

The Development of a

High Performance Digital RF

Transmitter for NMR

By

Shaw Wei Cheoo

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Engineering
in Electronic Engineering.

Victoria University of Wellington
2012

i

Abstract

This Master’s thesis consists of the development of a Nuclear Magnetic Resonance (NMR)

Radio Frequency (RF) transmitter, which is a core electronic subsystem of an NMR system.

The main purpose of this research is to contribute to the application of NMR, which is a new

sensing technology that has yet to be fully implemented into the everyday world. One of the

barriers to adopting this technology is its complexity. However, the invention of high speed

digital FPGAs (Field Programmable Gate Array) such as the Spartan series has made it easier

to develop high performance NMR systems over recent years. The major contribution to this

research is the development of faster digital signal processing hardware, and methodologies

that have been implemented on a single chip. This has reduced the size and the cost of the

electronic subsystem and contributed towards the evolution of NMR as a general tool. This

thesis introduces the concept of implementing a high-speed NMR RF multi-frequency

transmitter by using multiple Direct Digital Synthesis (DDS) cores to generate sine-waves,

which range from 100 kHz to 750 MHz. The research required three stages to be achieved,

beginning with conceptual design of a high-speed transmitter using MATLAB-

Simulink, RTL-level (Register-Transfer Level) simulation and hardware implementation,

which included hardware testing on a prototype board. This Master’s research is to seek a

solution to building a multi-core DDS module in an FPGA device. In other words, the

research work focuses on finding an alternative solution to constructing a DDS system. The

project involves building up the VHSIC Hardware Description Language (VHDL) program

to work beyond the hardware limitation of an FPGA device. Hence, the final solution does

not consider any noise impact due to the structure of the developed system.

ii

Acknowledgements

I wish to express my sincere thanks to my supervisor and co-supervisor, Dr. Robin

Dykstra and Dr. Paul Teal for providing me with all the necessary suggestions toward my

research.

I place on record my sincerest gratitude to the committee members Prof Dale

Carnegie, Dr. Christopher Hollitt and Dr. Alex Potanin in helping me in the conversion to

Master’s level and for their extreme patience in the face of numerous obstacles.

I also want to thank my fellow PhD students for their constant encouragement,

support, feedback and friendship. I am extremely grateful and indebted to them for their

expert, sincere and valuable guidance extended to me.

I take this opportunity to record my sincere thanks to my family in Malaysia for their

unceasing encouragement and support.

Finally yet importantly, I would like to thank everyone who, directly or indirectly, has

lent me their hand while I encountered problems in New Zealand.

iii

Table of Contents

Abstract i

Acknowledgement ii

List of Tables viii

List of Figures ix

Table of Abbreviations xiv

Chapter 1 Introduction 1

1.1 Problem Statement 1

1.2 Overview of proposed NMR RF transmitter 3

1.3 Introduction of NMR RF transmitter in NMR spectroscopy 4

1.3.1 Phase Coherent 5

1.4 Thesis Motivation 6

1.4.1 Challenges of an NMR RF Transmitter for NMR Applications 6

1.4.2 Limitations of Current of RF Transmitter 8

1.4.2.1 Deficiency of NMR RF Transmitter 8

1.4.2.2 NMR RF Transmitter with External DDS 9

1.4.2.3 FPGA-based NMR RF Transmitter 10

1.5 Research Goals 11

1.6 Organisation of Thesis 14

Chapter 2 Background 15

2.1 NMR Transceiver 15

2.2 Fundamentals of the Sinusoidal Oscillator 17

 2.2.1 Recursive Oscillators 17

2.3 Direct Digital Synthesis 18

 2.3.1 Phase Accumulator 19

 2.3.2 Phase-to-Amplitude Converter 21

 2.3.3 Phase Truncation 22

 2.3.4 CORDIC 28

 2.3.4.1 Rotation Mode 29

iv

 2.3.4.2 Vectoring Mode 31

 2.3.4.3 Sine and Cosine Function 33

 2.3.5 DAC 34

2.4 Comparisons between LUT-based DDS and CORDIC Algorithm 35

2.5 FPGA 37

2.6 Spartan-6 (XC6SL45T) 40

 2.6.1 Basic Architecture of Spartan-6 42

 2.6.2 CLB 46

 2.6.3 LUT 48

 2.6.4 Storage Elements 49

 2.6.5 Multiplexers 49

 2.6.6 Carry Logic 49

 2.6.7 Distributed RAM 49

 2.6.8 Shift Registers 49

 2.6.9 I/O Architecture of Spartan-6 51

 2.6.9.1 IOB 52

 2.6.9.2 Input/ Output Logic Resources 52

 2.6.10 Input/ Output Serialisation and Deserialisation 54

 (ISERDES and OSERDES)

 2.6.11 Clock Resources 55

 2.6.12 Other Resources of Spartan-6 57

2.7 Development Tools 58

2.8 Summary 59

Chapter 3 Design and Development 60

3.1 High-level Simulation of a DDS core with MATLAB-Simulink 60

 3.1.1 Design Requirements 62

 3.1.2 Matlab-Simulink of a Basic DDS System 64

3.2 Conceptual Design of an 8-Core DDS System 66

 3.2.1 Design Requirements 66

 3.2.2 Simulink of an 8-Core DDS Module 67

 3.2.3 Phase Register and Minimum Phase Offset Calculation 69

 3.2.3.1 Phase Register 69

 3.2.3.2 Eight Phase Offsets and Step Size 71

v

 3.2.4 2 GHz DDS System 74

 3.2.4.1 2 GHz Phase Accumulator 74

 3.2.4.2 Sine LUT Module 76

 3.2.5 2 GHz DAC Module (Mock) 78

3.3 Conceptual Design of a Multi-Frequency RF Generator 80

 3.3.1 Design Requirements 80

 3.3.2 Simulink of Multi-Frequency RF Generator 81

 3.3.2.1 Multi-Frequency DDS block 83

3.4 MATLAB-Simulink Simulation Results 87

 3.4.1 Simulation Results of a Single DDS Core 87

 3.4.2 Simulation of an 8-Core DDS Module 91

 3.4.2.1 Simulation Results of Phase Offset 92

 3.4.2.2 Simulation Results of an 8-Core DDS Module 94

3.4.3 Simulation Results of a Multi-Frequency RF Generator 99

 3.4.3.1 Simulation results of Phase Coherence for 101

 Multi-Frequency RF Generator

3.5 RTL-Level Simulation of DDS using FPGA 103

 3.5.1 Architecture of PLL 103

 3.5.2 OSERDES Module 107

 3.5.3 Development of a Test-bench file 109

3.5.4 RTL-Level of a Single DDS Core 111

 3.5.4.1 Simulation Results of a Single DDS Core Module 113

3.5.5 Development of an 8-Core DDS System 117

 3.5.5.1 Overview of Nyquist Zones of an 8-Core DDS System 118

 3.5.5.2 Block Diagram of an 8-Core DDS Module 123

 3.5.5.3 RTL schematics of an 8-Core DDS Module 125

 3.5.5.4 VHDL Development of an 8-core DDS Module 129

 with Over-sampling Concept

 3.5.5.5 Simulation Results of an 8-Core DDS System 132

 with Over-sampling Concept

 3.5.5.6 Development of an 8-Core DDS System with Under-sampling 140

 3.5.5.7 VHDL Implementation of an 8-Core DDS System 140

 with Under-sampling

vi

 3.5.5.8 Simulation Results 149

 3.5.6 Development of Multi-Frequency RF Generator 157

 3.5.6.1 RTL schematics of a Multi-Frequency RF Generator 157

 3.5.6.2 Implementation of Multi-Frequency RF Generator in VHDL 160

 3.5.7 Development of a Custom Data Distributor by Using 164

 Distributed Memory Block

 3.5.7.1 Implementation of Addressable Distributed Memory Block 165

 in VHDL

 3.5.7.2 Simulation Results 169

Chapter 4 Hardware Implementation, Testing and Results 172

4.1 Overview of T-Rex v4.0 173

4.2 Serial Programming on DAC and Clock Chips 176

 4.2.1 Clock Chip Configuration: LMK04803B 177

 4.2.1.1 Development of MICROWIRE for an LMK04803B 179

 4.2.1.2 Implementation of Serial Programming for an LMK04803B 183

 4.2.1.3 Tests and Results 186

 4.2.2 SPI Configuration for DAC Chip: AD9739 190

 4.2.2.1 Development of SPI Configuration for an AD9739 191

 4.2.2.2 Implementation of SPI Configuration for an AD9739 193

 4.2.2.3 Tests and Results 199

4.3 Hardware implementation of High Speed RF transmitter 206

 4.3.1 Experimental Results of 8-Core DDS System 208

 4.3.1.1 Discussion 213

 4.3.2 Experimental Results of Phase Coherence 215

4.4 Hardware Implementation of Distributed Memory Block 219

 4.4.1 Test Results of Distributed Memory Block 220

 4.4.2 FPGA Device Utilisation Summary 223

Chapter 5 Conclusion and Future Work 225

5.1 Conclusion 225

5.2 Future Work 228

vii

Appendix A: Parameter settings of Matlab-Simulink Blocks 229

Appendix B: Parameter settings of Xilinx IP Cores 235

References 238

viii

List of Tables

Table 2.0: Features of Spartan-6 [56]. 44

Table 2.1: Slice features [56]. 47

Table 2.2: Logic resources of a CLB [56]. 47

Table 3.0: Calculation of Phase Offset for 1st to 8th sequential phases. 73

Table 3.1: Sample period of Simulink block. 79

Table 3.2: Selection of output signal via Switch-A and Switch-B. 86

Table 3.3: Comparison between Simulink and mathematical calculation results. 93

Table 3.4: Default connection of switches. 100

Table 3.5: Attributes of PLL module. 104

Table 3.6: First 30 samples of 20 MHz sine-wave. 114

Table 3.7: Results of 8-core DDS system. 133

Table 3.8: 3-bit ‘nyquist_zone1’ vs. Nyquist zone. 142

Table 3.9: Sequences to transfer digital amplitudes to DAC. 148

Table 3.10: First 33 data points of a 190 MHz sine-wave. 150

Table 3.11: First 33 data points of a 290 MHz Sine-Wave (3rd Nyquist Zone). 153

Table 3.12: Logic status of SWITCH. 162

Table 3.13: First 136 data points captured by the test-bench. 170

Table 4.0: MICROWIRE timing diagram [42]. 178

Table 4.1: Register values of 400 MHz and 100 MHz clock signals [42]. 182

Table 4.2: Modes in SPI configuration. 196

Table 4.3: SPI initialisation with SYNC controller disabled [8]. 199

Table 4.4: Eight Phase offsets of six signals. 209

ix

List of Figures

Figure 1.0: Overview of proposed RF transceiver. 3

Figure 1.1: An FID signal. 4

Figure 1.2: Magnetisation vector M spiralling down into the x-y plane 5

 due to an applied RF pulse.

Figure 2.0: Block diagram of an NMR system [5]. 15

Figure 2.1: Basic DDS structure [8]. 18

Figure 2.2: Digital phase wheel [5]. 19

Figure 2.3: Phase truncation error [5]. 23

Figure 2.4: Taylor series approximation for quarter sine converter [48]. 26

Figure 2.5: Relative bit position of data word implemented in Figure 2.4[48]. 26

Figure 2.6: Diagram of vector rotation [58, 60]. 29

Figure 2.7: Diagram of vector translation [58, 60]. 31

Figure 2.8: Key differences between different Xilinx FPGA families. 39

Figure 2.9: FPGA architecture [64]. 42

Figure 2.10: Simplified block of a logic cell [21]. 44

Figure 2.11: CLB and interconnect channels [55]. 46

Figure 2.12: Slices in a CLB [55]. 46

Figure 2.13: LUT of Spartan-6 [55]. 48

Figure 2.14: A transmission gate-based LUT [28]. 48

Figure 2.15: Spartan-6 XC6SL45T I/O banks [54]. 51

Figure 2.16: I/O tile of Spartan-6 [54]. 51

Figure 2.17: Basic IOB diagram [54]. 52

Figure 2.18: Resources of master and slave IOLOGICs [54]. 53

Figure 2.19: A simple clock tree [28]. 55

Figure 2.20: Overview of a PLL in Spartan-6 [61]. 56

Figure 3.0: Matlab-Simulink of a single DDS. 64

x

Figure 3.1: Conceptual design of a 2GHz sampling transmitter. 68

Figure 3.2: Phase register Simulink block. 70

Figure 3.3: Phase offsets. 71

Figure 3.4: Internal structure of a 2 GHz phase accumulator block. 74

Figure 3.5: Internal structure of a sine LUT module. 76

Figure 3.6: DAC module (Mock). 78

Figure 3.7: Simulink model of Multi-Frequency DDS module. 82

Figure 3.8: Internal structure of a multi-frequency DDS function block. 83

Figure 3.9: Internal structure of the DDS switch block. 85

Figure 3.10: Outputs of 15 MHz sine-wave and accumulated phases. 88

Figure 3.11: Matlab-Simulink model for phase offset simulation. 92

Figure 3.12: Simulation results of an 8-core DDS module captured at sine LUT module. 94

Figure 3.13: Phase steps of a single DDS core and an 8-core DDS module (15 MHz). 97

Figure 3.14: Four signals generated by a multi-frequency RF generator. 100

Figure 3.15: Phase coherence between 10 MHz and 30 MHz signals. 101

Figure 3.16: PLL module [61]. 103

Figure 3.17: PLL block diagram: CLK_FEEDBACK = CLKFBOUT. 105

Figure 3.18: Data transmission with one SDR forwarded clock [36]. 107

Figure 3.19: Test-bench code to capture output data. 109

Figure 3.20: RTL schematic of a custom DDS module. 111

Figure 3.21: VHDL code for a standard DDS module. 112

Figure 3.22: Simulation results of a DDS Core. 113

Figure 3.23: Sine-wave with frequency = 20 MHz. 115

Figure 3.24: Diagram of output signal (fa) sampled at fs [51]. 119

Figure 3.25: Nyquist zone. 120

Figure 3.26: Diagram of under-sampling to obtain 200 MHz output. 120

Figure 3.27: Block diagram of custom DDS with eight DDS cores. 124

xi

Figure 3.28: RTL schematic of the Offset Divider modules in an 8-core DDS system. 126

Figure 3.29: RTL schematic of a Phase Accumulators in an 8-core DDS System. 127

Figure 3.30: RTL Schematic of eight LUTs. 128

Figure 3.31: Project hierarchy of an 8-core DDS module. 129

Figure 3.32: VHDL code for offset divider. 129

Figure 3.33: Entity declaration of DDS_Core. 131

Figure 3.34: Plot of 1st sample phase. 135

Figure 3.35: Plot of 2nd sample phase. 135

Figure 3.36: Plot of 3rd sample phase. 135

Figure 3.37: Plot of 4th sample phase. 136

Figure 3.38: Plot of 5th sample phase. 136

Figure 3.39: Plot of 6th sample phase. 136

Figure 3.40: Plot of 7th sample phase. 137

Figure 3.41: Plot of 8th sample phase. 137

Figure 3.42: Final output after overlaying Figure 3.34 to Figure 3.41. 138

Figure 3.43: Visualisation of complete sine-wave. 139

Figure 3.44: VHDL program to search for image frequency. 141

Figure 3.45: Bit inversion for the output phases. 143

Figure 3.46: VHDL code to transfer the phases from the even Nyquist zone to LUTs. 145

Figure 3.47: Declaration of LUT module. 146

Figure 3.48: VHDL function to transfer phase values to a LUT module. 147

Figure 3.49: Simulation results of a 190 MHz signal using Isim. 150

Figure 3.50: 190MHz sine-wave. 151

Figure 3.51: Simulation results of a 290 MHz signal using ISim. 153

Figure 3.52: 290MHz sine-wave. 154

Figure 3.53: Four offset module. 158

Figure 3.54: Four phase accumulators. 159

xii

Figure 3.55: Project hierarchy of multi-frequency DDS system. 160

Figure 3.56: VHDL coding of signal switching routine. 161

Figure 3.57: Predefined tuning word. 163

Figure 3.58: Switching between an 8-core DDS module 165

 and a distributed memory block.

Figure 3.59: Component declaration of distributed memory block. 166

Figure 3.60: Coefficient file. 166

Figure 3.61: VHDL coding to retrieve the content of a coefficient file. 168

Figure 3.62: Simulation results of distributed memory block using Isim. 169

Figure 3.63: Simulated results of a random signal. 171

Figure 4.0: Block diagram of T-Rex v4.0 [46]. 173

Figure 4.1: Top view of T-Rex v4.0. 174

Figure 4.2: MICROWIRE timing diagram [42]. 178

Figure 4.3: Interface of CodeLoader4. 179

Figure 4.4: Binary numbers of R0 to R31 generated by CodeLoader4. 180

Figure 4.5: Initialisation of a Spartan 6 start-up clock. 183

Figure 4.6: VHDL coding of serial programming of LMK04803B. 184

Figure 4.7: Real-time simulation results. 187

Figure 4.8: Simplified diagram of clock transition on data valid window. 187

Figure 4.9: 100 MHz clock signal at CLKout8. 188

Figure 4.10: 400 MHz clock signal at CLKout2. 189

Figure 4.11: SPI timing diagram of AD9739 [8]. 191

Figure 4.12(A): Write routine of SPI configuration (Not a full VHDL program). 193

Figure 4.12 (B): Write routine of SPI configuration (Not a full VHDL program). 194

Figure 4.13: Read process of SPI configuration. 197

Figure 4.14: Write routine to SPI interface. 201

Figure 4.15: Read routine to SPI interface at Register 0x2A. 202

xiii

Figure 4.16: Read routine to SPI interface at Register 0x21. 203

Figure 4.17: 500 MHz clock generated by AD9739 DCO pin to Spartan-6. 204

Figure 4.18: Analog output without offset binary conversion. 207

Figure 4.19: 100 kHz sine-wave. 210

Figure 4.20: 500 kHz sine-wave. 210

Figure 4.21: 210 MHz sine-wave. 211

Figure 4.22: 450 MHz sine-wave. 211

Figure 4.23: 590 MHz sine-wave. 212

Figure 4.24: 750 MHz sine-wave. 212

Figure 4.25: 200 MHz sine-wave. 215

Figure 4.26: 530 MHz sine-wave. 216

Figure 4.27: Switching between 200 MHz and 530 MHz. 217

Figure 4.28: Phase coherence of 200 MHz sine-wave. 218

Figure 4.29: 40 MHz signal generated by 8-core DDS module. 220

Figure 4.30: Custom data for 40 MHz sine-wave. 221

Figure 4.31: 40 MHz signal generated by distributed memory block. 221

Figure 4.32: Device utilisation summary. 223

Figure 4.33: Performance summary. 224

xiv

Table of Abbreviations

ASIC Application-Specific Integrated Circuits

BUFG Global Clock Buffers

BUFPLL High Speed I/O Clock Buffer

CE Chip Enable

CIC Cascaded Integrator-comb

CLB Configurable Logic Blocks

CLKOUT Clock Output

CMT Clock management tiles

CS Chip Select

CORDIC Coordination Rotation Digital Computer

CP Charge Pump

DAC Digital-to-analog converter

DACCLK DAC Master Clock

DCI Input clock pin

DCM Digital Clock Manager

DCO Output clock pin

DDR Double data rate

DDS Direct Digital Synthesis

DLL Delay Lock Loop

DSP Digital signal processing

EMF Electromotive Force

EMI Electromagnetic Interference

FA Full adder

FFT Fast Fourier Transform

FID Free Induction Decay

FIR Finite Impulse Response

xv

FPGA Field programmable gate array

GTP Gunning Transceiver

IBUFG Single-ended Input Global Clock Buffer

ILOGIC Input Logic

IOB Input/output Block

IOI I/O interface

IP Intellectual Property

ISE Integrated Software Environment

LAB Logic Array Blocks

LF Loop Filter

LSB Least Significant bit

LUT Look-up tables

LVDS Low-voltage differential signal

MADD Multiply-Add

MCU Microcontroller unit

MSB Most significant bits

MUX Multiplexer

NAND Negated ANDs

NMR Nuclear Magnetic Resonance

OLOGIC Output Logic

OSERDES Output Serialisation or Deserialisation

PFD Phase-Frequency Detector

PIC Peripheral interface controller

PLD Programmable Logic Device

PLL Phase locked loop

PROM Programmable Read-Only Memory

RF Radio Frequency

xvi

ROM Read-only memory

RTL Register-transfer level

SCLK Serial Clock

SCLR Synchronise Clear

SDIO Serial Data Input Output

SDO Serial Data Output

SDR Single data rate

SERDES Serialisation or de-serialisation

SFDR Spurious free dynamic range

SNR Signal-to-noise ratio

SOPC System on Programmable Chip

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TTL Transistor logic

VCO Voltage Controlled Oscillator

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

1

Chapter 1

Introduction

This chapter introduces the problem statement, an overview of the proposed NMR RF

transmitter, the motivation, research goals, and organisation of this thesis.

1.1 Problem Statement

In the communication field, an RF transmitter of a device has been associated with the

frequency and modulation of a carrier signal. These techniques are transferable to NMR

where an amplitude-modulated stimulus is applied to a probe.

In the past few decades, the implementation of a traditional NMR RF transmitter has

been achieved using analog construction. Although it has many advantages such as high

precision, there are several drawbacks are still associated it such as cost, size, complexity and

portability [6]. After 40 years of research, developments of microelectronics brought a

technological revolution to the transceiver system. The availability of commercial products in

recent years has resulted in a dramatic switch from classical architecture towards a digital

domain [11].

The momentous changes in the architectural conception of an NMR RF transmitter,

which used to be exclusively granted by the technological possibilities of hardware

integration, can now be realised by modern microelectronic devices. Most of the current

NMR RF transmitters try to merge the analog and digital approach in order to get the best

performance from both worlds.

Assorted RF transceivers are developed for different applications such as wireless

communications, digital radiation spectrometers and so on. Despite the fact that not all the RF

transmitters are fitted to the NMR system, but these RF transmitters can be altered to suit

different applications in NMR spectroscopy. Modifications of the RF transmitter enable the

NMR system to meet the objectives of this thesis research.

Several NMR RF transmitters have been proposed in recent years resulting in

innumerable solutions that generally tend to sacrifice some features like overall system

throughput or real-time capability in favour of an increase in system versatility [25, 26, 41,

63]. This thesis proposes the implementation of an NMR RF transmitter on a single FPGA

chip. The proposed solution contains internal DDS modules, which could run in parallel to

2

generate high-speed samples. In addition, this can help overcome the frequency limitation of

a standard NMR RF transmitter generating analog sine-wave signals ranges from 100 kHz to

750 MHz at 2 GHz sampling rate. Moreover, the proposed system could support an output

signal of up to four distinct frequencies. This overcomes the phase coherence problem.

3

1.2 Overview of Proposed NMR RF Transmitter

Figure 1.0: Overview of proposed RF transceiver.

 The NMR RF transmitter proposed in this thesis is part of the NMR transceiver as

shown in Figure 1.0. This NMR transmitter can generate a variable sine-wave (B1) from 100

kHz to 750MHz. 100 kHz is the minimum frequency we aim for the system to generate. 750

MHz is selected, as the upper limit output frequency after considering that sample of high

frequency signal might be insufficient to maintain the signal shape as sinusoidal.

Usually, the signal generated by the transmitter can be represented by the formula

below:

���� � ���	
sin		�2�����

AGain is a unity gain, which is used to determine the amplitude of the signal. In this

thesis, it will be treated as ‘1’. �� is the signal frequency while ‘t’ is the sampling time.

