die

out (perhaps temporarily) during the peak periods. The simple statistical models of spot prices,

adopted from the modelling of security prices, cannot capture this behavior.

The periodic autoregression used in this paper could be used to value electricity derivatives

with payoffs depending on high frequency spot price dynamics. The PAR’s principal limitation,

however, is the large number of parameters that need to be estimated. For example, with

half-hourly trading periods each of the 48 equations has 48 slope coefficients, in additional to

the coefficients of various dummy variables. However, much of the dynamic structure would

remain if only a subset of the lagged prices (for example 1, 2, 47 and 48 lags) is used instead.

This parsimony might allow us to introduce jumps and other relevant properties into the price

process. This is a promising line of inquiry.
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Appendix

Figure 3: Intra-day correlation structure in individual years
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Notes. The graphs display the correlation matrix for filtered prices at the Haywards node for the

indicated years. The cells shaded in black correspond to those combinations of trading periods for

which the correlation between filtered prices is in the upper quartile of all correlation coefficients,

the cells shaded dark gray have correlations in the upper middle quartile, and so on.
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