The purpose of an NMR RF transmitter focuses on preserving the phase coherence of

a signal. The phase coherence lost is a limitation of most of the NMR transmitters available

within the NMR field. Most of the systems lose the original signal phase after switching to

another frequency.

(1.0)

4

1.3 Introduction of NMR RF Transmitter in NMR Spectroscopy

NMR spectroscopy is a technique used to study the physical, chemical, and biological

properties of materials by probing the nuclear dipole moments in the material [23]. It was

found and measured using molecular beams by Isidor Rabi in 1938 [32]. He received the

Noble Prize in Physics in 1944 for his work [1]. Two years later, Felix Bloch and Edward

Mills Purcell expanded the technique to liquids and solids. They used it as an analytical tool

in chemistry and physics in 1946. They too were awarded the Nobel Prize in Physics in 1952

[2, 17].

NMR is a phenomenon that occurs when the nuclei of certain atoms are immersed in a

static B0 field and exposed to an oscillating B1 field [16, 23]. In a sample unit, the nuclei are

in equilibrium with the stationary field when they are completely aligned. When a B1 field is

applied, they will be disturbed from equilibrium. After the RF transmitter is turned off, they

will begin to return to equilibrium by transferring energy to the surrounding molecular

environment. This process is called ‘relaxation’ [18].

The B1 field is a sine-wave signal generated by an RF transmitter (RF pulse). It is

applied to stimulate the spins, which would generate a decaying resonance signal known as a

Free Induction Decay (FID). Figure 1.1 is the example of a FID [23].

Figure 1.1: An FID signal.

5

1.3.1 Phase Coherence

Before the RF pulse is applied to the system, nuclei are in its characteristic frequency,

but are out of phase. At a certain time when the RF pulse is transmitted to the system, all the

nuclear magnetic moments become coherent. This forces the magnetisation vector M to spiral

down around the z-axis as shown in Figure 1.2.

Figure 1.2: Magnetisation vector M spiralling down into the x-y plane due to an applied RF

pulse.

The magnetisation vector now precesses in the x-y plane at the Larmor frequency.

When it reaches the x-y plane, the RF field is removed, and the precessing magnetisation can

then be observed as an induced Electromotive Force (EMF) in a coil surrounding the sample.

At that moment, the phase coherence of the nuclear spins is lost. The nuclear magnetic

moments return to random arrangement around the z-axis. In other words, there is no net x-y

magnetisation. This process is known as the ‘relaxation process’ and is recorded by the NMR

spectroscopy.

In summary, the NMR RF transmitter makes the excitation of nuclei at different times

as possible while the phase coherence is maintained. Therefore, the RF pulse transmitted to

the magnet system must be able to maintain coherence before and after switching to other

frequencies.

6

1.4 Thesis Motivation

Zhang and Dong constructed a multi-channel adjustable frequency system in their

research [66]. They used a NOIS II processor from Altera Corporation. In their paper, they

proposed a custom DDS module, which contains three output channels. Nios II is powerful

but the application of Nios II in their proposed system has many redundancies in the chip

because plenty of features remain unused. A similar solution can be implemented by using

low-level FPGA devices such as the Cyclone series from Altera or Spartan series from Xilinx

to optimise the utilisation of the processing unit. Furthermore, their proposed DDS system

operates at 210 MSPS, and the DDS system is classified as a low speed system. The

limitations of their system lie behind the motivations of the research work presented in this

thesis.

1.4.1 Challenges of an NMR RF Transmitter for NMR Applications

The design of an NMR RF transmitter based on an ‘All in One’ modular concept is difficult

to implement by fitting multi-DDS cores into a single chip. The challenges to the research are

because of:

1. Many NMR RF transmitters are formed by different combinations of electronic

components such as DDS chips, memory chips and so on. The present NMR RF

transmitter uses too many external components, which can be substituted by an FPGA

device. This traditional design of a standard NMR RF transmitter limits the

improvement and enhancement of the existing system in the future [33, 41, 47, 63].

2. Various commercial products and research works on NMR RF transmitters are carried

out by utilising external DDS chips. The advantage of utilising the additional DDS

chips is that it could make the design process of the system easier. Unfortunately, the

system encounters phase coherence lost after the switching of an output signal from

one frequency to another [38, 39].

3. Many present commercial products and academic researchers emphasise a 1 GHz

sampling rate or lower for the RF transmitter. The achievable throughput is still far

away from the possibility of a high-resolution digital RF transceiver. The hardware

components, which are used in the system, have restricted the maximum signal

frequency to a 1 GHz sampling rate. Recently, advances in electronics and computing

7

make it much easier to design a more compact system. The activities within this area

have increased to make the 2 GHz signal sampling feasible [7, 8, 25, 40, 41, 45, 46,

47, 63].

8

1.4.2 Limitations of Current of RF Transmitter

1.4.2.1 Deficiency of NMR RF Transmitter

Most of the NMR RF transmitters use discrete components to build up an entire RF

system. The implementation is deficient because the circuitry often takes up a lot of board

space. It is also prone to signal drift, interference, distortion and so on. Moreover, these NMR

RF transmitters are bulky, semi-portable, and more costly. Discrete components cause the

system board to have a complicated circuit design, and the whole RF system lacks visibility

to control signals flexibly. These factors are the motivation to look for alternative solutions.

From commercial and industrial points of view, it is necessary to have a flexible

design that can be adapted easily to suit different requirements. However, this is hard to

achieve because the performance of a DDS system relies on the hardware components on the

circuit board. If further improvements are needed, a system upgrade might not be achievable

if the forthcoming works are beyond the ability, which the components could support.

Furthermore, the system board may not be able to extend its life cycle if damaged or missing

parts on the board become no longer available. At that moment, the whole system needs to be

re-designed to meet the new requirements [33].

Many researchers have integrated an FPGA into the RF system. However, not all the

modules within the RF system are implemented on a single FPGA chip. In this case, the

FPGA chip is only used for minor processing purposes such as signal latching, digital

switching, clock synthesis and so on. External DDS chips are still applied in the RF system to

generate high-speed sine-waves. A similar methodology has been proposed and in work by

Takeda. In his paper, he utilised an FPGA chip together with an external DDS chip, AD9740,

to generate a sine-wave signal [41].

9

1.4.2.2 NMR RF Transmitter with External DDS

 Another publication of Takeda describes, "A highly integrated FPGA-based NMR

spectrometer". His concepts can be achieved by using an FPGA device to incorporate a pulse

programmer and a receiver. A DDS interface, which is connected to an external DDS chip,

could support the high frequency generation of up to 400 MHz. His original pulse

programmer used several tens of integrated circuits on a few circuit boards and there are

numerous wire connections among them [41].

In the latest NMR products, FPGAs have been added to the products of several

companies. These companies used the FPGA devices as digital signal processing units. A

general-purpose pattern generator system known as the "Programmable transistor-to-

transistor logic (TTL) and DDS RF Pulse Generator" has been designed and manufactured by

SpinCore Technologies Inc. The PulseBlasterTM processor provides all the timing for pulse

synchronisation. However, a DDS chip is used to provide the RF excitation from DC to

300MHz [39].

Another FPGA-NMR product by SpinCore Technologies Inc. is a radio processor

called the "Complete RF Acquisition and excitation system with Digital Detection, Real-

Time signal Processing and Signal Averaging". It is a general-purpose, broadband, RF data

acquisition and excitation system. It is a complete NMR subsystem with a frequency range

from 0 to 100 MHz. A DDS chip is used to generate an RF output with 14-bit resolution and

up to 300 MSPS clock rate [38].

The Magritek Kea2 is another FPGA-based NMR spectrometer system. It could be

found on a T-Rex v2.0 board, which was developed at Victoria University of Wellington.

This board utilises an AD9910 1 GHz sample rate DDS chip to generate a sine-wave from

DC to 400 MHz [27, 47].

 The disadvantage of using multiple DDS chips is the loss in phase coherence

especially after the sine-wave frequency is varied. Usually, an external DDS chip comes with

a built-in digital-to-analog converter (DAC). Numerous commercial products operate at

sampling frequencies of up to 1 GHz because it is the maximum clock speed of the built-in

DAC available on the market. The sampling frequency can be improved to 2 GHz if a dual

data port DAC chip is used together with an FPGA chip. This DDS system is currently on the

T-Rex v4.0 board. It is fast enough to carry out a 2 GHz DDS operation [46].

10

1.4.2.3 FPGA-based NMR RF Transmitter

Some companies like SpinCore Technologies, Agilent Technologies, and Magritek

have introduced RF transceivers with an on-board external DDS chip. This structure can

support a few hundred MHz to 1 GHz sampling frequency [3, 27, 38, 39]. Huang, Ren, and

Mao from Beijing Institute of Technology proposed a method in DDS design by using

discrete components (not the FPGA device). Their DDS system is merged with phase lock

loop (PLL) outputs to produce a signal generator. Their signal generator can operate at 2728

MHz sampling rate and is capable of generating a signal of up to ~341MHz [66]. However,

the entire system is bulky. The size of the system can be reduced by using an FPGA device to

replace most hardware components.

The invention of a pulse generator should not simply rely on a faster DDS chip. The

design should consider using a customised DDS module in an FPGA chip to achieve better

productivity than a system built with many external DDS chips. A DDS module is dependent

on the frequency of a DAC chip. All the data generated by the DDS module must synchronise

with the conversion process of the DAC chip. Thus, the research must focus on the

methodologies to attain such a high clock rate. The system should benefit from the maximum

potential across the device.

Recently, many researchers have exploited an FPGA chip to develop an NMR

transceiver. Nevertheless, the FPGA chip is not fully utilised to make a transceiver. External

DDS chips are not replaced by the FPGA chip due to the DDS core being generated by an

FPGA chip such as Xilinx FPGA, which could only support up to 250 MHz. It could not

meet the trend of the DDS system to operate at 1 GHz.

11

1.5 Research Goals

An overall goal of the research is to investigate a new approach to the NMR RF

transmitter. The detail research objectives are as below:

1. Design a high-speed NMR RF transmitter. The goal is to explore the potential of a

built-in DDS core of an FPGA chip to generate a dual-channel output at a 1 GHz

sampling frequency of each. This output will be processed by a dual-input DAC chip

for a total of 2 GHz sampling rate. The entire system should be able to generate the

output signal ranging from 100 kHz to 750MHz. To accomplish this goal, it is

necessary to study and to investigate the structures of these features to see how they

could be utilised as a main core in a pulse generator. However, due to the limitations

of FPGA to go beyond an allowable clock speed in DDS, the challenges of this

problem lead to four objectives as below:

a. Design a new topology for an NMR RF transmitter by using Matlab-Simulink.

The Simulink is used to design the structures of a high-speed RF transmitter. The

structures are verified through the Matlab-Simulink simulation.

b. Simulate the designs in 1(a) above in the register-transfer level (RTL-level)

simulation by using the Xilinx VHDL compiler.

The simulations in Matlab do not consider the timing constraints within the DDS

system. Matlab simulations are used to verify the functionality of the design and

to analyse the flow from input to output. Therefore, it is necessary to simulate the

design in RTL-level to ensure the behavioural structures meet the timing

constraints.

c. Design a new methodology to run a dual-output DDS module at 1 GHz each. The

1GHz frequency is beyond the clock limitation of an internal DDS core in an

FPGA chip [29, 44].

According to the datasheet provided by Xilinx, a DDS core has a single sine

or/and cosine output signal. The DDS core can operate at a maximum clock of

250 MHz. A 250 MHz clock speed is insufficient to generate outputs at 1 GHz

sampling frequency. Consequently, the proposed custom DDS system is expected

12

to quadruple the clock speed of the system by implementing multiple DDS core

modules within the system.

d. Analyse and investigate the relationship between Nyquist zones and output

frequencies.

If a desired signal is beyond 125 MHz, an alternative solution should be

investigated. The new solution should be able to generate the samples of high-

speed signal (outside of the 1st Nyquist zone) by using its folded frequency.

e. Develop a custom signal generator by using a distributed memory block.

A signal in any form can be generated by using this method because it is DDS free

and fully customised by users.

f. Develop an innovative methodology to implement an RF generator.

The RF generator should support switching of four frequencies to a single output.

This solution can maintain phase coherence of a signal when the signal is

switching from one frequency to another.

2. After the simulations, the next task is to transfer the simulated solutions to a prototype

board. This section leads to four objectives as below:

a. To configure the on-board DAC and clock chip.

The evaluation board could not function properly without the configuration of

DAC and clock chip. The DAC chip should be programmed to enable a 2 GHz

processing rate. It must be able to convert dual-input digital data from DDS to a

single analog output at a 2 GHz sampling rate. The clock chip should be

programmed to generate a 100 MHz clock to an FPGA chip and a 2 GHz to a

DAC chip.

b. To transfer the VHDL coding of an 8-core DDS module to a prototype board.

DDS modules will be modified to support multi-frequency generation. The analog

signal obtained from the evaluation board will be measured by using a Tektronix

MSO 4204 Mixed Signal Oscilloscope.

13

c. To insert a distributed memory block into the system.

A coefficient file with custom data can be loaded into a distributed memory block.

The data will be retrieved and sent to a DAC chip. The output is measured by

using a Tektronix MSO 4204 Mixed Signal Oscilloscope.

d. To examine and to observe the phase coherence of the system.

Once the system manages to generate an output signal, the phase coherence of the

signal is tested. The results are observed and recorded in Chapter 4.

Notes:

Theoretically, the Nyquist frequency of an 8-core DDS system is 1 GHz because the output signal is at a 2 GHz

sampling rate. However, it is impossible to generate an output with 1 GHz because an ideal low-pass filter does

not exist in real life.

14

1.6 Organisation of Thesis

Chapter 2: Background

Chapter 2 contains the essential background of an NMR RF transmitter and an FPGA

device. The review covers the preliminary concepts of a standard RF transmitter, and the

basic components used to form a DDS oscillator. The background of an FPGA device

includes the fundamental concepts and the architecture of the device is stated in this section.

Chapter 3: Design and Development

Chapter 3 emphasises the design and development of an 8-core DDS system. The

research begins by using Matlab-Simulink to simulate a single DDS system. From the single

DDS system, more modules are added to create an 8-core DDS module. After that, the 8-core

DDS module is modified to form a multi-frequency generator, which could support the

switching of an output signal between four frequencies. After the Matlab simulation,

Simulink designs are transferred to the RTL-level simulation. The simulation is done by

utilising Xilinx ISim simulator. A distributed memory block was inserted into the system to

generate a random signal.

Chapter 4: Hardware Implementation, Testing and Results

Hardware testing of an 8-core DDS system is implemented on an evaluation board.

The on-board DAC and clock chip are configured so that the entire system can generate an

analog signal at 2 GHz sampling rate. After the configuration, several random frequencies are

chosen to test the developed system on the evaluation board. Then, the phase coherence of

the output signal is tested and observed. The last part of the hardware testing is to generate a

signal by using a distributed memory block. All the results are recorded and presented in this

chapter.

Chapter 5: Conclusion and Future Work

Chapter 5 is the final chapter of the thesis. A conclusion is presented to wrap up the

entire thesis. The concluding part concerns the future work, which can be carried out to

enhance and improve the NMR RF transmitter developed in this thesis.

15

Chapter 2

Background

This chapter reviews the background of an NMR RF transmitter, which is used as a pulse

generator in the NMR transceiver. The background covers the existing techniques, essential

background, and basic concepts of an NMR RF transmitter. Lastly, it discusses the

background and basic architecture of an FPGA device.

2.1 NMR Transceiver

An NMR spectrometer requires a magnet, a coil, and some electronic instrumentation

such as a transceiver and a computer. These instruments provide the stimulus and to be

subsequent detect the FID signal [37]. Figure 2.0 depicts a simplified NMR system.

Figure 2.0: Block diagram of an NMR system [5].

Typically, the most expensive and difficult part of the system is the magnet system.

The cost of the system is proportional to the magnetic strength. The better the sensitivity and

spectral resolution of the system, and hence more expensive is the magnet.

The first block to the left in Figure 2.0 refers to the digital part of the system. This

usually involves a computer to control all the sequencing of events, processing and storing of

data. It serves as the medium of communication between the user and the spectrometer. The

transceiver is responsible for the generation and detection of analog RF signals. There are

two modules in the transceiver, a transmitter, and a receiver. The transmitter performs the

tasks of generating real-time RF pulses to stimulate the B1 coil in the magnet system. This

part is the main research core of this thesis. The receiver acts as a detector to detect the

16

returning FID. Firstly, the receiver amplifies the small RF FID signal and then digitises the

signal. The digital data is processed to capture the NMR information. However, this thesis

focuses only on the NMR RF transmitter, which is highlighted in red. The computer interface,

magnet system and receiver module in the transceiver are not discussed in this thesis.

17

2.2 Fundamentals of the Sinusoidal Oscillator

 A sinusoidal oscillator is also known as a sine-wave generator and is used to generate

a sine waveform. The synthesis process is known as digital sine oscillation. The summary

below shows examples of sinusoidal oscillators presented over the past few years.

2.2.1 Recursive Oscillators

Recursive oscillators use the traditional methods to produce cosine or sine signals. In

the early 1900s, the German physicist Heinrich Barkhausen modelled an oscillator as an

amplifier. His model has the output feedback to input via a phase shifting network. The

Barkhausen criteria for the oscillator require the function gain to be equal to one, and the total

loop phase shift needs to be a multiple of 2π radians [43].

As a result, several oscillators have been designed with this approach such as [43]:

• Direct Form oscillator

• Coupled Form Oscillator

• Digital Waveguide Oscillator and many more

 This thesis concentrates on the development of a sinusoidal oscillator using the built-

in modules of an FPGA device. The sinusoidal oscillator can be implemented by either using

Coordination Rotation Digital Computer (CORDIC) or DDS modules in the FPGA devices.

18

2.3 Direct Digital Synthesis

DDS usually refers to look-up table (LUT) based sinusoid generators. A DDS is a

technique to generate frequency- and phase-tunable output signals. It uses digital data

processing blocks with a fixed-frequency precision clock to generate a sinusoidal signal [5].

In Figure 2.1, a simple DDS can be created with a precision reference clock, an address

counter, a Programmable Read-Only Memory (PROM) LUT and a DAC chip. In this basic

system, PROM stores the amplitudes of a complete sine-wave. The address counter is used to

generate memory addresses to access the PROM. A memory address is an identifier for a

memory location in the PROM. The memory address will retrieve the digital amplitude from

the PROM to the DAC chip.

Figure 2.1: Basic DDS structure [8].

There are two factors to determine the output frequency generated by a DDS block:

• Frequency of the DDS system clock

• Sine-wave step size

 The advantage of using the DDS based system is that the simplistic architecture of the

DDS system is less susceptible to the tuning flexibility. The reason is the output frequency

can only be changed by modifying the system clock speed or by re-programming the step size

in the PROM.

19

2.3.1 Phase Accumulator

 The main part of the DDS system is the phase accumulator whose contents are

updated once on each clock cycle. Each time the phase accumulator is triggered, the tuning

word or phase increment, M is added to the contents of the phase accumulator. Let us assume

that the initial content of the phase accumulator is 00…00 and M=00… 01. The phase

accumulator is updated by 00…01 on each clock cycle.

A phase accumulator replaces the address counter in Figure 2.1 to introduce a

function known as a ‘phase wheel’. This ‘phase wheel’ can be visualised as a vector rotating

around the phase circle as illustrated in Figure. 2.2.

Figure 2.2: Digital phase wheel [5].

In Figure 2.2, every point of the phase wheel corresponds to the sample phases of a

full sine-wave. When the vector rotates around the wheel, a phase accumulator is visualised

to generate equivalent phases of a sine-wave signal. One revolution of vector rotation of the

phase wheel at a constant speed produces a finished cycle of an output sine-wave. The

revolution of the phase wheel represents an overflow in the phase accumulator. Nevertheless,

this complete output sine-wave is linear and is unsuitable to be applied directly to generate a

sine-wave signal. Hence, a sine LUT is used to convert the output phases to sine-wave digital

amplitudes. A DAC chip is then used to convert these amplitudes to an analog signal [5].

Each time the phase accumulator receives a clock pulse, the phase accumulator

increases the stored number in the phase register by adding a tuning word to that register. The

20

magnitude of phase increment is based on the frequency tuning word. This frequency tuning

word forms a ‘hopping’ process to skip the N-bit phase points of the phase wheel. These N-

bit phase points are known as phase step size or phase jump size. The control over the jump

size constitutes the frequency tuning resolution of the DDS system. The larger the jump size,

the faster the phase accumulator overflows to complete the generation of a sine-wave cycle

[5].

Any changes in the frequency tuning word result in immediate changes in the output

frequency. The output frequency is inversely proportional to the number of samples per cycle.

When the output frequency increases, the total samples per unit cycle decrease. However, the

Nyquist sampling theory dictates a complete sine-wave must have at least two samples per

cycle to construct the output waveform. Thus, the maximum frequency of an output sine-

wave is half of the DDS system clock.

In summary, the frequency of a sine-wave signal can be expressed by the equation

(2.0) below:

���� � �
2� 	�������						

��, � � !"#$	%	&'

!()($*+	 							 (2.0)

���� � �ℎ-	�.-/0-123	��	41	�0�50�	671- − 94:-	67;14<

�				 � �.-/0-123	�0171;	9�.=

>				 � > − ?7�	��	4	5ℎ46-	4220@0<4��.

������� 				 � 636�-@	�.-/0-123

‘M’ is also known as a digital number for phase hopping in an accumulation. ‘N’ is

the total bits of a phase accumulator, so 2N is the amount of steps available in the accumulator.

The division of fsystem by 2N represents the frequency resolution of the system.

21

2.3.2 Phase-to-Amplitude Converter

 In this thesis, the phase-to-amplitude converter or LUT is configured as a sine LUT. If

B represents the width of a truncated phase, a sine LUT can be simply a read-only memory

containing 2B samples that create the sample-domain waveform from the truncated phase

received from the phase accumulator. In other words, it converts phases from a phase

accumulator to amplitudes. These digital phases are also the memory addresses used to

retrieve the corresponded amplitudes from the sine LUT.

A PROM can be used to implement a sine LUT. A PROM based LUT is easily

implemented due to the simplicity of the PROM circuit. A LUT contains one complete cycle

of the waveform to be generated. The LUT translates the truncated phases into the sample

amplitudes which are then converted to an analog signal by DAC.

If a high precision signal is required, the LUT needs a very large capacity as more bits

are required to store the amplitudes. This increases the hardware cost and the implementation

is limited by the capacity of the PROM. Practically, only the ‘high bits’ of an accumulated

phase are used as a memory address to access the LUT. Generally, these high bits are known

as the truncated phase. The size of a LUT is 2B words, therefore B <N; N is the width of

accumulated phases.

22

2.3.3 Phase Truncation

The N-bit of a phase accumulator determines the frequency resolution of a DDS

system. The greater the value of N means the better the resolution of the system. However,

the high frequency resolution of the DDS system can increase the capacity of the LUT block.

Considering that each entry of the LUT block has an N - bit of precision data, it then requires

a huge capacity of LUT. For example, for the LUT block of Xilinx FPGA devices, the phase

truncation is done in the LUT block before converting the phase to amplitude. Generally, the

width of a phase accumulator block of Xilinx devices can be up to 48 bits. If all the 48 bits

are used, then the LUT block requires 281.147 X 1012 bits of memory.

In a practical DDS system, all the bits of the phase accumulator are not passed on to

the LUT. These bits are truncated, leaving only some of most significant bits (MSB) for

amplitude conversion. This method reduces the size of the LUT and does not affect the

frequency resolution.

A phase truncation technique uses a fraction of the MSB of the accumulator output to

provide phase information. If a phase accumulator has data length = N-bit and no phase

truncation has applied to the accumulated phases, then the LUT needs 2N depth to store the

amplitudes. If the phase truncation is applied, the lower N’-bit of the accumulated phase is

ignored. Then, the accumulated phase remains the upper N-N’-bit. This N-N’-bit is the data

width of a truncated phase which means N-N’ = B. Therefore, the sine LUT needs only 2(N-N’)

or 2B bits to store the data.

The implication of phase truncation can be depicted by the concept of the ‘digital

phase wheel’. In order to give a clear explanation of the digital phase wheel, assume a simple

8-bit phase accumulator of which only the upper 5 bits are used as input to sine LUT. The

result is the phase resolution represented by the outer circle tic marks. After the truncation,

the resolution is identified by the inner circle of tic marks [5]. The phase resolution of an 8-

bit phase accumulator is 360o/28 = 1.406o.

23

Figure 2.3: Phase truncation error [5].

If a tuning word of 7 is selected, the accumulator would have increments of 7. In

Figure 2.3, the first eight phase angles correspond to the count steps of the phase accumulator.

After the first count on the outer circle (increment by 7), the phase step falls short of the first

inner tick mark. It causes a discrepancy between the phases of the outer circle (8-bit

resolution) and inner circle (5-bit resolution). The phase error due to this discrepancy is 7 X

1.406o = 9.842o as noted by X1 in Figure 2.3.

After the 2nd phase step, 7 more counts on the outer circle. The accumulated phases

fall between the 1st and the 2nd tick marks on the inner circle. Again, there is a discrepancy

between the phases of the outer circle (8-bit resolution) and inner circle (5-bit resolution).

The phase error is 6 X 1.406o = 8.436o as noted by X2 in Figure 2.3.

24

The phase errors due to the discrepancy between the inner and outer circles on every

clock cycle are listed below:

On the 3rd phase step (X3), phase error is 5 X 1.406o = 7.03o

On the 4th phase step (X4), phase error is 4 X 1.406o = 5.624o

On the 5th phase step (X5), phase error is 3 X 1.406o = 4.218 o

On the 6th phase step (X6), phase error is 2 X 1.406o = 2.812 o

On the 7th phase step (X7), phase error is 1 X 1.406o = 1.406 o

On the 8th phase step, phase error is 0 X 1.406o = 0 o. The reason is that the

accumulator phase (outer circle) and the 5-bit resolution phase (inner circle) coincide. As a

consequence, there is no discrepancy between these two circles and so no phase error. This

pattern continues as the accumulator increments by 7 (each time) which are represented by

the outer circle.

 Hence, the phase errors due to the truncation will result in errors in amplitude during

the phase-to-amplitude conversion. Fortunately, the phase errors are periodic. In other words,

the accumulator phase and truncated phase will coincide after some revolutions of the phase

wheel regardless of the tuning word.

Although the phase truncation leads to the truncation error, it can be reduced by

applying a noise shaping technique. The noise shaping technique used in this Master research

is the Taylor Series Corrected DDS.

25

• Taylor Series Corrected DDS

In the Taylor series corrected DDS; the previously discarded fractional bits have been

used to calculate corrections to the phases. The corrections are added to the look-up table

values to produce outputs with very high spurious free dynamic range (SFDR). This noise

shaping technique can maintain the LUT to a reasonable size. The Taylor series corrected

approximation is the expansion of a function of:

���� � ��4� + �B�4� �%C��
D! + �BB�4� �%C��F

&! + ⋯ (2.1)

Hence, the Taylor expansion of sin HI
& /J (quarter-wave storage in LUT) is as below:

sin HI
& /J � 671 HI

& .J + KD�/ − .� cos HI
& .J − NF�OCP�F QRSHT

FPJ
& + ⋯ (2.2)

 The total q-bit phase is divided into the upper phase ‘r’ and the lower phase ‘q-r’ [48].

After the phase truncation, only the upper phase ‘r’ is used for the phase information, so the

Taylor series is performed around ‘r’.

The phase values have angular units so the constant kn (n=1,2,3…) is used to adjust

the units of each series term. kn includes a multiple of π/2 to compensate for the phase units.

It is also used to make sure the expression is always positive [15]. From equation (2.2), k1 is

π/2=1.57 and k2 is – (π/2)2 = -2.47. The Taylor series approximation takes up to three terms.

In fact, additional terms can be employed but the contribution to the accuracy is very small

[48]. This architecture needs two read-only memory (ROM) blocks to store

671 HI
& .J 	41=	2�6 HI

& .J. The unit conversion factor kn is included in the values stored in the

sine and cosine ROMs.

26

Figure 2.4: Taylor series approximation for quarter sine converter [48].

Figure 2.5: Relative bit position of data word implemented in Figure 2.4[48].

For example, an input phase (q) has 12 bits (Figure 2.4). The upper 7 bits of ‘q’ are

used as the upper phase increment ‘r’. This ‘r’ is transferred to both sine ROM and cosine

ROM at the same time. The upper 7 bits are the address signals and hence determine the

number of entries in the ROMs. More bits in the upper phase address result in a larger LUT

with decreased speed and greater cost. The sin (πr/2) ROM is the first term of the Taylor

series expansion. The output from the sine ROM will then sum the other terms from the

expansion to re-construct the final phase (Adder 1).

The output of the cos (πr/2) is configured to incorporate the predetermined unit

conversion value k1. The cosine ROM is less significant than the amplitude term. Thus, the

output can be at lower accuracy and so 9-bit output number is used. The lower 5 bits (q-r) are

used to compute the other two terms used in the Taylor series expansion. The ‘q-r’ is

27

multiplied with the output from cosine ROM to generate the second term (Multiplier 1). The

second term has 10-bit output number.

The MSB of output from the ‘multiplier 1’ has a bit alignment with the DAC input

Least Significant bit (LSB). Because of the alignment, the output number ranges from 1 LSB

to 1/1024 LSB of the final 10-bit DAC input used. Not all the bits after the ‘multiplier 1’ are

needed to maintain the accuracy of the system. Therefore, the system truncates the

multiplication product to 10 bits. In any case, truncation to 10 bits after ‘multiplier 1’ was

used in the example in Figure 2.4. Any bit widths can be used as desired as long as the

principles of the design are met.

The third expansion term is computed in a ROM by combining the derivative of sin

(πr/2) and (q-r) 2. This is done by selecting the upper 2 bits of ‘q-r’ and the lower 3 bits of ‘r’

as a portion of the address for the ROM. This is possible because the last expansion term only

contributes roughly 1/4 LSB to the DAC input (see Figure 2.5). In Figure 2.4, only the ‘r’ is

needed for this degree of accuracy. Finally, the third term ROM output will combine with the

‘multiplier 1’ output in ‘Adder 2’. Subsequently, the result will combine with the first term

ROM output in the ‘Adder 1’.

28

2.3.4 CORDIC

 CORDIC is an algorithm used for computing the hyperbolic and trigonometric functions,

where the initial vector is rotated by a predetermined sequence of sub-angles. The summation

of the rotations approaches the given angle by using minimal hardware such as shift, add,

subtract and compare [14, 50]. When comparing CORDIC with the ROM-based DDS,

CORDIC does not incur an exponential growth of the hardware as the output word size

increases. However, it is difficult to achieve high throughput because of the sequential nature

of the algorithm [14].

Two architectural configurations are available for the CORDIC core:

1. A fully parallel configuration with single-cycle data throughput at the expense of the

silicon area

2. A word serial implementation with multiple-cycle throughput but occupying a small

silicon area

According to Volder, an algorithm is derived from the general rotation. A transform

rotates a vector (X, Y) through an angle (Ø). This rotation yields a new vector (X’, Y’) in a

Cartesian plane. The equations below represent the condition of the rotation [50]:

VB � V2�6∅ − X671∅																																																																																																																							�2.3�

XB � X2�6∅ − V671∅ (2.4)

∅B � 0

A CORDIC can operate in two major modes. The first is rotation mode and the

second is vectoring mode. The CORDIC algorithm introduces a constant scale factor, Zn,

which is only dependent on the number of iterations (n) and can be compensated by

multiplying a 1/Zn [10].

29

2.3.4.1 Rotation Mode

CORDIC rotates a vector by a specified angle, also known as micro-rotations. These

micro-rotations are the sequence of successively smaller rotations, each of the atan]2C	^.

The entire process can be expressed as a simple shift and add/ subtraction operations.

Equation (2.5) to (2.7) shows the expression for an 7�_	iteration, where 7 is the iteration index

from 0 to n.

�	`D � �	 − a		. 	3		. 2CD (2.5)

3	`D � 3	 − a		. �	. 2CD (2.6)

∅	`D � ∅	 + a	 . atan	�2C	�, (2.7)

 a	 � b1	71=724�-6	�ℎ-	=7.-2�7�1	��	.��4�7�1

 If the series of ‘n’ micro-rotations are performed by the CORDIC algorithm, the

expression in the 1�_ iteration can be summarised using equation (2.8) to (2.10) below:

VB � ∏ cos			�atan]2C	^��V	 − a	X	2C	�

	eD 						 (2.8)

XB � ∏ cos			�atan]2C	^��X	 − a	V	2C	�

	eD (2.9)

∅B � ∑ ∅ − �a	. atan]2	^�

	eD (2.10)

 The explanation above can be simplified by the diagram of vector rotation in Figure

2.6 below.

 Figure 2.6: Diagram of vector rotation [58, 60].

In Figure 2.6, the vector (X, Y) is rotated through the angle (Ø) to a new vector (X’,

Y’). The vector rotation is dependent on the value	a		. The direction of the rotation a	 should

30

be selected so that ∅B converges towards zero. For example, if ∅	`D ≥ 	0, a	 � −1	and

if	∅	`D < 0, a	 � +1. The coordinate components of the output vector are computed after the

given coordinates component of an input vector are rotated to the desired angle (Ø). The

equations (2.11) to (2.13) show the expression of these coordinates. [50]:

VB � k
. V2�6∅ − X671∅ (2.11)	
XB � k
. X2�6∅ + V671∅ (2.12)

∅B � 0

lmnopl	�24<-	q42��., k
 � ∏ r1 + 2C&	

	es (2.13)

The vector rotation mode is used for the conversion of polar coordinates to the

rectangular coordinates. However, it is also used to calculate the sine and cosine functions.

31

2.3.4.2 Vectoring Mode

The vector translation is the modification of the vector rotation algorithm. In vector

translation, CORDIC rotates the input vector towards the x-axis while accumulating an angle.

The attribute of the vector translation can calculate the magnitude and phase of the input

vector. Thus, it is used to convert the rectangular coordinates to be polar coordinates. Figure

2.7 below shows the basic operation of the vector translation.

Figure 2.7: Diagram of vector translation [58, 60].

In Figure 2.7, the vector translation rotates the input vector (X, Y) around the circle

until the angle aligns the result vector with the X-axis (Y=0) [49]. This is the point where the

magnitude X’ and angular argument Ø’ of (X, Y) are computed. The direction of the rotation

αi should be selected so that Y’ converges towards zero. For example, if ∅	`D ≥
	0, then		a	 � −1	and if	∅	`D < 0, then	a	 � +1 . The CORDIC equations for the vector

translation are [50]:

V′ � k
√V& + X& (2.14)

X′ � 0

∅B � atan Hx
yJ (2.15)	

lmnopl	�24<-	q42��., k
 � ∏ r1 + 2C&	

	es (2.16)

 Both vector rotation and vector translation are limited to the rotation angles between

b90�. This restriction is due to the use of 2s for tangent in the 1st-iteration. A complete sine-

wave is symmetric from quadrant to quadrant. Every sine value from 0 to 2π can be

represented by reflecting or inverting the first-quadrant. If any rotation angles are greater than

90o, coarse rotation and inverse coarse rotation are needed. The coarse rotation is used to shift

32

the input samples from the full circle into the first-quadrant. The inverse coarse rotation is

used to shift the output samples to the correct quadrant [10, 58, 60].

Several functions can be operated by the CORDIC such as:

• Sine and cosine function

• Polar-to-rectangular transformation

• Arctangent function

• Vector magnitude function

• Cartesian to polar transformation

• Inverse CORDIC function and so on

Usually, only sine and cosine functions are used for sinusoidal oscillation [44].

33

2.3.4.3 Sine and Cosine Function

Sine and cosine functions of a particular input angle can be computed using vector

rotation mode to generate a 2π sinusoidal waveform. However, the CORDIC algorithm is

only valid for the first-quadrant. Therefore, an optional course and inverse rotation module is

used to extend the range of the input angle (X) to the full circle in order to cover the four

quadrants [58, 60].

Initialising the input vector component Y=0 into equations (2.17) and (2.18) reduces the

rotation mode.

V′ � k
Vs cos ∅s (2.17)

X′ � k
Vs sin ∅s (2.18)

By letting	Vs � D
{|

, the un-scaled sine and cosine of an angle argument ∅s will be

produced to modulate the magnitude value. A rotator gain is used to scale the output of

CORDIC. If the gain Vs does not produce satisfying results, a single multiplier can be used to

place an additional gain constant before the CORDIC rotator. This step can produce un-

scaled results.

34

2.3.5 DAC

The phase accumulator generates phases, which are the addresses for a sine LUT.

These digital phases cannot be used in NMR applications because the results are linear and

must be converted to the corresponding values of analog voltage or current.

All modules of the DDS system are synchronised to each other by a reference clock.

The clock topology allows the phase generation, phase-to-amplitude, and digital-to-analog

conversion to operate simultaneously. Usually, a low-pass filter is used to suppress the effects

of the image responses in the output spectrum.

35

2.4 Comparisons between LUT-based DDS and CORDIC Algorithm

 The difference between CORDIC and LUT-based generators is that LUT-DDS has an

unsigned modulus 2N accumulator. The accumulator output addresses the phase-to-amplitude

conversion. In a CORDIC based generator, the phase accumulator is a 2’s complement

modulus-π accumulator. The generated phases are in radians, and they can be converted to

amplitude by the CORDIC algorithm.

 A general CORDIC generator requires two shifters [12]. In the CORDIC system, no

multipliers or memories are needed unlike in the ROM-based LUT. This is because the

hardware complexity of a CORDIC rotator approximates to a single multiplier. In other

words, the CORDIC performs multiplication as part of the rotation operation. So, it gets rid

of the need for a pair of explicit multipliers [10]. The other advantages of using the CORDIC

based DDS with respect to the LUT-based DDS are that it can achieve both high phase

resolution and precision at lower hardware cost [13, 44].

 The main problem of the CORDIC based DDS is the limitation of its convergence

ranges. The magnitude and the sequential nature of the CORDIC algorithm make it difficult

to achieve the higher throughput design. Unlike the ROM-based DDS, all the required sine/

cosine samples of the CORDIC algorithm are limited between ±π [2, 44]. Different

approaches have been presented since the last decade. These approaches include the method

to expand the convergence range of the CORDIC algorithm. By repeating certain iterations of

the algorithm, accurate results can be obtained.

 The processing time to compute a better precision result is unnecessarily excessive if

a large number of iterations are required [20, 24]. Under these circumstances, the ROM-based

DDS is more suitable for higher throughput, and they are easier to implement. The nature of

CORDIC induces a quantisation error during the conversion process. However, the

quantisation error can be monitored by controlling the total iterations in the CORDIC

algorithm.

Due to the natural characteristics of CORDIC, it generates amplitude values by using

algorithms. Hence, it needs time for arithmetic computation. In certain architecture types,

CORDIC requires a large number of iterations for accurate results. Therefore, the speed is

slow and the time delay is high. The negative impacts from the CORDIC algorithms make the

36

system unsuitable for high-speed operation. Hence, LUT methods are generally quicker than

this CORDIC algorithm.

37

2.5 FPGA

In recent years, FPGA has gradually replaced the analog control system in order to

manage analog control function digitally. A traditional RF system with analog circuitry has

many disadvantages such as lacking control flexibility. On top of that, a close-loop control

structure is difficult to implement in a microcomputer system. The tremendous growth in

digital communication techniques has resulted in both DDS and FPGA, which are useful,

especially in the RF systems [18].

Nowadays, many fields use FPGAs to implement custom instruments because of the

merits of these advanced chips such as high flexibility, programmability, and full

customisation. The development of nanotechnology enables more logic gates, and Intellectual

Property (IP) cores are integrated into a single small FPGA chip. The integrated features in

the FPGA device can be tailored and customised depending on the design specifications.

These key features enable the FPGA device to achieve fast real-time processing on a single

chip. An embedded programmable operation system can be integrated into a high-level

FPGA device, called a System on Programmable Chip (SOPC), to provide steadier

performance. Another advantage is to satisfy the specification of the design by reconfiguring

the FPGA device with different IP cores. This cannot be done if a dedicated hardware is used

because it would likely require component changes. Hence, the FPGA device blurs the

boundary between software and hardware.

FPGA devices are flexible; its user-customisable functions can be added or removed

as required by the project objectives. This is something that cannot be done in

microcontrollers in general. For executing digital signal processing (DSP) algorithms, FPGAs

are preferable because they are better suited for real-time applications. Besides that, FPGAs

can optionally process multiple random signals in parallel or take sequential functionality like

adding soft processor cores. However, microcontrollers always operate in a sequential

manner. As an example, microcontroller-computing expressions with more than two terms

need a sequence of arithmetic and/ or logical operations. However, FPGAs can increase the

performance of systems by having such computations in parallel with a reasonable amount of

combinational logics.

Microcontrollers change too often and there is a lot of rework required in order to

keep pace with changing technology. This is necessary to save the design from being obsolete.

The lifetime of FPGA-based development is longer, and can be adopted for advanced chip if

38

needed. Other than that, microcontrollers are low-cost (much lower than FPGAs) and are

more power efficient. This is true for small applications and large quantities. Microcontrollers

are preferable when a project requires few or no hardware multipliers. If the project involves

a vast number of gates to implement multiplication, FPGAs are more suitable for this

application.

Usually, microcontrollers are sufficient for specific application requirements. The

required application is normally developed by using software. In developing such a system,

hardware interfacing is required. Generally, it is implemented using standard specialised

chips. Unfortunately, it leads to a fixed system. This fixed system cannot be altered without

hardware design. However, FPGAs are very versatile [27, 42].

FPGA devices are always used as a co-processor for existing processors, accelerating

time-critical operations or extending the operations of the standard ALU [38, 39]. FPGAs

have many built-in devices, which are very convenient for the research presented here. The

devices have serialisation or de-serialisation (SERDES) for data transmission at 1 GSPS,

LUTs, phase accumulators etc. Therefore, no additional circuitry is required to implement

these devices. Although phase accumulators and LUTs can be created by using a

microcontroller, the microcontroller needs code to develop these two features. In contrast,

these features can be added to the FPGA devices using the Xilinx IP Core generator.

 The projects implemented using FPGA are more costly than a simple microcontroller

unit (MCU) is. This is because programming an FPGA device to operate in a specific task

takes a lot longer than programming an MCU. For an MCU such as a peripheral interface

controller (PIC), the packages that are geared towards a certain task can be purchased from

the manufacturer. However, developing efficient VHDL code can be very time consuming

but the code developed for FPGA is reusable if the hierarchy of the VHDL program is

planned and written properly. Hence, the FPGA is suitable for design and development

processes or for use in products that have a high degree of complexity with only low demand.

Once the demand increases, mass production is necessary, FPGA will be replaced by

Application-Specific Integrated Circuits (ASIC) for better production cost.

A single FPGA chip can feed many modules such as DDS, DDC (Direct Digital

Control), PLL, Finite Impulse Response (FIR), and Cascaded Integrator-comb (CIC) filtering,

SERDES, DCM (Digital Clock Manager) and so on for multi-carrier applications. These

modules will be very useful for developing a complete NMR electronic instrument on the

39

same evaluation board in the future. Furthermore, one or multi-modules can be implemented

in parallel on an FPGA device so that multiple channels can be attained with or without

additional circuitry. Therefore, an FPGA platform is preferable in this research as a target

device.

Figure 2.8: Key differences between different Xilinx FPGA families.

 Figure 2.8 shows the key differences between the Xilinx FPGA families. Considering

that the development of the custom DDS system in this research is part of the NMR system,

the total I/O pins required by the entire project are 295. Besides that, a PCI Express interface

and two I/O voltage levels (1.3 V and 3.3 V) are needed. Therefore, Spartan-6 will be the best

option as the exact functionality that is needed is provided by the chip. Based on past projects

in similar fields, the estimated amount of logic cells and DSP slices required for this research

are covered by a Spartan-6 device.

40

2.6 Spartan-6 (XC6SL45T)

This research is part of the overall project belong to the NMR research group. The

aim of the project is to implement an NMR RF transmitter for NMR application purposes.

Some research components are inherited from past research projects. Therefore, a standard

FPGA chip, Spartan-6, is used to prevent compatibility problems and to avoid the necessity to

re-design and re-develop the overall system. This decision will reduce the research timeline

and improve the research cost saving by reusing the available resources.

Many DSPs have difficulty in meeting the specifications of an RF system. For

example, a waveform at 2GHz sampling time is hard to achieve because it lacks flexibility.

Fortunately, FPGAs have very good coordination ability to deal with this limitation. The

characteristics of FPGAs enable them to have high speed data access realised. By combining

the flexibilities of a DSP processor and an ASIC, the DSP circuit, which is composed of an

FPGA device, can work in parallel as well as in the sequential manner (state machine). The

instructions executed by a standard DSP will cost more cycles to finish than an FPGA device

running in parallel processing. Overall, the processing speed of FPGAs is faster than the

general DSP available on the market [65].

Spartan-6 has a large array of configurable logic blocks (CLB) ranging from 3840 to

147443 logic cells within the Spartan-6. This huge amount of cells gives great flexibility

together with its speed [56]. For many DSP applications such as NMR spectrometers, speed

is important for initial processing of the data. After that, the data rate is reduced and it

becomes more convenient to manage. In this research, the low-cost and low power Spartan-6

can be reconfigured so that it can be used for multi-purpose implementation to make sure the

hardware has a higher utilisation factor.

Generally, the maximum I/O clock frequency of a Spartan-6 is 540 MHz [57].

However, the clock speed can be extended to reach 1 GHz by using specific I/O resources in

the device. The I/O resource used for the high speed signalling process is known as I/O

SERDES [36]. This feature would be further explained in Chapter 3.

The Spartan-6 has adequate features to make up a complete RF transmitter. All the

digital jobs required in the RF transmitter can be done in a single FPGA chip. By utilising

Spartan-6, the project cost decreased while the portability increased. Spartan-6 has good

scalability to avoid becoming obsolete and to shorten the time needed to design a new-

41

product [4]. The internal FPGA modules are reusable and re-configurable to meet the project

changes. The Spartan-6 chip can run its modules in parallel, and these modules can be

overwritten as many times as necessary using only a computer and a download cable.

42

2.6.1 Basic Architecture of Spartan-6

 Generally, a common FPGA consists of logic blocks called Configurable Logic

Blocks (CLB) or Logic Array Blocks (LAB) depending on the manufacturer, I/O pads and

routing channels (as shown in Figure 2.9). The logic blocks are used to implement

combinational and sequential logics. These logic blocks are connected to I/O blocks via wires,

which are known as interconnection resources. These I/O blocks are special logic blocks at

the periphery of the device for external connections.

Figure 2.9: FPGA architecture [64].

 In general, all the routing channels have the same number of wires. Multiple I/O pads

may fit into the height of one row or the width of one column in the array. Currently, FPGAs

employ logic blocks, which are based on the following [64]:

• Multiplexers

• Transistor Pairs

• Gates such as two input Negated ANDs (NAND) or exclusive-ORs

• LUTs

• Wide fan-in AND-OR structures

43

The programming process of an FPGA is done via electrically programmable

switches and is almost the same as a traditional Programmable Logic Device (PLD).

However, FPGAs can achieve much higher levels of integration than PLDs. Even so, PLD

routing architectures are very simple but highly inefficient crossbar-like structures. Every

output of a PLD is directly connectable to every input through one switch. In contrast, each

I/O connection of a typical FPGA is usually passed through several switches. Hence, FPGA

routing architectures are more efficient than PLDs. The logics of a PLD are implemented

using predominantly two-level AND-OR logic with wide input AND gates. On the other hand,

the logics of an FPGA are implemented using multiple levels of lower fan-in gates and are

much more compact.

 Figure 2.9 shows the architecture of a common FPGA device. An FPGA routing

architecture incorporates wire segments of varying lengths that can be interconnected via

electrically programmable switches, which can affect the density achieved by an FPGA [35].

In practice, optimum wire segments and lengths are used in every project. If insufficient wire

segments are used, it will result in poor density because only a small fraction of the logic

blocks can be utilised. On the other hand, the use of extreme wire segments that go unused is

impractical because of the waste of board area. If an excessive length of wire is used,

implementing local interconnections becomes too costly in the area and delay. If all the

segments used are short, long interconnections are implemented with many switches in series.

This condition will cause impractical large delays. In fact, unused routing tracks increase the

cost and decrease the performance of the part without showing any benefit. Thus, most of the

FPGA manufacturers provide just enough tracks so that most of the designs can fit in terms of

LUTs and I/Os can be routed.

44

Figure 2.10: Simplified block of a logic cell [21].

A general logic block consists of a few logic cells, which are normally known as

slices. A typical cell has a 4-input LUT, a full adder (FA) and a D-type flip-flop (DFF)

(Figure 2.10). In practice, the entire or part of the FA is placed into LUT in order to save

space. In normal mode, the 3-input LUTs (a, b and c) are combined with ‘d’ into a 4-input

LUT via a left multiplexer (MUX). In arithmetic mode, the outputs of 3-LUTs are sent to FA.

These two modes can be selected by programming the middle MUX. The MUX to the right

can also be programmed to decide if the output will be either synchronous or asynchronous

[21]. In recent years, manufacturers started to improve LUTs by moving from a 3-input LUT

to a 6-input LUT. It is claimed that this can increase the performance of an FPGA device.

In this research, a Spartan-6 (XC6SLX45T) is used to carry out the signal processing

of an RF signal. Spartan-6 logic cell ratings reflect the increased logic cells due to the

introduction of the new 6-input LUT architecture. In CLBs, each Spartan-6 FPGA slice

contains four LUTs and eight flip-flops with each DSP48A1 slice containing an 18 x 18

multiplier, an adder, and an accumulator. The DSP38A1 slices support DSP algorithms and

high levels of DSP integration. Minimal use of general FPGA logic leads to low power, very

high performance, and efficient silicon utilisation.

Table 2.0: Features of Spartan-6 [56].

A Spartan-6 device has four clock management tiles (CMT) and 116 block RAMs

(see Table 2.0). Each CMT contains two DCMs and one PLL. Each block RAM is 18Kb in

45

size. However, each block can be used as two independent 9Kb blocks. The difference

between XC6SLX45 and XC6SLX45T are that the XC6SLX45 has a 1.0 voltage core but no

Gunning Transceiver (GTP). In contrast, XC6SLX45T has a 1.2V voltage core, GTP and

extra endpoint block for PCI express feature [56]. A GTP Transceiver supports multi-

gigabyte data rates in high-speed data transmission.

46

2.6.2 CLB

CLBs are responsible for implementing sequential and combinatorial circuits in

FPGA devices. The connections among CLBs are done via a programmable interconnection.

Each of the CLBs is connected to a switch matrix and the switch matrix provides access to

the general routing resources as indicated in Figure 2.11. A CLB element has two slices.

These two slices do not connect to each other directly. Each slice is organised as a column. A

slice in the column has an independent carry chain.

Figure 2.11: CLB and interconnect channels [55].

A CLB has a pair of slices, which are not connected to each other as shown in Figure

2.12. The slice in the bottom of the CLB is labelled as SLICE (0), and the slice in the top is

labelled as SLICE (1).

Figure 2.12: Slices in a CLB [55].

47

 Each slice contains four logic-function generators or LUTs and eight storage elements.

These elements are used by all types of slices to provide logic and ROM functions. SLICEX

is a basic slice. It contains 6-input LUTs and 8 flip-flops so it can be used for logic only.

Other slices such as SLICEL and SLICEM contain additional features such as wide-function

multiplexers and carry logic, which allow SLICEL and SLICEM to provide logic, arithmetic,

and ROM functions. However, SLICEM has two additional features. SLICEM has distributed

RAM, shift registers that allow the ability to use the LUTs as the 64-bit distributed RAM, and

as variable-length shift registers with maximum 32-bit. The main difference between

SLICEX, SLICEL, and SLICEM is that SLICEX can only be used for logic, SLICEL only for

logic and arithmetic, and SLICEM can be used for logic, arithmetic, and memory.

 Each column of CLBs has two slice columns. One is SLICEX and another one is

either SLICEL or SLICEM. SLICEX occupies 50% and each of the other two slices occupies

25% of the available slices. Table 2.1shows all the features of these three types of slices [56]

and Table 2.2 shows the summary of logic resources for each CLB in Spartan-6 devices.

Feature SLICEX SLICEL SLICEM

6-Input LUTs √ √ √

8 Flip-Flops √ √ √

Wide-Function Multiplexers √ √

Carry Logic √ √

Distributed RAM √

Shift Registers √

Table 2.1: Slice features [56].

Slices LUTs Flip-flops
Arithmetic and Carry

Chains
(2)

Distributed

RAM
(1)

Shift Registers
(1)

2 8 16 1 256 bits 128 bits

Table 2.2: Logic resources of a CLB [56].

Notes:

1. SLICEM only, SLICEL, and SLICEX do not have distributed RAM or shift registers.

2. SLICEM and SLICEL only.

48

2.6.3 LUT

The function generators in Spartan-6 are implemented as 6-input LUTs from two 5-

input LUTs. In Figure 2.13, there are six independent inputs (A1 to A6) and two independent

outputs (O5 and O6). The combination of two 5-input LUTs (two LUT5s) can implement a 6-

input function generator (LUT6) with only an O6 output. Two arbitrary LUT5 function

generators can implement two independent 5-input function generators with O5 and O6

outputs. The wide-function multiplexers of SLICEL and SLICEM can be used to combine

two LUT6s to implement a 7-input function generator or to combine four LUT6s to

implement an 8-bit input function generator [55].

Figure 2.13: LUT of Spartan-6 [55].

A function generator produces outputs via LUTs. The Static Random-Access Memory

(SRAM) cells store the content of a LUT. The input addresses of the function generator are

used to select the desired SRAM cells. Figure 2.14 shows the working area of a 3-input LUT

(a,b and d). Of course, the actual LUT is different; the figure is simplified and just for

clarifying the working idea.

Figure 2.14: A transmission gate-based LUT [28].

49

2.6.4 Storage Elements

There are eight storage elements (two sets) per slice in a Spartan-6 device. The logics

of a slice are stored by flip-flops (each set contains four flip-flops). The first set can be

configured as either edge-triggered D-type flip-flops or level-sensitive latches but the second

set can only be edge-triggered D-type flip-flops. When four flip-flops are configured as level-

sensitive latches, the remaining flip-flops cannot be used [55].

2.6.5 Multiplexers

As shown in Table 2.1, the wide-function multiplexer is available only for SLICEL

and SLICEM. The multiplexer allows LUT combinations of two or four LUTs in order to

implement 7-input or 8-input general-purpose function generators [55].

2.6.6 Carry Logic

As shown in Table 2.1, carry logic is available only for SLICEL and SLICEM. They

are used to perform fast arithmetic addition and subtraction in a slice.

2.6.7 Distributed RAM

In Spartan-6 FPGA devices, SLICEM has additional data input and write-enable

signals. These two key features allow LUTs to use SRAM cells as distributed RAM in FPGA

devices. The size of the RAM can be created by combining multiple LUTs in a SLICEM to

store a large amount of data. Since the flip-flops are from the same slice, the performance of

distributed RAM is therefore fast and is suitable for small data buffers [55].

2.6.8 Shift Registers

A 32-bit shift register can be configured by the LUT of SLICEM without using any

flip-flops in a slice. Multiple LUTs can be cascaded to produce delays of up to 128 clock

cycles. As examples, two, three, and four LUTs can be configured as 64-bit, 96-bit, and

50

maximum 128-bit shift registers due to only four LUTs in a slice. However, more than one

SLICEM can be cascaded to create a shift register, which is more than 128-bit [55].

51

2.6.9 I/O Architecture of Spartan-6

The Input/output Block (IOB) of Spartan-6 supports a wide variety of standard

interfaces via programmable high performance I/O drivers and receivers. Each IOB can be

configured to be input, output, or tri-state. The IOBs are grouped into four or six banks

depending on device size and package. A Spartan-6 FPGA device such as XC6SLX45T has

four banks, one on each side of the device (see Figure 2.15). Each bank has various standards,

which include slew rate, output drive voltage and on-chip termination. Differential I/O

standards can be configured by grouping adjacent IOBs together in one tile [54].

Figure 2.15: Spartan-6 XC6SL45T I/O banks [54].

Figure 2.16 shows a Spartan-6 FPGA I/O tile containing two IOBs, two Input Logics

(ILOGIC), two output logics (OLOGIC) and two IODELAYs.

Figure 2.16: I/O tile of Spartan-6 [54].

52

2.6.9.1 IOB

The IOB in Figure 2.17 is used to drive or to receive signals from a physical pin of a

Spartan-6 device. The IOB can be configured as input, output, or tri-state by using SelectIO

drivers. Each IOB has direct connection to ILOGIC/ OLOGIC pairs containing the input and

output logic resources for data and tri-state control. Both ILOGIC and OLOGIC can be

configured as input serdes (ISERDES) and output serdes (OSERDES) for serialising and de-

serialising data to allow higher operational speeds. Only one IOB is needed to configure a

single-ended I/O standard and two adjacent IOBs for a differential I/O standard [54].

Figure 2.17: Basic IOB diagram [54].

2.6.9.2 Input/ Output Logic Resources

An I/O interface tile (IOI) has two IOLOGICs, which are Master IOLOGIC and Slave

IOLOGIC. These two IOLOGICs can be concatenated in differential I/O standard or operate

independently as two single-ended I/O blocks. In Figure 2.18, the master I/O buffer drives the

pad ‘P’ and the slave I/O buffer drives the pad ‘N’ separately. Thus, it results in two single-

ended blocks. When the resources of these master and slave I/O buffers are combined, a pair

of the differential signal path on pad ‘P’ and pad ‘N’ can be created. Moreover, these I/O

drivers can be configured to implement a parallel-to-serial (serialisation) or serial-to-parallel

(deserialisation) conversion in differential mode. The conversion can produce a rate of up to

twice that of a single I/O buffer [54].

53

Figure 2.18: Resources of master and slave IOLOGICs [54].

 The IODELAY in the master and slave IOLOGIC blocks are optional. The amount of

delay can be fixed or variable depending on the programming to Spartan-6 FPGA devices.

54

2.6.10 Input/ Output Serialisation and De-serialisation (ISERDES and OSERDES)

In Spartan-6 FPGA devices, each IOB contains a 4-bit ISERDES and OSERDES

block. The IOSERDES block allows higher operational speeds in data transmission. In order

to obtain more bits in IOSERDES (more than 4-bit), adjacent serdes blocks can be cascaded

to create serdes ratios from 2:1 to 8:1. These are applicable to both single data rate (SDR) and

double data rate (DDR) modes. There are some precautions for using ISERDES in SDR

mode when compared to ISERDES in DDR mode. In DDR mode, master and slave logic

blocks with two sets of serdes registers are used to create a differential signalling standard. In

SDR mode, two data lines cannot enter the device in adjacent master and slave IOBs when

serdes is cascaded to achieve more than 4-bit serdes. For serdes ratio of four or less in SDR

mode, only one SERDES block is needed and so the phase detector is not required because

no serdes block is cascaded [36].

 In de-serialisation, the received data stream is a multiple of the rate of the incoming

clock and the clock signal is used as a framing signal for the received data. Therefore, there

will be multiple changes in the state of the data lines occurring during a clock period. If the

clock signal is in SDR mode, the data stream is at the same rate as the receiver clock. If the

clock signal is in DDR mode, the data stream is at twice the rate of the receiver clock because

serdes receives DDR data on the rising edge and the falling edge of the receiver clock [36].

In serialisation, the process depends on the desired format of the transmitted data

stream and a forwarded clock, and both must be regenerated from the same serdes system

clock. Consequently, both data and clock can change state at the same time. If the forwarded

clock is SDR, the data stream changes state twice for each data bit transition [36].

55

2.6.11 Clock Resources

All the synchronous signal processes inside an FPGA device from the outside world

occur through specific clock pins. The connection of the external clock to the FPGA is

established via clock routing resources in order to eliminate any potential for timing hazards.

Figure 2.19 shows a simple clock tree of an FPGA device.

Figure 2.19: A simple clock tree [28].

 There are two processes to manage the clocking resources in FPGA devices. The first

process it to set up a path for the clock signals from external clock sources to FPGAs through

global clock routing resources. The second process is the management of the clock signal

inside the FPGA device through CMTs. The CMTs provide very high performance clocking

skew for synchronous signalling process inside FPGAs. For this there is dedicated routing

within CMTs. By using these dedicated routes, global resources can be freed up for other

design elements as well as reducing the chances for noise coupling as these routes are

handled locally. Each CMT block contains two DCMs and one PLL. Therefore, a Spartan-6

(XC6LS45T) device contains four CMTs, eight DCMs and four PLLs [28].

Any output clock from the CMT can minimise clock skew by using a Global Clock

Buffer (BUFG). In case the BUFGs are insufficient, a CMT clock can be used without any

BUFG but all logic must be placed within the clock region [61].

 DCMs are advanced clocking systems. They are integrated directly into the global

clock distribution network for high performance and high frequency application. DCMs can

improve system performance by eliminating the clock skew either within the device or to

56

external components. It is also used to eliminate the clock distribution delay within the

system. Besides this, DCMs have optional features to phase shift the clock outputs. It can also

delay the received clock either by a fixed fraction of the clock period or by incremental

amounts. In addition, DCMs can act as a clock distributor to synthesise a new clock

frequency, optionally multiply, or divide the incoming clock frequency. Other benefits

provided by DCMs are listed below [61]:

• Free-running oscillator

In free-running oscillator mode, an external clock signal needs to be connected to a

Spartan-6 until DCM is locked, then the external clock signal no longer needs to be

presented and can be removed. At this moment, the internal clock generated by the

DCM module will continue to run at the same frequency. If temperature or voltage

levels fluctuate, the frequency can vary.

• Provide a clean 50% duty cycle output clock

• Convert the incoming signal to different I/O standards

• Acts as a filter for clock input jitter

PLL serves as a frequency synthesiser for a wide range of frequencies. It also acts as a

jitter filter for either an external or an internal clock in conjunction with the DCMs. Figure

2.20 shows the overview of a PLL and the entire process can be summarised as below.

Figure 2.20: Overview of a PLL in Spartan-6 [61].

Each clock input has a programmable counter D to perform a division on a clock

signal. This division will lower the clock frequency. The Phase-Frequency Detector (PFD)

57

block is used to generate a signal proportional to the phase and frequency between the

reference clock (input clock) and the feedback clock. Thereafter, the Charge Pump (CP) and

Loop Filter (LF) blocks will process the signal from the PFD and will generate a reference

voltage to the Voltage Controlled Oscillator (VCO). The feedback clock of the PLL will be

controlled by a programmable counter M [61].

Later on the multiplication stage (M), the signal will be fed to the PFD. An up or

down signal will be created in the PFD to the CP. The purpose of the LF is to determine

whether the VCO should operate at a higher or lower frequency. The entire process allows a

wide range of frequency synthesis.

2.6.12 Other Resources of Spartan-6

 Besides the modules discussed above, there are other resources available for the

Spartan-6 FPGA [56]:

� Block RAM

� Memory Controller block

� Soft 8-bit PicoBlaze Processor

� Soft 32-bit MicroBlaze Processor

� GTP transceivers

� Integrated Endpoint block for PCI Express Design

 One can choose a suitable FPGA module to satisfy their design requirements from the

available resources in an FPGA device.

58

2.7 Development Tools

Every FPGA device manufacturer introduces its own design tools to support FPGA

devices. Examples of design tools introduced by two major FPGA manufacturers are ‘Xilinx

Integrated Software Environment (ISE)’ by Xilinx and ‘Quartus II’ by Altera. These design

tools enable the project developers and designers to control the FPGA-based project

development cycle. The main advantage of using FPGA devices is that their associated

development tools reduce the time-to-market. This is because the development tools are able

to generate many parts or functions to meet the design requirements. These functions can be

obtained by using core wizards such as IP Core Generator from Xilinx or Mega-functions

from Altera. Generally, these two manufacturers provide a free version of development tools

to support basic capabilities. The non-free version comes with advanced capabilities, which

are commonly used for the development of embedded systems, DSP systems and so on. In

the research presented in this thesis, Xilinx ISE is used for the synthesis and analysis of

VHDL designs on the Spartan-6 device.

This ISE development tool enables developers or designers:

• To synthesise (compile) their FPGA-based designs

Synthesis is the process of constructing a gate level netlist from a model of a circuit

described in VHDL.

• To perform timing analysis

• To examine RTL Diagrams

• To simulate a design’s reaction to different stimuli

• To configure the target device

59

2.8 Summary

This chapter reviewed the structures necessary to build an RF transmitter. The pulse

generator is the main core in the RF transmitter, and it is designed to generate a sine-wave

output with a desired frequency. The ROM-based LUT is more reliable and more economical

than the CORDIC algorithm in terms of hardware cost and hardware resources. The

limitations of the present RF transmitter lie behind the motivation for this research:

• Not all the components of the present RF transmitter are completely implemented in

the FPGA. The features of the FPGA are not fully utilised by most solutions, and it

results in many redundancies in the FPGA.

• The limitations and constraints of an NMR spectrometer depend on the availability of

the hardware components on the market. A good design should not rely too much on

faster hardware devices because different methodologies should be tried to operate the

system beyond the limitations in order to achieve the objectives of the research.

60

Chapter 3

Design and Development

Chapter 3 will discuss the conceptual design of an advanced DDS system and its simulation

results. This chapter contains two sections. The first section deals with Matlab-Simulink

simulation and the second with RTL-level simulation. Matlab-Simulink is used as a high-

level modelling tool to interpret the overall functionality of a DDS system, especially from

the flow of input to output. The primary purpose of using Simulink is to simulate the basic

structural pattern of a custom DDS system. The custom DDS system can handle two types of

signal synthesis processes. The basic type generates a signal from the 1st Nyquist zone based

on over-sampling theory. The second type generates a signal which is outside of the 1st

Nyquist zone with under-sampling theory. After Matlab simulation, the custom DDS modules

undergo RTL-level simulation. RTL-level simulation involves a VHDL compiler and an ISim

simulator. The RTL-level simulation is a behavioural simulation. It helps to understand the

architecture and the operation of the entire custom DDS system.

3.1 High-level Simulation of a DDS core with Matlab-Simulink

There is always some confusion in setting up the periods for simulation. In the DDS

Simulink simulation, four types of period settings could be found:

1. FPGA Clock Period (ns):

This is the FPGA clock period setting of the Xilinx system generator block. The

setting of this period, however, does not affect the output frequency of the DDS block.

It is solely used for FPGA synthesis and implementation by using Mat-lab Simulink.

In this research, the FPGA synthesis and implementation are handled by using Xilinx

ISE. Consequently, the FPGA clock period setting in this research is inessential.

2. Simulink System Period:

This is the period setting used in the Simulink simulation. Usually, it refers to the

sampling period of the Simulink block (except Xilinx Simulink blocks). The

minimum sampling period is equal to 1.

61

3. DDS System Clock (MHz):

In this research, it is set to 250 MHz. This value is used to calculate the phase

increment in the DDS module (phase accumulator).

4. Explicit Sample Period:

This explicit sample period refers to the sample period of the DDS module (only for

Xilinx Simulink blocks). If any Simulink system period is set to more than ‘1’, the

explicit sample period must be ‘Checked’. This will make sure the explicit sample

period is set to the same value as the Simulink system period. The aim is to prevent

the Simulink using the sample period of 1 for the DDS blocks. This is to avoid the

system generating an inaccurate output frequency.

The FPGA clock period setting is not important here because the research presented

here does not involve FPGA synthesis using Simulink. All the structural designs that are

simulated by using Simulink would be transferred to RTL-level simulation (Xilinx ISE)

manually at a later stage.

62

3.1.1 Design Requirements

A single DDS should satisfy the following requirements:

System Clock, fsystem : 250 MHz

Signal-to-noise ratio (SNR) : ~86 dB

Input width of Phase Accumulator : 25-bit

Input width of LUT : 25-bit

Output width of LUT : 14-bit

Frequency Resolution, ∆f : 7.45 Hz

Notes:

With Xilinx FPGA devices, the phase truncation is done by LUT block before phase-to-amplitude conversion.

Estimated SNR of the truncated output

SNR = 6.02B + 1.76 dB where B is the total bits to the DAC chip (truncated)

 (3.0)

86 = 6.02 (14) + 1.76 dB

B = 86 dB

Depth of sine LUT

The table depth is = 2B (3.1)

 = 214

 = 16384 samples

Frequency Resolution

}�			 � !()($*+
~	%	&' 												, where N is the N-bit phase accumulator (3.2)

 C is the total output sample over a unit time

}�										 � 	
250	���

1	�	225 						 , C � 1	because	only	one	output	over	a	unit	time	

}�										 � 7.45 Hz

Depth of the phase accumulator

The depth of the phase accumulator is = 2N (3.3)
 = 225

 = 33554432

63

A Xilinx phase accumulator supports an input width from 3-bit up to 48-bit. As a

LUT can support from a minimum of 12-bit to 25-bit of input width, a 25-bit phase

accumulator is selected to match the LUT. A 14-bit truncated output is selected so that the

output width of the LUT matches the input width of a DAC chip used on an evaluation board.

The phase accumulator has a 25-bit input to generate phase information. The depth of

the phase accumulator is 225 = 33554432. However, this 25-bit will be truncated to 14-bit to

reduce the capacity of a LUT. After the truncation, the total entries of a LUT decrease from

33554432 to 214 =16384 samples. In other words, it is reduced to 0.0488% of the initial

capacity.

Note:

In Xilinx FPGA devices, the selection of quarter or full wave storage is performed automatically by FPGA

devices to get the most efficient implementation [53].

64

3.1.2 Matlab-Simulink of a Basic DDS System

A single DDS module consists of a phase register, a phase accumulator and a sine

LUT [5]. The system-level model of a single DDS system is shown in Figure 3.0.

Figure 3.0: Matlab-Simulink of a single DDS.

 As is illustrated above, a Xilinx system generator is a system-level modelling tool that

extends Matlab-Simulink to cover the FPGA hardware design [31]. ‘Fout’ is a constant block

used to provide the information of a signal frequency to the DDS system which is measured

in Hz. The Xilinx Gateway blocks are added to the Simulink in order to interface the nominal

Simulink modules with the Xilinx block sets. The ‘Gateway In’ represents the input port into

FPGA while the ‘Gateway Out’ is the output port from the FPGA.

 The Xilinx ‘Gateway In’ and ‘Gateway Out’ blocks are used to handle data

conversion between Matlab-Simulink and the Xilinx block set. The conversion is necessary

because the data processing in Matlab-Simulink uses double-precision floating-points, while

the Xilinx block set uses fixed-point precision.

 The phase accumulator and sine LUT functions are both Simulink blocks which have

the same environment as the modules in the Xilinx FPGA devices. In Figure 3.0, the output

from the accumulator block is in 25-bit width while the output from the LUT block is

truncated to 14-bit.

 The remaining two blocks ‘SINE1’ and ‘PHASE1’ are used to capture all the data

generated throughout the simulation. The data are used to plot two graphs via Matlab

workplace. These two graphs show the relationship between accumulated phases and signal

amplitudes.

 On every clock pulse, the phase accumulator generates a phase, which serves as a

memory address to the sine LUT. The 25-bit phase accumulator can be filled gradually until

it overflows. Each time the phase accumulator overflows, the output of the sine LUT will

65

achieve a revolution of a complete sine-wave. The rate at which the phase accumulator

overflows depends on the data width of the phase accumulator and the frequency tuning word.

 The sine LUT is a module used to convert the digital phase to amplitude. If all the 25

bits of the phase are used for conversion, the sine LUT needs a lot of memory to store the

amplitudes. Although the Spartan-6 has no problem in handling the output width of a 25-bit

LUT, a lower output width can be used to achieve the same frequency resolution and output

frequency. The common method is to use a phase truncation approach to extract the upper 14-

bit data from the 25-bit data and rounding the 11-LSB. The upper 14 bits are the final phase.

Despite the fact that a small degree of noise would add to the output waveform due to the loss

of the low 11-bit data, it can be compensated by noise shaping in the LUT block. The Xilinx

LUT block provides a noise shaping technique to compensate the spur effects.

 The noise shaping technique utilised in this research is known as the Taylor series

corrected DDS method (the only option provided and recommended by Xilinx). This noise

shaping technique applies previously discarded fractional bits to calculate the correction that

can be added to the sine LUT. It does not consume any of logic fabrics but requires two

embedded multipliers, one constant coefficient multiplier and four adders. This compensation

method can produce output with superior SFDR [52].

66

3.2 Conceptual Design of an 8-core DDS System

The Simulink module does not operate the simulation of 2 GSPS in real-time. This is

because the simulation does not consider the actual timing needed by a system. The Simulink

is more suitable for verifying and understanding the functionality of a module instead of

simulating the actual timing of the system. Hence, ‘unit time’ is used to measure the timing of

an output signal because every tick in a scope is 1 clock cycle. After the simulation, the

conceptual designs of the DDS system would be transferred to the RTL-level simulation.

3.2.1 Design Requirements

The frequency resolution of an 8-core DDS module is 0.93 Hz. It can be calculated by

using equation (3.2). The calculation is equivalent to dividing the frequency resolution of a

single DDS core, 7.45 Hz, by eight. The denominator is eight because the 8-core DDS

module generates eight outputs over unit time. An 8-core DDS module should satisfy the

following requirements:

System Clock, fsystem : 250 MHz

SNR : ~86 dB

Frequency Resolution, ∆f : 0.93 Hz

Input width of LUT : 25-bit

Output width of LUT : 14-bit

Depth of sine LUT : 16384 samples

Input Width of Phase Accumulator : 25-bit

Depth of Phase Accumulator : 33554432

Total Phase Offsets : 8 sets with 25-bit of each

The frequency resolution,	}� of 8-core DDS module can be calculated by

∆� � 250	���
8	�	2&�

							� 0.93	��

67

3.2.2 Simulink of an 8-core DDS Module

 An 8-core DDS module does not really contain eight individual DDS cores. It is

labelled as an 8-core module because it generates eight samples at a time. The productivity of

the 8-core DDS system is similar to the system formed by eight DDS cores. The benefit of

using an 8-core DDS module is that it composes a sine-wave with 8 times more samples than

a single DDS core system.

 Figure 3.1 shows the Simulink diagram of an 8-core DDS module. The module has

three major parts. The first part on the left is a phase register used to calculate the frequency

tuning word for phase increment. The second part is a 2 GHz DDS system that performs

phase accumulation and phase-to-amplitude conversion. The final part on the right is a mock

system of a DAC chip, which is used to construct the sine-wave. The DAC block is not really

a digital-to-analog converter. It is a pseudo module used to receive deinterleaved samples

from DB0 and DB1. In the DAC block, these deinterleaved samples would be reconstructed

as a complete sine-wave to SINE output port.

Notes:

‘PHASE’ is an optional port, which is used to output the sample phases of an output signal. Both SINE and

PHASE provide a clear idea of the relationship between a phase and sine amplitude.

68

Figure 3.1: Conceptual design of a 2GHz sampling transmitter.

69

3.2.3 Phase Register and Minimum Phase Offset Calculation

3.2.3.1 Phase Register

The phase register is used to calculate the frequency tuning word based on the ‘Fout’

block. The phase accumulator has a unique output channel which runs at a maximum

frequency of 250 MHz. This means the output signal has a sampling rate of 250 MSPS.

In a single DDS core, the total numbers of samples generated by the core to create a

sine-wave are inversely proportional to the output frequency. The reduction of the samples is

due to the increment of the jump size (hopping data points) between each sample phase. The

bigger the jump size, the faster the phase accumulator overflows. The impact is that fewer

sample phases are generated before the accumulator overflows. Insufficient samples can

affect the signal intensity and the signal stability. This is because there will be inadequate

samples to sustain the shape of the output as a sine-wave. Fortunately, the 8-core DDS

module has the capability to insert 8 times more samples to the signal. This increases the total

samples in a unit sine-wave.

70

Figure 3.2: Phase register Simulink block.

Figure 3.2 shows the internal structure of a phase register. The function block, Fcn1,

contains a mathematical equation (2.0) for calculating the frequency tuning word of an output

frequency. For example, the frequency tuning word for a 15 MHz sine-wave is M = 2013265.

� � 15	��� ∗ 2&�

250	��� � 2013265

The gain block provides a gain factor to normalise the tuning word so that the amplitude falls

within -1 to 1 on a display (scope). The gain factor is obtained by:

;471	�42��. � 	 D
&' (3.4)

For a 25-bit phase accumulator, the gain factor = 1/33554432 = 29.802 x 10-9

71

3.2.3.2 Eight Phase Offsets and Step Size

 An 8-core DDS module has eight offset values, which are known as phase offsets.

The phase offsets are not a fixed number. Its values depend on the frequency tuning word of

an output signal. Phase offsets can be calculated by first determining the step size of an

output signal. Then, the step size obtained is further calculated to determine the values of

eight phase offsets.

Let us assume that the original sample is the accumulated phase generated by a phase

accumulator before being shifted by any offsets (Figure 3.3). ‘Out1’ until ‘out8’ are the eight

sample points after being shifted by the phase offsets. ‘O’ is the offset value which has the

same value as the step size of the output signal.

Figure 3.3: Phase offsets.

An output signal has a phase increment in the same amount as its tuning word. If an

accumulated phase is generated by a single DDS core, the ‘original’ sample is increased by

its tuning word and directly shifted to out1' without producing samples at out1 until out8.

With the 8-core DDS module, the system shifts the accumulated phase from the phase

location labelled as ‘original’ to ‘out1’ until ‘out8’ by using eight phase offsets. In Figure 3.3,

72

the phase distance of ‘out1’ from the ‘original’, ‘out2’ from ‘out1’, ‘out3’ from ‘out2’ and so

on are measured by the equal phase, ‘O’. The offset values that are used to reposition the

‘original’ sample can be determined by summing the respective offset values ‘O’. The offset

of ‘out1’ has the same value as the step size of the output signal, ‘out2’ has an offset which is

double that of ‘O’, ‘out3’ has an offset which is three times that of ‘O’ and so on. After the

phase offsets are identified, they are added with an accumulated phase to generate eight

sample phases over a unit time. The process is repeated on the next clock cycle where the

Out1’ is the first sample of the subsequent signal.

The step size of an output signal is calculated based on the frequency tuning word of

the output signal. The phase distance of each sample determines the phase offset values

needed to shift an accumulated phase to eight sample phases. Phase offsets make the samples

distributed in a fixed sequence so that a sine-wave can be formed. The equation for

calculating the step size is:

5ℎ46-	712.-@-1�
l � 5ℎ46-	���6-�										; l	76	�ℎ-	���4<	�0�50�	64@5<-	�:-.	4	017�	�7@-

																																				� 	6�-5	67�- (3.5)

 The phase increment is the same as the frequency tuning word of a signal. The

equation for calculating eight phase offsets is:

Let q be the order of eight sample phases ranging from 1st to 8th,

Phase	offset	to	obtain	a	q − th	order	of	sample	phase	 � 		/		�	6�-5	67�- (3.6)

For example, at 15 MHz frequency, the tuning word is 2013265. The step size of a 15

MHz signal is

6�-5	67�- � 	 &sD�&��
� � 251658.125 ≈ 251658

 The denominator, C is eight because eight sequential sample phases are generated

over unit time. The step size is rounded to the nearest integer because of the phase increment

value is an integer.

73

From the step size obtained, the eight phase offsets are:

q-th Phase Offset Phase Offset Value

1st Step Size = 251658

2nd 2 x step Size = 503316

3rd 3 x step Size = 754974

4th 4 x step Size = 1006632

5th 5 x step Size = 1258290

6th 6 x step Size = 1509948

7th 7 x step Size = 1761606

8th 8 x step Size = 2013264

Table 3.0: Calculation of Phase Offset for 1st to 8th sequential phases.

 Eight samples are generated on every clock cycle. After an accumulated phase has

been added to the 1st to 8th phase offsets, the adding processes would be repeated on the next

clock cycle to generate the subsequent eight samples. The repeated processes allow the DDS

system to generate a continuous output signal. In Table 3.0, the 8th phase offset (2013264)

has one digit slightly different from the tuning word (2013265). This is mainly due to the

round-off error in the step size. However, it does not affect much the signal frequency

because the 25-bit phases would be truncated to upper 14 bits at the output.

74

3.2.4 2 GHz DDS System

A 2 GHz DDS system generates eight samples at a unit time based on the 250 MHz

system clock. Each sample is generated at 250 MSPS so the entire DDS system produces the

final output in parallel, which gives a result at 2 GSPS. A 2 GHz DDS system has two blocks,

which are 2 GHz phase accumulator and Sine LUT blocks.

3.2.4.1 2 GHz Phase Accumulator

The 2 GHz phase accumulator block has eight adders as shown in Figure 3.4. Each

adder outputs a sample phase by adding a phase offset with an accumulated phase from the

accumulator. The notion of generating eight consecutive sample phases (forming the samples

in numerical order) is similar to a DDS system with eight DDS cores operating in parallel.

Figure 3.4: Internal structure of a 2 GHz phase accumulator block.

 In a 2 GHz phase accumulator, the phase offsets are calculated by multiplying the step

size of an output signal via a product block. When the clock is on the rising edge, the

accumulated phases will be increased by the tuning word in the phase accumulator. The

output phase from ‘phase_out’ of the accumulator block is copied to ‘Adder1’ until ‘Adder8’.

The first phase offset is directly connected to the Adder 1. Following this, the 2nd to 8th phase

75

offsets are computed by multiplying the step size of the output signal with constant numbers

from D1 to D7 blocks. After this, phase offsets are combined with an accumulated phase via

Adder1 until Adder 8. Eight adders operate in parallel so that eight sample phases appear on

the out1 to out8 Simulink ports at the same time.

 The 2 GHz phase accumulator block is not exactly running at 2 GHz. It runs at a

maximum of 250 MHz instead. However, the internal structure of the module could make the

system generate a total number of phases, which are similar to a single 2 GHz accumulator.

The phase accumulator generates an accumulated phase on every 250 MHz. The accumulated

phase is shifted to eight sample phases by eight phase offsets over a unit time. Therefore,

8 x 250 MHz = 2 GHz sample rate

76

3.2.4.2 Sine LUT Module

Figure 3.5: Internal structure of a sine LUT module.

 In Figure 3.5, the sine LUT module requires four multiplexer blocks, eight LUT

blocks and a counter block to build up the system. The reason for using eight sets of sine

LUTs is to make sure that the conversion of phases into amplitudes is at the maximum 250

MHz speed [57].

 When a clock is triggered, the counter starts to count in ascending order. The 1st and

2nd samples are transferred to the DAC block through MUX 1 and MUX 3 via d0 when the

counter is zero. When the counter counts 1 on the second clock cycle, the 3rd and 4th samples

are transferred to the DAC block through MUX 1 and MUX 3 via d1. On the third clock

cycle, the counter counts 2. The 5th and 6th samples are transferred to the DAC block through

MUX 1 and MUX 3 via d2. Lastly, 7th and 8th samples are shifted out from MUX 1 and MUX

3 via d3 when the counter counts 3.

 The DAC block requires that the data must be deinterleaved into two data paths so

that it would be interleaved by DAC internally at 2 GHz. In order to fulfil the timing

requirement by the DAC block, eight sets of LUTs are used to make up 2 GSPS. In that case,

77

each LUT processes a sample phase on every clock cycle. The two data paths are outputted

by utilising MUX 1 and MUX 3 blocks. Meanwhile, MUX 2 and MUX 4 are optional blocks

used to output the accumulated phases of a signal. In fact, these accumulated phases are

unwanted outputs in the work presented but they have been included in order to show the

relationship between the phases and the amplitudes of the output signal.

78

3.2.5 2 GHz DAC Module (Mock)

Figure 3.6: DAC module (Mock).

 The 2 GHz DAC block in Figure 3.6 is only a mock module. It does not actually work

like a real DAC chip. But it does multiplex four data paths (DB0, DB1, Phase_DB0 and

Phase_DB1) into two outputs (SINE and PHASE). In Figure 3.6, the input DB0 and DB1

connected to Switch 1 contain the information of signal amplitudes while Phase_DB0 and

Phase_DB1 connected to Switch 2 contain the information of signal phases. Each data path

runs at 1 GSPS. Consequently, Switch 1 interleaves the data on DB0 and DB1 to a single

output on SINE and Switch 2 interleaves the data on Phase_DB0 and Phase_DB1 to a single

output on PHASE. The switching process doubles up the sampling frequency of 1 GSPS to 2

GSPS. Matlab plots the results of both SINE and PHASE to provide a clear idea of the

relationship between a phase and sine amplitude of an output signal.

 In the DDS design, the operation in DAC determines the final sample rate of the

output signal. In order to achieve a fast sampling rate, the DAC block must be the fastest unit

among the DDS components. The counter in Figure 3.6 is set to 1 sample time which is the

fastest sampling period in Simulink blocks. In Figure 3.5, the counter in the LUT module sets

to 2 explicit periods for multiplexing the eight LUT outputs via two multiplexers. In Figure

3.3, the phase accumulator sets to 8 explicit sample periods so that LUT can complete its

conversion before the accumulator is triggered again. In summary, the ratio in the sample

79

period for the phase accumulator module, LUT module and the DAC module are 8:2:1. By

considering this ratio, the actual frequency of each module can be calculated.

DAC is 2 GHz which is equivalent to 1 sample period in DAC, so

2GHz = 0.5 ns

The LUT module rate is

2 unit explicit periods X 0.5 ns = 1 ns (1 GHz)

The frequency of phase accumulator is

8 unit explicit periods X 0.5 ns = 4 ns (250 MHz)

Hence, the Matlab-Simulink simulated 8-core DDS system is required to generate

phases at a 250 MHz sample rate. The LUT module provided two output channels to DAC at

1 GHz each. Lastly, the DAC block interleaved the incoming amplitudes at 2 GSPS.

Table 3.1 lists the sample period settings for the major blocks in Simulink. For any

blocks which are not listed in the table, the setting is default (refer to Appendix for parameter

settings).

2 GHz Phase Accumulator Module Sine LUT Module DAC Module (Mock)

Block Sample Period Block Sample Period Block Sample Period

Gateway_In 8 Counter 2
Counter

Limited
1

Phase Accumulator

block
8

Table 3.1: Sample period of Simulink block.

80

3.3 Conceptual Design of a Multi-Frequency RF Generator

 A system with multi-channel adjustable frequency and phase is extremely expensive.

Moreover, this system is even more difficult to control if the system made of a single DDS

core [66]. In this thesis, a multi-frequency RF generator has been designed by modifying the

existing 8-core DDS module to handle multi-frequency generation. The supported output

frequency is still the same as in the 8-core DDS module, which ranges from 100 kHz to 750

MHz. The multi-frequency RF generator can avoid the phase coherence loss of signals

because the system supports switching between four distinct frequencies. The generator can

self-sustain the phases of these frequencies while its outputs are inter-switching from one

frequency to another.

3.3.1 Design Requirements

 The settings of the sample period in the multi-frequency RF generator remain the

same as in an 8-core DDS module. The design of a multi-frequency RF generator should

satisfy the following requirements:

System Clock, fsystem : 250 MHz

SNR : ~86 dB

Frequency Resolution, ∆f : 0.93 Hz

Input Width of LUT : 25-bit

Input Width of LUT : 14-bit

Depth of sine LUT : 16384 samples

Input width of the Phase Accumulator : 25-bit

Depth of Phase Accumulator : 33554432

Total Phase Offsets : 8 sets with 25-bit of each

81

3.3.2 Simulink of Multi-Frequency RF Generator

 Figure 3.7 shows an overview of the Simulink structure designed for a multi-

frequency RF generator. The sine LUT and DAC modules are the same function blocks used

in the 8-core DDS module. The new added feature is the ‘Multi-Frequency DDS’ block. The

multi-frequency DDS block has five input ports. Four inputs are used to read the frequency

values of output signals labelled as f1 to f4. Another input (Select) is to read the logic status

of ‘Switch-A and Switch-B’ blocks.

 ‘Fout_1’ to ‘Fout_4’ are the constant blocks, which contain the frequencies of four

output signals. For example, 50 MHz, 30 MHz, 15 MHz, and 5 MHz are randomly chosen to

support the simulation of a multi-frequency RF generator in a later stage. These constant

blocks connect to f1 until f4 respectively for phase accumulation in accumulators. However,

only one set of phases would be processed by the ‘Sine LUT’ block. The ‘Sine LUT’ block

provides the information of signal amplitudes and phases on the output ports, which are

known as SINE and PHASE.

82

Figure 3.7: Simulink model of Multi-Frequency DDS module.

83

3.3.2.1 Multi-Frequency DDS Block

Figure 3.8: Internal structure of a multi-frequency DDS function block.

84

Figure 3.8 shows the internal structure of a multi-frequency DDS block. There are

three main parts in this block. The first part contains the phase register blocks, which are used

to calculate the phase offsets and tuning words. The second part comprises the 2 GHz phase

accumulator blocks, which are used to perform the phase accumulation of four signals. The

last part comprises the newly added block, which is a DDS switch block used to select the

phases among the four signals to LUTs.

In the multi-frequency DDS block, the inputs of f1 until f4 will be converted to the

frequency tuning word in Phase Register 1 to Phase Register 4 blocks. Step size of each

signal is calculated by dividing its tuning words with Denominator 1 to Denominator 4,

respectively. The values of step size would be then processed by the 2 GHz phase

accumulator blocks to calculate the eight phase offsets of each signal. The phase offsets of

each signal would combine with the accumulated phases to reproduce 8 times more samples

on the outputs. Four phase accumulators operate simultaneously. Therefore, the samples of

four signals are available at the same time to the DAC switch block. However, only the

sample phases of one signal would be shifted to the LUT module. The selections among these

signals are controlled by the logic status of the ‘Select’ port.

Phase registers and accumulators are the customised blocks inherited from an 8-core

DDS module. Therefore, this section explains the features inside the DDS switch block.

85

• DDS Switch block

Figure 3.9: Internal structure of the DDS switch block.

The DDS switch block is very simple; it is formed by eight multiplexers. As shown in

Figure 3.9, each multiplexer has four inputs. The inputs are the phases from 2 GHz phase

accumulators. Since there will be eight samples generated over unit time, the connections of

these sample phases to the multiplexer blocks are as below:

i. 1st consecutive samples among the four signals (out1) connect to Mux1

ii. 2nd consecutive sample among the four signals (out2) connects to Mux2

iii. 3rd consecutive sample among the four signals (out3) connects to Mux3

iv. 4th consecutive sample among the four signals (out4) connects to Mux4

v. 5th consecutive sample among the four signals (out5) connects to Mux5

86

vi. 6th consecutive sample among the four signals (out6) connects to Mux6

vii. 7th consecutive sample among the four signals (out7) connects to Mux7

viii. 8th consecutive sample among the four signals (out8) connects to Mux8

Notes:

1. Each 2 GHz phase accumulator has an output connected to the multiplexer.

2. The out1 to out8 are the outputs from each 2GHz phase accumulator.

3. A 1
st
consecutive sample from each 2GHz phase accumulator is connected to Mux1. A 2

nd
 consecutive

sample from each 2GHz phase accumulator is connected to Mux2 and so on (the same connection

manners are repeated on 3
rd
 to 8

th
consecutive samples).

Logic status of ‘Select’ determines which signal samples among the four frequencies

will be the final output. Table 3.2 shows the selection of the signal samples based on the

status of the ‘Select’ port.

Select port Phases from

0 2 GHz Phase Accumulator 1

1 2 GHz Phase Accumulator 2

2 2 GHz Phase Accumulator 3

3 2 GHz Phase Accumulator 4

Table 3.2: Selection of output signal via Switch-A and Switch-B.

87

3.4 Matlab-Simulink Simulation Results

15 MHz is randomly chosen as the frequency to test a single DDS core and an 8-core

DDS module so that the outputs generated from each module can be compared easily in this

thesis. Besides that, 10 MHz, 30 MHz, 45 MHz, and 90 MHz are randomly chosen as the

frequencies to test a multi-frequency RF generator. Two random signals (10 MHz and 30

MHz) are randomly chosen to examine the phase coherence of these two signals. All the

sample periods of Simulink blocks remain default unless these have been specified in the

specification.

3.4.1 Simulation Results of a Single DDS Core

The purpose of running the simulation on a standard DDS core is to observe the

relationship between the phases and the amplitudes generated by the core. The explicit

sample period of the phase accumulator and LUT is set to 8 in order to standardise the

sampling period between a single DDS core and an 8-core DDS module. Consequently, the

outputs of both simulations can be compared (both outputs have the same sampling period).

The simulation is based on the Simulink design in Figure 3.0. The parameters of the

simulation are:

Fout : 15000000 Hz

Phase Accumulator System Clock, fsystem : 250 MHz

Explicit Sample Period of Phase Accumulator core : 8

Simulation Period : 500

The simulation period is set to 500 unit time so that the design system can generate a

couple of complete sine-waves within this period. When the simulation is executed,

15000000 Hz is converted to the frequency tuning word in the phase register block. The step

size of the output equals the phase increment of the output frequency. Based on equations

(2.0) and (3.5), the tuning word is 2013265. Hence, the step size is 2013265. The frequency

resolution is fixed at 7.45 Hz for a single DDS core with 250 MHz system clock and 25-bit

phase accumulator.

�0171;	9�.= � 	 D�ssssss	%	&F�

&�s	� = 2013265

88

6�-5	67�-								 � 	 2013265
1 					 � 2013265

Figure 3.10 is the result obtained after the simulation. The results show how a unit

cycle of sine-wave matches with the overflow of the 25-bit sample phase. The 1st

accumulated phase is 0.06 because the tuning word, 2013265, is normalised by the gain

factor in the phase register.

Figure 3.10: Outputs of 15 MHz sine-wave and accumulated phases.

In Figure 3.10, the first plot (top) is a 15 MHz sinusoidal signal. The second plot

(centre) is 15 MHz accumulated phases captured in the output of a LUT. The third plot

(bottom) is 15 MHz accumulated phases captured in the output of a phase accumulator. 15

MHz accumulated phases on the third plot have been redistributed by a LUT block. Therefore,

the first samples on the second (X=80) and third plots (X=24) are located in a different time

(80-24=56 latencies).

In the third plot, the first sample is generated at X=24. In other words, the phase

accumulator has a latency of 24 unit time due to the 8 explicit sample periods (a phase

accumulator with one explicit sample period requires three latencies). In Figure 3.10, the first

output phase is equivalent to the normalised tuning word 0.06. After LUT conversion, 0.06

phase is converted to amplitude 0.368 at X=80 unit time. The LUT spent 56 unit time to

convert the phase-to-amplitude. The entire 8-core DDS module spent 80 unit time to have

89

the first amplitude appear on the output line of DAC block (DAC has zero latency in

Simulink).

The second sample is at X=88 which is 8 unit time apart from the first sample. It is

because the explicit sample period of the phase accumulator is eight so the accumulator

generates a subsequent accumulated phase every 8 unit time.

The accumulated phases of X=80 to X=200 from the second plot are the same as

X=24 to X=144 from third plot. These phases contain the phase information of a unit cycle of

sine-wave. The amplitude ‘0.368’ is converted from the accumulated phase 0.06 at X=80.

Moreover, the amplitude ‘-0.2487’ is converted from the accumulated phase 0.96 at X=200.

These are the first and last amplitudes of a full sine cycle. A unit cycle of sine-wave is

measured from the first samples until the last sample before the phase accumulator overflow.

Once the phase accumulator overflows, the carry out bit is discarded. Thus, the total

phase drops to a minimum value which is the carry forward phase 0.02 (X=208) from the past.

At this moment, X=208 becomes the primary sample phase of the subsequent sine-wave.

When the entire processes are going on, a continuous sinusoidal signal can be produced.

In order to make sure the timing of a single DDS core matches the timing of an 8-core

DDS module, the explicit sample period of a phase accumulator is set to 8 so that the

accumulator generates samples on every 8 unit time. The purpose is to make sure a single

DDS core has the same timing as the 8-core DDS module so that results generated by a single

DDS and 8-core DDS can be compared. A complete 15 MHz sine-wave generated by a single

DDS core requires 128 unit time which can be computed by taking the absolute unit time

between the first and last samples of a sine cycle.

200-80+8 = 128 unit time

 While calculating the total unit time required to generate a cycle of sine-wave, the

sample at X=80 must be included because it is the first sample of a signal. Since the sample

period is 8, the total samples required by a unit cycle of sine-wave is 128/8 = 16 samples.

The frequency from Figure 3.10 can be calculated by:

 ������� − 636�-@	�.-/0-123

90

The time period of a sample, ������� � D
!()($*+

Let us assume:

Total samples of a sine-wave = ��������

Output frequency =	 D
�(�+��*(x	�(�+��*

So, output frequency, ���� =	 !()($*+
�(�+��*((3.7)

Therefore, the output frequency of the sine-wave in Figure 3.10 is

������� 		 � 250	���

�������� � 16

∴ 250	���
16	64@5<-6 � 15.625	���

 The additional 0.625 MHz is the round-off error due to the overflow between X=200

and X=208. The exact samples required to obtain a 15 MHz frequency are
&�s	� ¡
D�	� ¡ �

16.6667	64@5<-6 . This value falls between the 16th sample and 17th sample. Since the

number of total samples is an integer, so the ��������	 are rounded to 16. That is the

approximated sample before the phase accumulator overflows.

 The calculation of the total samples above is based on a unit cycle of sine-wave.

When it comes to a continuous signal, the fraction is equally distributed on the subsequent

signal which would blur the boundary between the first and the subsequent signals.

91

3.4.2 Simulation of an 8-core DDS Module

The simulation carried out in this section is based on Figure 3.1. Two simulations

have been planned in this section. The first simulation shows the relationship between a

tuning word and eight phase offsets. The second simulation is to examine the impact of the

eight phase offsets on the output waveform. The parameters of the simulation are:

Fout = 15000000 Hz

Phase Accumulator System Clock, fsystem = 250 MHz

Explicit Sample Period of Phase Accumulator = 8

Explicit Sample Period of LUT = 1

Simulation Period = 500

The tuning word of 15 MHz is 2013265, which was calculated by using equation (2.0).

The step size of each output sample of an 8-core DDS module, 25168, was calculated by

using equation (3.5). The tuning word and step size of a 15 MHz frequency generated by an

8-core DDS module are

�0171;	£�.= � 	 15	�	�	2&�

250	� � 2013265

��-5	67�-									 � 	 2013265
8 				 � 251658

92

3.4.2.1 Simulation Results of Phase Offset

Figure 3.11 shows part of the Simulink blocks, which are used to calculate the tuning

words and the phase offsets (highlighted in red). In Figure 3.11, the tuning word of 15 MHz

has been calculated and normalised in a phase register. The output would be sent to a 2 GHz

phase accumulator block through the ‘tw_out’ port. The normalised frequency tuning word is

used to generate the phases of a sine-wave signal in the phase accumulator block.

The normalised tuning word on the phase register block is measured as 0.06

(Display_tw). This 0.06 is divided by eight (denominator) to produce 0.0075 (normalised step

size) via a divider block. 0.0075 is then multiplied by 2 (D2), 3 (D3), 4 (D4), 5 (D5), 6 (D6),

7 (D7) and 8 (D8) to produce 2nd to 8th phase offsets. Each phase offset is combined with an

accumulated phase from the ‘phase_out’ through the respective Adder1 until Adder8. This

methodology generated eight continuous samples ‘Out1’ to ‘Out8’ over a unit time.

Figure 3.11: Matlab-Simulink model for phase offset simulation.

The results shown on the displays in Figure 3.11 can be used to trace the actual phase

values from the normalised outputs. The results are shown in Table 3.3.

93

Display Simulink Mathematical Calculation (Integer)

Display_tw 0.060 0.060 X 225 ≈ 2013265

Display_Offset1 0.0075 0.0075 X 225 ≈ 251658

Display_Offset2 0.0015 0.015 X 225 ≈ 503316

Display_Offset3 0.0225 0.0225 X 225 ≈ 754974

Display_Offset4 0.03 0.03 X 225 ≈ 1006632

Display_Offset5 0.0375 0.0375 X 225 ≈ 1258291

Display_Offset6 0.045 0.045 X 225 ≈ 1509949

Display_Offset7 0.0525 0.0525 X 225 ≈ 1761607

Display_Offse8 0.06 0.06 X 225 ≈ 2013265

Table 3.3: Comparison between Simulink and mathematical calculation results.

 The results from the Simulink and mathematical calculations are identical. The

normalised outputs can be restored to their original values by multiplying each normalised

result with 225 (inverse of gain factor).

94

3.4.2.2 Simulation Results of an 8-core DDS Module

Figure 3.12: Simulation results of an 8-core DDS module captured at sine LUT module.

 Figure 3.12 shows the simulation results of a 15 MHz sine-wave and its accumulated

phases. These two plots are captured in the output of a sine LUT block by using the Matlab

workplace. Therefore, both have the same output delays. The delays of the output are caused

by the latency of the phase accumulator and the LUTs in the system.

 A 2 GHz phase accumulator uses 24 unit time in the accumulation. When phases are

passed to the sine LUT module, the conversion of the phase-to-amplitude takes 56 unit delays.

Hence, the actual time of a phase sample before being processed by the LUT module can be

obtained by deducting the unit time with 56.

 In Figure 3.12, the initial sample phase appeared at 80 unit time on the LUT output

line. The final sample phase of a full sine-wave appeared at 204 unit time. After converting to

amplitude, a complete sine cycle is depicted by X=80 to X=204 on the X-axis. X=204 is the

unit time just before the phase accumulator overflows. The phase accumulator overflows at

X=205. Hence, the accumulated phase drops to the minimum. The accumulation keeps going

on to generate samples for the subsequent sine-wave.

 By comparing the plots in Figure 3.10 and Figure 3.12, a 15 MHz sine-wave

generated by an 8-core DDS module requires 125 samples. In contrast, a single DDS core has

95

only 16 samples to form a sine-wave. The 8-core DDS module improved the precision of the

signal by contributing 125-16=109 more samples. It is equivalent to increasing the

aggregated samples by 8 times.

 The output frequency of the sine-wave in Figure 3.12 can be calculated by using the

equation (3.8) below:

An 8-core DDS module generates eight samples over a unit time. Therefore, total samples

generated by an 8-core DDS module for a signal are 8 times more than a single DDS module

for the same frequency.

From the equation (3.7):

���4<	64@5<-6, �������� � 8	�	 	��
����

So, output frequency, ���� 	 � 	 �	%	!(
�(�+��*(

 (3.8)

Considering the system frequency and the total samples obtained from Figure 3.12:

������� � 250	���

�������� � 125

∴ m0�50�	�.-/0-123 � 	 8	�	250	���
125

																																									� 16	���

1 MHz is the round-off error due to the overflow of the phase accumulator. The phase

accumulators of a single DDS core and an 8-core DDS module have the same tuning word

and sample period. Thus, both overflow at the same time. Therefore, the accumulated phases

before and after the phase accumulator overflow are 16th and 17th. Hence, 16 X 8 =128th and

17 X 8 = 136th sample phases. The multiplication by eight is because eight sample phases are

produced by the 8-core DDS module over unit time.

96

In an 8-core DDS module, the exact amount of samples required to obtain the 15 MHz

frequency is
�	%	&�s	� ¡

D�	� ¡ � 133.333 samples. This value falls between 128th and 136th

samples. However, a complete sine cycle (15 MHz) generated by an 8-core DDS module

contains only 125 samples which are 8.333 lesser than the calculated 133.333 samples. This

is because one or more of the eight sample phases overflow at 126th sample phase after

adding the accumulated phases of 15 MHz with its phase offsets. Therefore, a subsequent

sine-wave is created after 125th sample phase.

The 16 MHz output frequency is computed based on the total samples of a unit sine

cycle. When it comes to a continuous signal, the DAC blurs the boundary between the first

and the subsequent signals. Therefore, the signal is always measured at 15 MHz.

97

Figure 3.13 shows the comparison of the phases generated by a single DDS core and

an 8-core DDS module.

Figure 3.13: Phase steps of a single DDS core and an 8-core DDS module (15 MHz).

98

In Figure 3.13, it can be seen that a single DDS core has only one phase step during

168 to 176 unit time. However, an 8-core DDS module managed to insert eight samples

within the same period. The step size shown in plot A is 2013265 while in plot B it is 251658.

This means the step size of an 8-core DDS module is 8 times narrower than a single DDS

core and 8 times faster than a single DDS core over a unit time.

99

3.4.3 Simulation Results of a Multi-Frequency RF Generator

The parameters of the simulation are:

Phase Accumulator System Clock, fsystem : 250 MHz

Explicit Sample Period of Phase Accumulators : 8

Explicit Sample Period of LUTs : 1

Simulation Period : 7000

The structural design of a multi-frequency module from Figure 3.7 is used to run the

simulation on four random frequencies. These four frequencies are:

• Fout_1 block :10 MHz

• Fout_2 block :30 MHz

• Fout_3 block :45 MHz

• Fout_4 block :90 MHz

The frequency tuning words of 10, 30, 45, and 90 MHz are 1342177, 4026531,

6039797, and 12079595, respectively. These tuning words can be calculated based on

equation (2.0) and the step size of each frequency can be calculated by using equation (3.5).

A 10 MHz signal has a step size of 167772, a 30 MHz signal has a step size of 503316, a 45

MHz signal has a step size of 754974, and a 90 MHz signal has a step size of 1509949.

Figure 3.14 shows the simulation results of a multi-frequency RF generator. Four

signals generated by the generator can be selected by three switches labelled as Switch-A,

Switch-B, and Switch-C. The interconnections between the switches are below:

• Switch-A is connected to either TW1 (10 MHz) or TW2 (30 MHz)

• Switch-B is connected to either TW3 (45 MHz) or TW4 (90 MHz)

• Switch-C is connected to either Switch-A or Switch-B

100

The default connections between the switches are shown in Table 3.4.

Switch Connection

A TW1

B TW3

C Switch-A

Table 3.4: Default connection of switches.

Figure 3.14: Four signals generated by a multi-frequency RF generator.

In Figure 3.14, the initial signal has a frequency of 10MHz. Switch-A changes from

TW1 to TW2 after 1911 unit time. This causes the output signal to be switched to 30 MHz at

X=1991. The signal oscillation is carried on until it reaches 3937 unit time. At X=3938, the

frequency is changed to 45 MHz by Switch-C. Again, the output signal switches to 90 MHz

at 5800th unit time after changing Switch-B to TW4. The simulation results show the design

system can produce four frequencies once it was executed.

101

3.4.3.1 Simulation results of Phase Coherence for Multi-Frequency RF Generator

The parameters of the simulation are:

Output Frequencies : 10 MHz and 30 MHz

Phase Accumulator System Clock, fsystem : 250 MHz

Explicit Sample Period of Phase Accumulators : 8

Explicit Sample Period of LUTs : 1

Simulation Period : 7000

Figure 3.15: Phase coherence between 10 MHz and 30 MHz signals.

 In Figure 3.15, the signal in Plot A is 10 MHz while the signal in Plot B is 30 MHz.

This assumes that plot A and plot B are two independent signals running in parallel. The

result in plot C can be obtained by overlaying plot A with plot B. Plot C approaches the

waveform as shown in plot D.

 Plot D is the output obtained while the multi-frequency RF generator switches

between 10 MHz and 30 MHz sine-waves. A 10 MHz signal is oscillated by default. When

102

the 10 MHz signal reaches X=2591 unit time, the output is toggled to 30 MHz at X=2592.

Phase change occurs during the transition from 10 MHz to 30 MHz. The 30 MHz signal

oscillates until X=4719. From X=4720 onwards, the output signal switches back to 10 MHz.

Again, phase change occurs in the transition from 30 MHz to 10 MHz signals. 10 MHz

signals before X=2592 and after X=4719 are in-phase. 10 MHz signals before and after

switching are in phase coherence.

 The multi-frequency RF transmitter makes the excitation of nuclei at different times

while the phase coherence is maintained. This can be used by physicists to examine the

physical and chemical properties of molecules or molecules of a sample under analysis in an

NMR system.

103

3.5 RTL-Level Simulation of DDS Using FPGA

In this section, the entire DDS system is modelled in the behavioural level simulation

with VHDL. The very first step is to simulate a simple DDS module by using the Xilinx ISE

simulator before adding extra modules to make up an 8-core DDS system. The model helps in

understanding the behavioural operations of each block in the module.

3.5.1 Architecture of PLL

Figure 3.16 shows the block diagram of an FPGA-based PLL module. Xilinx has

recommended this module for high-speed operation. The main purpose of the PLL is to serve

as a frequency synthesiser for a wide range of frequencies, and to serve as a jitter filter for

either external or internal clocks. The PLL_BASE block in the PLL module is used to capture

a differential 100 MHz clock signal from the clock chip and regenerate a 250 MHz clock to

DDS components and a 10 MHz clock to the DAC chip for Serial Peripheral Interface (SPI)

configuration.

Figure 3.16: PLL module [61].

 The PLL_BASE provide jitter control over the output clock signals by reducing jitter

inherent on the reference clock. It filters the external clock before the clock is driven into

other fabrics. The jitter filtering is adjustable by configuring the PLL attribute BANDWIDTH

to be low, high or optimised [61]. The setting of the PLL_BASE can be configured through

the clocking wizard or manually in VHDL coding. The attributes of the PLL module are:

104

Attribute Value Description

BANDWIDTH Optimised
To specify the PLL programming algorithm affecting the jitter, phase

margin and other characteristics of the PLL.

CLKFBOUT_MULT 10
To specify the amount to multiply all CLKOUT clock outputs by

to a different frequency.

CLKFBOUT_PHASE 0
To specify the phase offset of the degree of the clock feedback

output.

CLK_FEEDBACK CLKFBOUT To specify the clock source to drive CLKFB_IN.

CLKIN_PERIOD 10 (ns)
To specify the input period in ns to the PLL CLKIN1 input.

Resolution is down to the ps.

DIVCLK_DIVIDE 1
To specify the division ratio for all output clocks with respect to

the input clock.

CLKOUT0_DIVIDE 4
To specify the amount to divide the associated CLKOUT0 clock

output by if a different frequency is desired.

CLKOUT0_DUTY_CYCLE 0.5

Specifies the Duty Cycle of the associated CLKOUT0 clock

output in percentage (i.e., 0.50 will generate a

50% duty cycle).

CLKOUT0_PHASE 0

To allow specification of the output phase relationship of the

associated CLKOUT0 clock output in number of degrees offset.

For example 90 indicates 90o.

When setting CLK_FEEDBACK = CLKOUT0, phase shifting

results in a negative phase shift of all remaining clock outputs.

CLKOUT1_DIVIDE 100
To specify the amount to divide the associated CLKOUT1 clock

output by if a different frequency is desired.

CLKOUT1_DUTY_CYCLE 0.5

Specifies the Duty Cycle of the associated CLKOUT1 clock

output in percentage (i.e., 0.50 will generate a

50% duty cycle).

CLKOUT1_PHASE 0

To allow specification of the output phase relationship of the

associated CLKOUT0 clock output in number of degrees offset.

For example 90 indicates 90o.

When setting CLK_FEEDBACK = CLKOUT0, phase shifting

results in a negative phase shift of all remaining clock outputs.

Table 3.5: Attributes of PLL module.

The BANDWIDTH affects the jitter filtering of the PLL module. Greater jitter

filtering can be achieved by setting the PLL attribute BANDWIDTH to low. However, an

increase can incur in the static offset of the PLL. Therefore, Xilinx recommends setting the

attribute to optimise.

105

Figure 3.17: PLL block diagram: CLK_FEEDBACK = CLKFBOUT.

In the PLL structure, the differential input is converted to a single-ended clock via the

Single-ended Input Global Clock Buffer (IBUFG). Each PLL has a programmable counter D

that is labelled as DIVCLK_DIVIDE in Table 3.5. The PFD generates a signal proportional

to the phase and frequency between the input clock and the feedback clock. The signal

generated by the PFD provides an up or down signal to the CP and LF. The signal determines

whether the VCO should operate at a higher or a lower frequency. If the VCO operates at

high frequency, the PFD activates a down signal. This causes the control voltage to be

reduced. As a result, it decreases the VCO operating frequency. If the VCO operates at

extremely low frequency, the PFD activates a high signal to increase the voltage. The VCO in

the PLL produces eight output phases. Each of the output phases can be used as a reference

clock to the output counters. Counter M that is labelled as CLKFBOUT_MULT in Table 3.5

can be programmed to multiply the feedback clock to a different frequency. In the design, O0

(CLKOUT0) and O1 (CLKOUT1) are used to regenerate 250 MHz and 10 MHz output

clocks. The 250 MHz clock is the main clock to operate the DDS module while the 10 MHz

clock is for serial programming to clock and DAC chips.

In Figure 3.17, all the O [0:5] outputs can be independently programmed. As

examples, O0 and O1 can be programmed to do divide-by-four (CLKOUT0_DIVIDE) and

divide-by-hundred (CLKOUT1_DIVIDE). The VCO operating frequency is the same for all

the outputs because only one VCO component in the PLL drives all the counters. The VCO

operating frequency can be computed by the following equations:

106

In Table 3.5, CLK_FEEDBACK=CLKFBOUT is expressed by equation (3.9):

¤¥¦§ � ¤¦¨©ª«¬ ­
®	 (3.9)

Equation (3.10) shows the expression of output frequency for CLKFBOUT.

¤§¯°_¦¨©²³§¯° � ¤¥¦§
­ (3.10)

Equation 3.11 shows the expression of output frequency O [0:5]

¤§	�´:¶� � ¤¥¦§
O	�0:5�

 (3.11)

In an 8-core DDS system, the fVCO and fOUT_CLKFBOUT can be calculated by using equation (3.9)

and (3.10):

¤¥¦§ � ¸´´	­¹º	¬ ¸´
¸ 	 � 	¸000 MHz

¤§¯°_¦¨©²³§¯° � ¸´´´	­¹º
¸´ 	 � 	¸´´	­¹º

Therefore, the CLKOUT0 and CLKOUT1 can be calculated by using equation (3.11):

¦¨©§¯°´, ¤§´ � ¸´´´	­¹º
» 	 � 	¼¶´	­¹º

¦¨©§¯°¸, ¤§¸ � ¸´´´	­¹º
¸´´ 	 � 	¸´	­¹º

107

3.5.2 OSERDES Module

A Spartan-6 comes with 4-bit input for each ISERDES and OSERDES. However,

only OSERDES is used in this 8-core DDS module to transfer data to DAC in 500 MSPS.

Figure 3.18 shows the structure of the OSERDES block in the DDS transmitter [36].

Figure 3.18: Data transmission with one SDR forwarded clock [36].

Three essential elements of OSERDES are required to implement high-speed data

transmission in the 8-core DDS module. These elements are a clock generator, a high speed

OSERDES 56 to 14 output lines and a forwarded clock. A BUFIO2, PLL, and High Speed

I/O Clock Buffer (BUFPLL) are used to capture a differential 500 MHz clock from a DAC

chip. This clock will be used to regenerate 125 MHz and 500 MHz clocks. The regenerated

500MHz clock is used as a forwarded clock for driving data from Spartan-6 to DAC in DDR

mode. On the other hand, the 125 MHz clock is used to clock the serialisation of 56-to-14 bit

data before transmitting out from the FPGA device [36]. Since a DAC chip has dual ports

(each port operates at 1 GSPS, so dual ports have 2GSPS), an OSERDES module contain two

OSERDES blocks.

108

The 500 MHz clock from DAC steps down to a 125 MHz internal clock by serdes

factor = 4. Every time the 125 MHz clock is toggled, a 14-bit data point will be shifted to

DAC. Therefore, 8-sets of data points will be transmitted on every rising edge and falling

edge of the 500 MHz forwarded clock.

8-sets of 14-bit data X 125 MHz = 1 GSPS (for one OSERDES block)

 = 500 MHz in DDR

Thus, two OSERDES blocks are needed to achieve 2 GSPS.

A 500 MHz forwarded clock can be generated by driving a 4-bit repeated "0101"

pattern bit to the DAC chip in the same manner as the data being transmitted by the

OSERDES [36]. Effectively, the forwarded clock synchronises with the transmissions of data

to DAC.

109

3.5.3 Development of a Test-bench File

The simulation cannot plot a sine-wave graph because ModelSim does not support the

Xilinx VHDL compiler. The same problem happens to the default ISim simulator, which is

unable to generate a graph by using the simulated data obtained. This obstacle can be solved

by developing a test-bench file to capture all the results and record them into a text file. The

text file would then be transferred to Microsoft Excel manually.

Figure 3.19: Test-bench code to capture output data.

To implement the test-bench as shown in Figure 3.19, a library must be declared in

the test-bench file [30].

USE STD. textio. ALL;

The first operation in the test-bench is to create a text file. The next process is to

identify the polarity of 2's complement data. If the captured data are negative, a negative ‘-’

110

sign will be added to the integer. This process will not be triggered if the data captured by the

program are positive. After this, the integers will be recorded into a text file. The entire

process is repeated to capture as much data as is desired. This test-bench file is not

synthesisable, and it is developed only to evaluate the performance on the VHDL DDS

system. That is, the test-bench itself will not be executed by any FPGA devices [30].

111

3.5.4 RTL-Level of a Single DDS Core

The specifications of a single DDS core:

System Clock, fsystem : 250 MHz

Frequency Resolution, ∆f : 7.45 Hz

Input Width of LUT : 25-bit

Width of Truncated Output : 14-bit

Depth of sine LUT : 16384 samples

Input width of the Phase Accumulator : 25-bit

Depth of Phase Accumulator : 33554432

Figure 3.20: RTL schematic of a custom DDS module.

The model in Figure 3.20 is implemented using VHDL and simulated in ISim. In this

model, two different modules were created by using the IP Core generator and then put

together so that it can be modified according to the design requirements. The custom DDS

uses a 25-bit phase accumulator and a 25-to-14 bit LUT block. In a Xilinx system, truncation

is handled by the LUT module before the phase-to-amplitude conversion is implemented.

112

Figure 3.21: VHDL code for a standard DDS module.

 Figure 3.21 shows the implementation of a custom DDS module using the Xilinx

VHDL editor. This module has a clock, a 25-bit frequency tuning word and a 14-bit LUT.

The generation of the sample phases and the phase-to-amplitude conversion is clocked by the

rising edge of a 250 MHz clock labelled as clk. These codes are synthesisable and can be

compiled and generated as a programming file. This programming file is used to execute the

8-core DDS module on Spartan-6.

113

3.5.4.1 Simulation Results of a Single DDS Core Module

20 MHz is randomly chosen for the simulation. Based on the 20 MHz signal

frequency, the frequency tuning word and the step size can be obtained by using equations

(2.0) and (3.5):

�0171;	£�.= � 	 20	�	�	2&�

250	� � 3355443

��-5	67�-									 � 	 3355443
1 				 � 3355443

Figure 3.22: Simulation results of a DDS Core.

 Figure 3.22 shows the simulation results generated by ISim. The waveform

highlighted in red indicates the session where the overflow of the 25-bit phase accumulator

has occurred. In the DDS module, the outputs from a phase accumulator have been converted

to amplitudes by a LUT. The conversion is triggered on the same rising edge as the phase

accumulator because both share the same clock.

114

No.

Data

Digital

Amplitude

No.

Data

Digital

Amplitude

1 0 16 7789

2 3945 17 8045

3 6915 18 6311

4 8174 19 3015

5 7411 20 -1026

6 4814 21 -4814

7 1026 22 -7410

8 -3015 23 -8174

9 -6311 24 -6915

10 -8045 25 -3946

11 -7789 26 0

12 -5607 27 3945

13 -2037 28 6915

14 2037 29 8174

15 5607 30 7411

Table 3.6: First 30 samples of 20 MHz sine-wave.

Table 3.6 lists the first 30 data points generated by the model in Figure 3.0. Samples

highlighted in blue indicate that overflow have occurred in the phase accumulator. The

accumulator overflows at 26 unit time. Hence, samples from 1st to 25th unit time formed a

sine-wave cycle. The data were plotted by using Microsoft Excel and the result is shown in

Figure 3.23. The samples are in a repeated pattern after the 25th clock pulse, which forms the

subsequent sine-wave. Based on the first 30 clock cycles, the system generates 2.25 cycles of

sine-wave.

115

Figure 3.23: Sine-wave with frequency = 20 MHz.

 Although a complete sine cycle has approximately 13 samples, it involves rounded-

off errors. As is illustrated in Figure 3.23, the first two sine cycles require 25 sample

amplitudes. Then a sine-wave cycle has 25 samples/ 2= 12.5 samples. The sum of the total

samples counted should not be a fractional number. Therefore, it should be rounded to 13

samples.

Considering the equation (3.7):

For 12.5 samples,

250	���
12.5	64@5<-6 � 	20	���

If 12.5 is rounded to 13 samples,

250	���
13	64@5<-6 � 	19.23	���

The percentage of the round-off error is

�20 − 19.23����
20	��� 	V	100% � 3.85%	

Amplitude

Unit time

116

 The calculation of the total samples above is based on a unit cycle of sine-wave.

When it comes to a continuous signal, the subsequent signals would blur the boundary

between the first and the subsequent signals.

117

3.5.5 Development of an 8-core DDS System

The output generated by an 8-core DDS module is based on the concepts of under-

sampling and over-sampling. For output up to 125 MHz, over-sampling is used to generate

sample phases. The Nyquist frequency of a phase accumulator core is 125 MHz. For an

output beyond 125 MHz, the signal is outside of the 1st Nyquist zone. Thus, an under-

sampling technique is utilised to obtain a higher frequency signal. The under-sampling in an

8-core DDS module requires a basic knowledge of the Nyquist theorem especially regarding

the Nyquist zones. An overview of the Nyquist zone is provided before going further in this

thesis on the development of an 8-core DDS module.

The specifications of an RTL-level 8-core DDS system are as below:

System Clock, fsystem : 250 MHz

Frequency Resolution, ∆f : 0.93 Hz

Input Width of LUT : 25-bit

Output Width of LUT : 14-bit

Depth of sine LUT : 16384 samples

Input width of the Phase Accumulator : 25-bit

Depth of Phase Accumulator : 33554432

Total Phase Offsets : 8 sets with 25-bit of each

118

3.5.5.1 Overview of Nyquist Zones of an 8-core DDS System

Nyquist bandwidth is defined to be the frequency spectrum from DC to fsampling /2

(fsampling = sampling frequency). The frequency spectrum is divided into an infinite number of

Nyquist zones, each having a width equal to 0.5fsampling. Theoretically, a Fast Fourier

Transform (FFT) processor provides an output from DC to fsampling/2. This frequency range is

known as the 1st Nyquist zone. Any outputs from higher Nyquist zones are aliased to the 1st

Nyquist zone.

An 8-core DDS system utilises the frequency width of Nyquist zones to calculate the

tuning word for phase accumulation in an accumulator. In an 8-core DDS module, the phase

accumulator generates accumulated phases every 250 MHz. Hence, the Nyquist frequency of

the phase accumulator is 125 MHz that means the frequency band of the 1st Nyquist zone is

measured from DC to 125 MHz. Let us assume that the entire 8-core DDS module has 2

GSPS in total, the Nyquist criterion allows the system to generate an output frequency at the

maximum of 1 GHz. Initially, the development of an 8-core DDS module is based on the

ideal signal frequency at 1 GHz. In practice, a 1 GHz of frequency could not be realised due

to the impossibility to have an ideal low-pass filter. The 8-core DDS module supports a

frequency up to 750 MHz during the testing of developed codes on the evaluation board. 750

MHz is the upper frequency just before the signal is distorted significantly.

There are two conditions, which might be encountered by the 8-core DDS system.

The first case is to generate an output signal (fa) which is within the 1st Nyquist zone (Figure

3.25b). The second case is to generate an output signal (fa) which is outside of the 1st Nyquist

zone (2nd to 6th Nyquist zones) (Figure 3.25a).

In Figure 3.24a, if the output frequency is in the 1st Nyquist zone, the over-sampling

method is used to generate the signal. If the output signal is outside of the 1st Nyquist zone

such as in Figure 3.24b, the image falls inside the 1st Nyquist zone. At this moment, the

under-sampling technique can be used to get a higher frequency signal. This can be achieved

by changing the sample phases of the aliased signal with obsolete offset values.

119

Figure 3.24: Diagram of output signal (fa) sampled at fs [51].

120

Nyquist Zone of an 8-core DDS System.

Figure 3.25: Nyquist zone.

 Figure 3.25 shows the frequency bands of the 1st to the 6th Nyquist zone. Each

Nyquist zone has a lower band-limit and an upper band-limit. During a signal sampling

process, any signal higher than 125 MHz experiences a ‘folding’ effect. An aliased signal will

be folded back in the 1st Nyquist zone [34].

For example, in Figure 3.26, a signal frequency of 200 MHz is equal to 125 MHz

(lower band-limit) + 75 MHz (aliased frequency). 125 MHz is the lower band-limit of the 2nd

Nyquist zone while 75 MHz is the aliased signal of 200 MHz signal.

Figure 3.26: Diagram of under-sampling to obtain 200 MHz output.

121

In an 8-core DDS system with under-sampling, a VHDL program is developed to

locate the aliased signal at first. Then, the aliased samples are shifted by eight phase offsets to

reproduce eight more samples of the higher frequency signal. In this case, the phase offsets

are not only used to shift an accumulated phase to eight consecutive samples, they also carry

the information about lower band-limit frequency. The generation of a higher frequency

signal can be generated based on the expression (3.12) below.

Signal Frequency = lower band-limit of Nyquist zone + Aliased Frequency (3.12)

Equation (3.12) is similar to mimicking the samples of the high-speed signal. A phase

accumulator is used to generate accumulated phases of the aliased signal, and they are added

with the tuning word, which represents the lower band-limit of the signal Nyquist zone.

Commonly, a signal outside of the 1st Nyquist zone cannot be generated by using a

single DDS core. This is because a single DDS core cannot generate enough samples to

maintain the shape as a sine-wave. When N-bit phase accumulator reaches ‘111…111”, it

represents a signal of 250 MHz because the 25-bit frequency tuning word is calculated based

on the 250 MHz system frequency.

For example, the turning word of a 300 MHz frequency is

Output frequency = 300 MHz

Input width of phase accumulator, N = 25-bit

System frequency = 250 MHz

By applying the values above to the equation (2.0), the tuning word of 300 MHz frequency is

� � �ss� ¡	%	&F�	
&�s	� ¡ = 10011001100110011001100110b

 The result shows that a 300 MHz frequency (tuning word) overflows a 25-bit phase

accumulator because 300 MHz requires a 26-bit phase accumulator. If the tuning word is

calculated based on an N-bit phase accumulator and 250 MHz system frequency, any signal

more than 250 MHz would request (n+1) -bit of tuning word as well as (n+1) -bit phase

122

accumulator. By using the under-sampling technique, the tuning word of aliased frequency

(lesser than 125 MHz) is used as a phase increment in an accumulator.

 In an 8-core DDS module with under-sampling, some of the phase offsets may carry

26-bit or more. The results after adding between phase offsets and accumulated phases are

truncated or cropped into lower 25 bits before being processed by the LUT module. In LUTs,

these 25 bits are truncated to 14 bits again due to the standard process in LUT blocks.

123

3.5.5.2 Block Diagram of an 8-core DDS Module

Figure 3.27 shows the block diagram of an 8-core DDS module. The model consists

of an offset divider, a phase accumulator, a LUT module (with eight LUTs) and an

OSERDES module.

A 25-bit frequency tuning word provides the input of the offset divider and phase

accumulator blocks. The phase accumulator generates an accumulator phase on every rising

edge of 250 MHz clock.

The offset divider generates eight phase offsets that are placed on OFFSET_ [0:7] A.

These phase offsets combine with accumulated phases from Phase_Out via adders. 25-bit

outputs from each adder connect to 25-bit LUTs via Phase_in[0:7]. After the phase-to-

amplitude conversion is completed, the converted amplitudes are placed on SINE_DB0 [A: D]

and SINE_DB1 [A: D].

124

Figure 3.27: Block diagram of custom DDS with eight DDS cores.

125

3.5.5.3 RTL Schematics of an 8-core DDS Module

This section shows the main components to create an 8-core DDS module. The RTL

schematics of the DDS system generated by Xilinx ISE are based on the developed VHDL

codes for an 8-core DDS module. The RTL schematics give clear pictures of each component

developed in the program. In Figure 3.28, the 8-core DDS system contains an offset divider

module. This module divides the tuning word to support signal generation up to 1 GSPS,

which will then become 2 GSPS in DAC. An offset divider module has six Symmetric

Systolic Multiply-Add (MADD) processing elements [59]. These elements are DSP48 slices,

which are used to achieve the addition and multiplication processes of digital data. In Figure

3.29, the outputs from a phase accumulator are combined with eight phase offsets in order to

reproduce eight sample phases over a unit time. These eight sample phases will be converted

to amplitude via a LUT module as shown in Figure 3.30.

126

Figure 3.28: RTL schematic of the Offset Divider modules in an 8-core DDS system.

127

Figure 3.29: RTL schematic of a Phase Accumulators in an 8-core DDS System.

128

Figure 3.30: RTL Schematic of eight LUTs.

129

3.5.5.4 VHDL Development of an 8-core DDS Module with Over-sampling Concept

Figure 3.31: Project hierarchy of an 8-core DDS module.

 Figure 3.31 shows the hierarchy of a VHDL project belonging to an 8-core DDS

module. The top module ‘DDS_MODULE’ is a top-level file, which is used to call all the

sub-programs in the hierarchy. The files highlighted in red are the important part of the

system. The ‘DDS_Core.vhd’ and its subsequence files contain the main programs, which are

used to implement an 8-core DDS system. The other files in the hierarchy are developed to

make the implementation of an evaluation board possible.

Figure 3.32: VHDL code for offset divider.

130

 Figure 3.32 shows the VHDL programs of an offset divider. ‘divide_8_0’ to

‘divide_8_7’ are the temporary variables used to hold the calculation results of eight phase

offsets. The results are placed on ‘OFFSET_0’ to ‘OFFSET_7’ and passed over to the next

VHDL routine. The variable ‘divide_8_0’ to ‘divide_8_7' contain the respective values of 1st

to 8th phase offsets.

 In Figure 3.32, the line after ‘begin’ serves to divide the tuning word of the output

signal by eight, which is similar to shifting the frequency tuning word right by three bits. The

result obtained is the 1st phase offset, which would be stored in ‘divide_8’. The operations of

adding zeros to the 2nd and 4th phase offsets are similar to multiplying ‘divide_8’ by 2 and 4.

This method can reduce the total adders needed as well as the propagation delays in the

module. 3rd, 5th, 6th, and 7th phase offsets can be obtained by adding ‘divide_8’ to 2nd, 4th, 5th,

and 6th phase offset values, respectively. The 8th phase offset is always equal to the tuning

word of the output signal.

 The purpose of converting data type from 'std_logic_vector' to an integer then to

'std_logic_vector' is to maintain the 25-bit width of the phase offsets.

131

Figure 3.33: Entity declaration of DDS_Core.

 In Figure 3.33, the entity declaration is used to inherit the parameters from the top

module to sub-programs. The Chip Select (CE) bit is set to '1' so that the phase accumulator

and LUTs are always enabled. The outputs of the accumulator and LUTs are controlled by

the Synchronise Clear (SCLR) signal. The SCLR signal is retrieved from the LOCKED

signal of a PLL. 'signal_freq1_temp' is a temporary register, which is used to pass the tuning

word of the output frequency to phase register for calculating the phase offset. The variable

'digital_no1' is used to pass the image frequency of the output signal to the phase register for

phase increment.

132

3.5.5.5 Simulation Results of an 8-core DDS System with Over-sampling Concept

Random frequency 20 MHz has been chosen as a frequency under test for simulating

an 8-core DDS module. The tuning word and the step size of 20 MHz can be calculated by

considering the equations (2.0) and (3.5).

�0171;	£�.= � 	 20	�	�	2&�

250	� � 2684354

��-5	67�-									 � 	 2682354
8 				 � 3355443

133

Table 3.7 shows the amplitudes of a 20 MHz signal which are generated by an 8-core

DDS module and captured by a test-bench file.

Clock

cycle

Eight sequential samples generated over a unit time (Amplitude)

1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th

1 0 514 1026 1535 2037 2531 3015 3487

2 3945 4388 4814 5221 5607 5971 6311 6626

3 6915 7177 7410 7614 7789 7932 8045 8126

4 8174 8190 8174 8126 8045 7932 7789 7615

5 7411 7177 6915 6626 6311 5971 5607 5221

6 4814 4388 3946 3487 3015 2531 2037 1535

7 1026 515 0 -514 -1026 -1535 -2037 -2531

8 -3015 -3487 -3945 -4388 -4814 -5221 -5607 -5971

9 -6311 -6626 -6915 -7177 -7410 -7614 -7789 -7932

10 -8045 -8126 -8174 -8190 -8174 -8126 -8045 -7932

11 -7789 -7615 -7411 -7177 -6915 -6626 -6311 -5971

12 -5607 -5221 -4814 -4388 -3946 -3487 -3015 -2531

13 -2037 -1535 -1026 -515 0 514 1026 1534

14 2037 2531 3015 3487 3945 4388 4814 5221

15 5607 5971 6311 6626 6915 7177 7410 7614

16 7789 7932 8045 8126 8174 8190 8174 8126

17 8045 7932 7789 7615 7411 7177 6915 6626

18 6311 5971 5607 5221 4814 4388 3946 3487

19 3015 2531 2037 1535 1026 515 0 -514

20 -1026 -1534 -2037 -2531 -3015 -3487 -3945 -4388

21 -4814 -5221 -5607 -5971 -6311 -6626 -6915 -7177

22 -7410 -7614 -7789 -7932 -8045 -8126 -8174 -8190

23 -8174 -8126 -8045 -7932 -7789 -7615 -7411 -7177

24 -6915 -6626 -6311 -5971 -5607 -5221 -4814 -4388

25 -3946 -3487 -3015 -2531 -2037 -1535 -1027 -515

26 0 514 1026 1534 2037 2531 3015 3487

Table 3.7: Results of 8-core DDS system.

134

Eight sequential sample phases that are generated simultaneously over a unit clock

cycle can be collected and used to plot eight separated sine-wave graphs as shown in Figure

3.34 to Figure 3.41. In Table 3.7, the amplitudes indicated by column ‘1st’ are the 1st sample

phase collected during the first 26 clock cycles. The 1st sample phases in Table 3.7 are similar

to the amplitudes generated by a single DDS core in Table 3.6.

By using equation (2.0), (3.5) and (3.6), the frequency tuning word of a 20 MHz is

2684354, which is located in the 1st Nyquist zone. The step size of a 20 MHz signal is 335544

and so the phase offsets are:

• Phase Offset for 1st sample phase = step size = 335544

• Phase Offset for 2nd sample phase = 2 x 335544 = 671088

• Phase Offset for 3rd sample phase = 3 x 335544 = 1006632

• Phase Offset for 4th sample phase = 4 x 335544 = 1342176

• Phase Offset for 5th sample phase = 5 x 335544 = 1677720

• Phase Offset for 6th sample phase = 6 x 335544 = 2013264

• Phase Offset for 7th sample phase = 7 x 335544 = 348808

• Phase Offset for 8th sample phase = 8 x 335544 = 2684352

The phases from the accumulator are added to each of the phase offsets as listed

above. On the rising edge of 250 MHz clock, an accumulated phase is generated. The step

size, 335544 is added to the accumulated phase to produce the 1st sample phase. The second

phase offset, 671088, would be added to the accumulated phase to produce the 2nd sample

phase. The 3rd to 8th sample phases are produced in the same way as calculating the 1st and 2nd

sample phases. It could be done by adding its respective phase offset value to the

accumulated phase. The addition between an accumulated phase with eight phase offsets

creates eight sample phases simultaneously.

The data from each column in Table 3.7 are used to create eight sine-wave graphs as

shown in Figure 3.34 to Figure 3.41.

135

Figure 3.34: Plot of 1
st
 sample phase.

Figure 3.35: Plot of 2
nd
 sample phase.

Figure 3.36: Plot of 3
rd
 sample phase.

136

Figure 3.37: Plot of 4
th
 sample phase.

Figure 3.38: Plot of 5
th
 sample phase.

Figure 3.39: Plot of 6th sample phase.

137

Figure 3.40: Plot of 7
th
 sample phase.

Figure 3.41: Plot of 8
th
 sample phase.

 Figure 3.34 to Figure 3.41 illustrate the samples generated by an 8-core DDS module

containing the amplitude of eight sine-waves. These eight sine-waves have unity step size of

268435. By overlaying all the figures above, Figure 3.42 is formed which has a step size

reduced from 268435 to 3355443.

138

Figure 3.42: Final output after overlaying Figure 3.34 to Figure 3.41.

The overlaid signal in Figure 3.42 above has the same frequency as the eight sine-waves

because these sine-waves have the same phase increment value. The signal frequency can be

traced by multiplying the tuning word of 20 MHz with the frequency resolution of the system.

2684354 X 7.45 Hz = ~20 MHz

 There is an alternative calculation to trace the output frequency by using equation

(3.8). A unit cycle of sine in Figure 3.42 requires 100 samples. Therefore,

Output Frequency =
�	%	&�s	� ¡

Dss � 20	���

The overlaid output is more precise than the individual sine-waves because it has

achieved 8 times more samples than the signals formed by the amplitudes from each column in

Table 3.7.

Figure 3.44 below is a sine-waveform, which is formed by connecting a virtual line across

each of the sample points in Figure 3.42.

139

Figure 3.43: Visualisation of complete sine-wave.

140

3.5.5.6 Development of an 8-core DDS System with Under-sampling

 This section describes the reconstruction to a higher frequency signal based on the

under-sampling and aliasing concepts. Such a reconstruction is necessary because a signal

frequency greater than 125 MHz does not meet the Nyquist criterion. The under-sampling is a

method to synthesise an output signal by using its aliased frequency. The tuning word of the

aliased frequency is the phase increment value in a phase accumulator. The accumulated

phases generated by the accumulator are shifted by phase offset values in order to reproduce

higher frequency samples.

3.5.5.7 VHDL Implementation of an 8-core DDS System with Under-sampling

Figure 3.44 shows the VHDL routine for tracking the Nyquist zone of an output

signal. This routine is developed by referring to the equation (3.12).

141

Figure 3.44: VHDL program to search for image frequency.

 In Figure 3.44, 'signal_freq1_temp' is a temporary variable, which contains a tuning

word of an output frequency. If ‘signal_freq1_temp’ contains the tuning word, which is found

to be in the 1st Nyquist zone, it is passed over to the phase accumulator via ‘nq_freq1’. Just in

case, the ‘signal_freq1_temp’ has a frequency tuning word which is outside of the 1st Nyquist

zone, the VHDL routine tracks the image frequency of the output signal by comparing the

'Signal_freq1_temp' with the lower band-limit of every Nyquist zone (in hex). Once the

Nyquist zone is tracked, the logic status of a 3-bit variable, ‘nyquist_zone1’ is set according

142

to the combinational logics in Table 3.8. The contents of ‘nyquist_zone1’ are passed over to

the variable ‘NYQUIST_ZONE’ in the next VHDL routine.

3-bit ‘nyquist_zone1’ Nyquist Zone

000 1

111 2

110 3

101 4

100 5

011 6

Table 3.8: 3-bit ‘nyquist_zone1’ vs. Nyquist zone.

 In practice, the 8-core DDS system can generate a signal up to the 6th Nyquist zone.

Any signals beyond this have insufficient samples to maintain the shape as a sinusoidal signal.

 There are two conditions in synthesising a signal using an 8-core DDS module. The

first condition is that the signal frequency might be in the 'blind spots' of the Nyquist zones. If

the output frequency resided exactly at the multiple of the Nyquist frequency, the output

frequency would equal to the image frequency. This is because the 8-core DDS module

would not be able to distinguish the output frequency with the lower band-limit of the

Nyquist zone. It would end up that no phase offsets are created to shift the samples of aliased

frequency. Therefore, samples of aliased frequency would appear as an output signal.

 In this case, a frequency tolerance would be inserted into the sample phases. Several

frequency tolerances have been tried out and it was found that 50 kHz (1A36 hex) is the best

option to shift the output frequency by 50 kHz lower than the actual output. If the frequency

tolerance is less than 50 kHz, it could not shift the signal frequency away from the blind spot.

 The second condition concerns the fact that some of the amplitudes from certain

Nyquist zones encounter polarity errors because of the addition of the phase offsets with

accumulated phases. These polarity errors will be solved in the next VHDL routine before

transferring to the DAC chip.

143

Polarity Errors of Amplitude.

The MSB of the accumulated phases in a DDS represents the polarity of an output

sample. In an 8-core DDS system, the addition of Nyquist offsets and the accumulated phases

leads to polarity errors due to the overflowing of 25-bit sample phases. However, the polarity

errors do not happen to every sample generated by the system. They only happen to the even

ordered samples from the 2nd, 4th and 6th Nyquist zones. To implement the bit inversion, the

phases are ‘XOR’ gated by ‘1000000 hex’.

Figure 3.45: Bit inversion for the output phases.

144

In Figure 3.45, the polarity error of output samples is fixed by the VHDL routine

highlighted in red. If the samples are of odd order, it does not require any inversion, just like

the VHDL routine highlighted in green. If the samples are 1st, 3rd and 5th Nyquist zones, the

inversion of MSB is unnecessary such as the VHDL routine shown highlighted in blue. A 3-

bit ‘NYQUST_ZONE’ is a variable, which contains the information of ‘nyquist_zone1’

(Figure 3.44).

Besides fixing the polarity error, the VHDL routine in Figure 3.45 is also used to

create eight sample phases. The 25-bit variable ‘acc_phase’ is used to store the accumulated

phases generated by a phase accumulator while ‘offset0’ to ‘offset7’ are variables, which

contain the phase offset values. The eight sequential samples which are created after adding

the accumulated phases with the phase offsets are stored in NQ_DB0[A1: D2].

145

Figure 3.46: VHDL code to transfer the phases from the even Nyquist zone to LUTs.

In Figure 3.46, 25-bit variables, 'phase_DB0_ [A: D]' and 'phase_DB1_ [A: D]' are

used to pass the sample phases to LUTs. ‘NYQUIST_ZONE’ is a variable used to determine

the Nyquist zone of the output signal so that correct samples could be sent to the LUTs.

‘odd_cnt’ is a variable used to specify the order of the samples so that samples with or

without MSB inverted can be clarified.

146

Figure 3.47: Declaration of LUT module.

In Figure 3.47, the variables 'phase_DB0_ [A: D]' and 'phase_DB1_ [A: D]' pass the

eight sample phases to the LUT module. Eight LUTs are synchronised by a 250 MHz clock

signal, which is the same source as the phase accumulator. After the conversion, the

amplitudes are stored in 25-bit 'SINE_DB0_ [A: D]' and 'SINE_DB1_ [A: D]'. These

variables pass the amplitudes to the OSERDES module for transferring to DAC.

147

Arrangement of the Output Data

Figure 3.48: VHDL function to transfer phase values to a LUT module.

The 8-core DDS system generates eight sample phases with 14-bit of each 8 X 14 =

112-bit on every 250 MHz. These 112-bit samples must be sent out from Spartan-6 before the

accumulator triggers on the next clock cycle again. Since the DAC chip receives two sets of

data in parallel (each set has 4 samples), then the Spartan-6 must transfer two sets of data at 1

GSPS of each to DAC (4 samples X 250 MSPS = 1 GSPS).

 The transmission of the data is driven by a 500 MHz differential clock signal

(HD_DATACLK_P and HD_DATACLK_N) from Spartan-6 to DAC. Meanwhile, a 500

MHz differential signal (‘HD_DATACLK_OUT_P’ and ‘HD_DATACLK_OUT_P’) are

provided by the DAC chip for synchronising the transmission from Spartan-6 to DAC.

148

Sequence of Data Variables

1 SINE_DB0_A

2 SINE_DB1_A

3 SINE_DB0_B

4 SINE_DB1_B

5 SINE_DB0_C

6 SINE_DB1_C

7 SINE_DB0_D

8 SINE_DB1_D

Table 3.9: Sequences to transfer digital amplitudes to DAC.

In Table 3.9, ‘SINE_DB0_ [A: D]’ and ‘SINE_DB1_ [A: D]’ are the eight samples of

a signal. These samples are sequential and their orders in an output signal are stated in Table

3.9. During the OSERDES process, these samples are placed on 14-bit ‘HD_DB0_P/N’ and

‘HD_DB1_P/N’ differential signals. ‘HD_DB0_P/N’ sends the odd ordered samples to DAC

while ‘HD_DB1_P/N’ would send the even ordered samples to DAC.

149

3.5.5.8 Simulation Results

Two random signal frequencies, 190 MHz and 290 MHz, were simulated using the

VHDL compiler. The simulation results can be found in Figures 3.49 to 3.52. Table 3.10 and

Table 3.11 list the amplitudes of the first 33 samples.

190 MHz Sinusoidal Signal

Based on equation (3.12),

190 MHz = 65 MHz + 125 MHz

 The 190 MHz signal is from the 2nd Nyquist zone so the lower band-limit is 125 MHz.

The system subtracts 125 MHz from 190 MHz and the remainder is the 65 MHz aliased

signal. The frequency tuning words of 190 MHz and 65 MHz can be obtained by using

equation (2.0).

�D&�� ¡ � 190	���	�	2&�

250	��� � 25501368

���� ¡ � 65	���	�	2&�

250	��� � 8724152

The step size of the output signal can be obtained by using equation (3.5).

��-5	67�- � 	 25501368
8 � 3187671

After the step size is calculated, the eight phase offsets can be obtained by using equation

(3.6).

• Phase Offset for 1st sample = step size = 3187671

• Phase Offset for 2nd sample = 2 x 3187671 = 6375342

• Phase Offset for 3rd sample = 3 x 3187671 = 9563013

• Phase Offset for 4th sample = 4 x 3187671 = 12750684

• Phase Offset for 5th sample = 5 x 3187671 = 15938355

• Phase Offset for 6th sample = 6 x 3187671 = 19126026

• Phase Offset for 7th sample = 7 x 3187671 = 22313697

• Phase Offset for 8th sample = 8 x 3187671 = 25501368

150

 The tuning word of 65 MHz, 8724152, was sent to a phase accumulator for the

accumulation process. Meanwhile, the tuning word of 190 MHz, 25501368, is passed over to

the offset divider for the offset calculation. The addition of accumulated phases (image

frequency) with the phase offsets creates the samples of a higher frequency signal.

The simulation waveform generated using ISim is shown in Figure 3.49. Results from

the waveform were captured using a test-bench and are listed in Table 3.10. The 190 MHz

signal is plotted in Figure 3.50 by using the data recorded in Table 3.10.

Figure 3.49: Simulation results of a 190 MHz signal using Isim.

Unit time Amplitude Unit time Amplitude

Unit

time Amplitude

1 -6471 12 -4814 23 -2774

2 -2531 13 -257 24 2037

3 2285 14 4388 25 6144

4 6311 15 7517 26 8126

5 8153 16 8045 27 7297

6 7177 17 5791 28 3945

7 3718 18 1534 29 -771

8 -1027 19 -3252 30 -5221

9 -5416 20 -6915 31 -7864

10 -7932 21 -8186 32 -7789

11 -7706 22 -6626 33 -5020

Table 3.10: First 33 data points of a 190 MHz sine-wave.

151

Figure 3.50: 190MHz sine-wave.

In Figure 3.50, the phase offsets shift the accumulated phases of 65 MHz to the

position, which is equivalent to the samples of a 190 MHz signal. The plot does not show the

actual frequency of the signal but an approximation on the total samples needed by a unit

cycle of a 190 MHz sine-wave can be calculated by using the method below:

The ratio of output frequency to aliased frequency, nP��	� � !"#$
!��¿�(

	 . So,

���� � 	 ���	��	�	nP��	� (3.13)

Referring to equation (3.8),

Total samples of a unit cycle of aliased signal, ���	��=	 �	%	!(
!��¿�(

 (3.14)

The equation (3.13) shows the output frequency is nP��	�	times faster than ���	�� . Then,

 ���	�� � nP��	�	�	���� (3.15)

Based on equation (3.15), the total samples in a unit ���	�� is the same as the total samples in

a unit ����. Therefore,

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35

Amplitude

Samples

152

Total samples of a unit cycle of output signal,�������� =
���¿�(
ÀÁ�$¿"

 (3.16)

By substituting equation (3.13) with equation (3.14),

���	�� � �	%	!(%	ÀÁ�$¿"
!"#$

 (3.17)

By substituting equation (3.17) with equation (3.16),

�������� � �	%	!(
!"#$

 (3.18)

 Equation (3.18) can be used to calculate the total samples of a unit sine-wave when

the output frequency is outside of the 1st Nyquist zone.

Total samples of a unit cycle of 190 MHz sine-wave, 	�������� � �	%	&�s	� ¡
DÂs	� ¡

�������� ≈ ¸¸	ÄÅÆÇÈÉÄ

 By referring to Table 3.10 and Figure 3.50, the total samples in a unit sine-wave are

10 or 11 samples, which are similar to the result calculated by using the approximation

method.

Another experiment is carried out on a 290 MHz output frequency. Figure 3.52 shows

the test results plotted based on the data in Table 3.11 and Figure 3.51.

153

290 MHz Sinusoidal Signal

Figure 3.51: Simulation results of a 290 MHz signal using ISim.

Unit time Amplitude Unit time Amplitude Unit time Amplitude

1 7706 12 -4814 23 257

2 2531 13 2285 24 -6311

3 -4603 14 7615 25 -7993

4 -8174 15 7049 26 -3487

5 -5416 16 1026 27 3718

6 1535 17 -5791 28 8045

7 7297 18 -8126 29 6144

8 7410 19 -4169 30 -515

9 1786 20 3015 31 -6774

10 -5221 21 7864 32 -7789

11 -8186 22 6626 33 -2774

Table 3.11: First 33 data points of a 290 MHz Sine-Wave (3
rd
 Nyquist Zone).

154

Figure 3.52: 290MHz sine-wave.

Based on equation (3.12),

290 MHz = 40 MHz + 250 MHz

 40 MHz is the aliased frequency of 290 MHz and 250 MHz is the lower band-limit

frequency of the Nyquist zone where 290 MHz is located.

The frequency tuning words of 190 MHz and 65 MHz can be obtained by using equation

(2.0).

�&Âs� ¡ � 290	���	�	2&�

250	��� � 38923141

�Ês� ¡ � 40	���	�	2&�

250	��� � 5368709

The step size of the output signal can be obtained by using equation (3.5).

��-5	67�- � 	 38923141
8 � 4865392

After the step size is calculated, the eight phase offsets can be obtained by using equation

(3.6).

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35

Amplitude

Unit time

155

• Phase Offset for 1st sample = step size = 4865392

• Phase Offset for 2nd sample = 2 x 4865392 = 9730784

• Phase Offset for 3rd sample = 3 x 4865392 = 14596176

• Phase Offset for 4th sample = 4 x 4865392 = 19461568

• Phase Offset for 5th sample = 5 x 4865392 = 24326960

• Phase Offset for 6th sample = 6 x 4865392 = 29192352

• Phase Offset for 7th sample = 7 x 4865392 = 34057744

• Phase Offset for 8th sample = 8 x 4865392 = 38923136

The approximation on the samples needed by a unit cycle of 290 MHz sine-wave can

be calculated as below.

Referring to equation (3.18):

Total samples of a unit cycle of 190 MHz sine-wave, 	�������� � �	%	&�s	� ¡
&Âs	� ¡

�������� ≈ Ë	ÄÅÆÇÈÉÄ

Table 3.11 and Figure 3.52 indicate that a 290 MHz sine-wave has 6 or 7 samples per

unit cycle, which is similar to the result calculated by using the approximation method.

156

Discussion of Simulation Results

 The simulation demonstrates how a sinusoidal signal can be generated by using the

under-sampling concept. The simulation results do not display the actual frequency of the

signal but they do indicate the total samples distributed in a signal. An approximation method

can be used to predict the total sample in a unit sine-wave. The calculated result can be used

to compare with the total samples counted from a sine-wave plot to verify the simulated

results.

 By comparing Figure 3.50 and Figure 3.52, it can be seen that 290 MHz has more sine

cycles than 190 MHz. Within the first 33 samples, 290 MHz output signal has 4 cycles while

190 MHz has only 2.5 cycles. In 190 MHz output signal, a unit sine-wave requires about 11

samples. Since eight samples are generated over a unit time, which means some of the 25-bit

sample phases overflow within two clock cycles even though the phase accumulator has yet

to overflow. In 290 MHz output signal, the sine-wave requires approximately 7 samples to

form a unit of sine-wave. This means some of the 25-bit sample phases overflow within the

first clock cycle.

The step sizes of the 190 MHz and 290 MHz output signals are 3187671 and 4865392.

The results show that 190 MHz has higher precision than 290 MHz. This is because the total

samples required by a 290 MHz signal are less than 190 MHz signal. The total samples

required to form a unit sine-wave are inversely proportional to the output frequency. Higher

signal frequency has lesser samples distributed in the signal and vice versa. This is because

the 25-bit sample phases of higher frequency signal overflow quicker than the sample phases

of lower frequency signal.

The impression of distortion in Figure 3.50 and 3.52 is due to the X-Y (Scatter)

function of Microsoft Excel. The interpolation filter used by Excel is not a sinc interpolation.

Therefore, a perfect sine-wave could not be expected using Microsoft Excel.

157

3.5.6 Development of Multi-Frequency RF Generator

The multi-frequency RF generator contains four sets of 8-core DDS modules to

support frequency switching up to four frequencies. The primary intention of this feature is to

enable phase coherence among these four signs. However, not every module in the 8-core

DDS system is duplicated to support this feature. Some modules such as LUTs and

OSERDES are reusable. Three more offset dividers and phase accumulators are added to the

system, which means the entire system contains four sets of offset dividers and phase

accumulators. Although the samples of four signals are generated simultaneously, only one

signal is selected to the output. The specifications of a multi-frequency RF generator are as

below:

System Clock, fsystem : 250 MHz

Frequency Resolution, ∆f : 0.93 Hz

Total Input Tuning Words : 4

Total Output Frequency : 1

Total LUTs : 8

Input Width of LUT : 25-bit

Output Width of LUT : 14-bit

Depth of sine LUT : 16384 samples

Total Phase Accumulators : 4

Input width of Phase Accumulator : 25-bit

Depth of Phase Accumulator : 33554432

Total Phase Offsets : 8 sets with 25-bit of each

3.5.6.1 RTL Schematics of a Multi-Frequency RF Generator

 The RTL schematics of a multi-frequency RF generator are similar to the 8-core DDS

module except the multi-frequency RF generator has four sets of offset dividers and four sets

of phase accumulators to support the switching between four frequencies. These can be seen

in Figure 3.53 and Figure 3.54.

158

Figure 3.53: Four offset module.

159

Figure 3.54: Four phase accumulators.

In Figure 3.54, each of the phase accumulators will be connected to a frequency

tuning word. The phases generated by each accumulator will be added to eight phase offsets.

This feature leads the Spartan-6 to process four signals in parallel. Hence, the entire operation

is similar to four sets of 8-core DDS modules, which function simultaneously.

160

3.5.6.2 Implementation of Multi-Frequency RF Generator in VHDL

Figure 3.55: Project hierarchy of multi-frequency DDS system.

 Figure 3.55 shows the VHDL project hierarchy of a multi-frequency DDS module.

The VHDL file highlighted in red indicates that the phase accumulator and the offset divider

from an 8-core DDS module have been duplicated into four sets of phase accumulators and

four sets of offset dividers.

In a multi-frequency generator, the four phase accumulators generate sample phases

in parallel. A switch is used to select the accumulated phases of only one phase accumulator

and send it to the next routine for adding with its phase offsets. Therefore, a 'SWITCH' is

used to control the switching between phase accumulators as shown in Figure 3.56.

161

Figure 3.56: VHDL coding of signal switching routine.

162

 In Figure 3.56, the 25-bit variables ‘acc_phase’ and ‘offset0’ to ‘offset7’ are similar

to the variables, which have been explained previously in the 8-core DDS module. The

variable ‘phase_inA’ to ‘phase_D’ are the accumulated phases of four phase accumulators.

‘OFFSET_0A’ to ‘OFFSET_0D’, ‘OFFSET_1A’ to ‘OFFSET_1D’, ‘OFFSET_2A’ to

‘OFFSET_2D’ and ‘OFFSET_3A’ to ‘OFFSET_3D’ are the phase offsets of four output

signals. Depending on the logic status of ‘SWICTH’, the accumulated phases will be

transferred to ‘acc_phase’ and their relevant phase offsets will be transferred to ‘offset [0:7]’.

Consequently, the samples of the selected signal would be generated and converted to an

analog signal in DAC.

Selector SWITCH Tuning Word

000 00 preset_inc1

001 01 preset_inc2

010 10 preset_inc3

011 11 preset_inc4

1XX XX
Signal generation by Distributed Memory

block

Table 3.12: Logic status of SWITCH.

 Table 3.12 shows the combinational logic of SWITCH. ‘preset_inc1’ to ‘preset_in4’

are four variables, which have the predefined tuning words of four output signals. The

variable ‘Selector’ is used to select the signal synthesis method either by the DDS module or

by the distributed memory block. The logic status of ‘SWITCH’ is retrieved from the 2-LSB

of ‘Select’. If the MSB of ‘Selector’ is set to ‘1’, no matter the logics of bit-1 and bit-0 of

‘Selector’, a signal synthesis by using distributed memory block is triggered. The benefit of

using memory block is that the output signal can be fully customised by users. It can be used

to generate many forms of signal such as random noise, square-waves, sinc functions and

other signals easily. Figure 3.57 shows the VHDL declaration of the variable 'selector'

(highlighted in blue) and four sets of tuning words (highlighted in red).

163

Figure 3.57: Predefined tuning word.

The multi-frequency RF generator will be tested on an evaluation board. The test

results will be further discussed in Chapter 4.

164

3.5.7 Development of a Custom Data Distributor by Using Distributed Memory Block

The specifications of a custom data distributor:

System Clock, fsystem : 250 MHz

Depth : variable (16 to 65536)

Data Width : 112

Radix : 2, 10, 16

 An addressable distributed memory block is very useful in generating a customised

signal which is 100% DDS free. All data from the memory block can be fully defined by the

users. Signals such as square-waves, pseudo noise, sinc functions and many more can be

generated by using this method. These signals are achievable by loading the relevant

coefficient file of the signal into the memory block. The memory block has data depth and

data width ranges from 16 to 65536 bits and 1 to 1024 bits, respectively. These ratings are the

upper limits for a distributed memory block to function properly.

In this thesis, the data width is fixed at 112-bit so that sample amplitudes can match

with the OSERDES setting of an 8-core DDS. 112-bit means eight sets of 14-bit data would

be transmitted on every 250 MHz clock so that a 2 GHz sampling period can be achieved.

However, the depth and radix are variables. Radix refers to the base of a number system

(binary, decimal or hexadecimal) which is used to represent the custom data in a coefficient

file. The depth setting depends on the total entries in the coefficient file.

165

3.5.7.1 Implementation of Addressable Distributed Memory Block in VHDL

 Figure 3.58 shows the VHDL routine for switching the signal synthesis method by

either a multi-frequency RF generator or a distributed memory block.

Figure 3.58: Switching between an 8-core DDS module and a distributed memory block.

 The signal synthesis method depends on the logic level of ‘rom_dds_sel’. The logic

level of ‘rom_dds_sel’ is retrieved from the MSB of ‘Selector’ (Table 3.12). If ‘rom_dds_sel’

is high, samples from the distributed memory clock are sent to the OSERDES module.

Otherwise, the samples from the 8-core DDS module are sent to the OSERDES module.

 Samples from ‘data_db0’ and ‘data_b1’ undergo offset binary conversion. The results

after conversion would be placed in ‘db0_binoffset’ and ‘db1_binoffset’. The samples

in‘db0_binoffset’ and ‘db1_binoffset’ are transferred to the OSERDES module through

‘db0_to OSERDES’ and ‘db1_OSERDES’ on every rising edge of 250 MHz.

166

Figure 3.59: Component declaration of distributed memory block.

In this research, the distributed memory block does not require any ‘write’ cycle to

the memory block. It simply needs to read the customised samples of a signal from the

memory block. In Figure 3.59, the read process can be executed by setting the 'Input Clock

Enable' (i_ce) to be high. Based on the input address ‘a’, the contents of the memory block

are retrievable via ‘gspo <111:0>’ lines. To store the custom data in the memory block, a

coefficient file is necessary. The coefficient file is created by using a notepad from Windows.

The headers (highlighted in red) and the desired output data (highlighted in orange), as shown

in Figure 3.60, are typed into the notepad manually.

Figure 3.60: Coefficient file.

167

 Figure 3.60 shows the coefficient file loaded into the distributed memory block. The

‘memory_initialisation_radix’ (highlighted in red) configures the number system in the

coefficient file. The number system can be either 2 (binary), 10 (decimal) or 16 (hexadecimal)

which is used to symbolise the number system of the custom data. In this thesis, binary

number system has been selected.

 The custom data must be written in such a manner, as the inputs of the DAC chip are

deinterleaved. The dual data paths to the DAC chip are DB0 and DB1. The data on DB0 are

the odd ordered samples while those in DB1 are the even ordered samples. This can be shown

by the expression below:

The first eight 14-bit samples of a custom signal (in sequence) are:

[…, sample 7, sample 6, sample 5, sample 4, sample 3, sample 2, sample 1, sample 0]

In the coefficient file, the data of each row must be written in the sequence as below:

[sample 7, sample 5, sample 3, sample 1, sample 6, sample 4, sample 2, sample 0]

 When these samples are retrieved by a VHDL routine, the routine splits ‘sample 7’

until ‘sample 0’ into two data sets. The OSERDES will transmit these two data sets to DAC

by the following method:

DB0: [sample 6, sample 4, sample 2, sample 0]

DB1: [sample 7, sample 5, sample 3, sample 1]

In Figure 3.60, the custom data has 25-rows, and each row contains 112-bit (eight sets

of 14-bit data). The content in the coefficient file is retrievable on every rising edge of a 250

MHz clock. The content can be read by inserting the relevant addresses to the memory block

via 'a<5:0>' lines.

168

Once the 112-bit data have been retrieved, it is split into two data sets and shifted to

OSERDES. From the OSERDES module, two sets of 14-bit data will be transmitted from the

Spartan-6 on every rising edge and falling edge of a 500 MHz clock (DDR mode).

Figure 3.61: VHDL coding to retrieve the content of a coefficient file.

 In Figure 3.61, the VHDL program serves to retrieve the content of a distributed

memory block. The <If-statement> (highlighted in red) shows that a counter 'add_count' is

used to generate memory addresses for accessing into the memory block. The upper limit of

the 'add_count' is calculated by <total row -1> of the custom data. The illustration in Figure

3.60 has 25 rows, so the ‘add_count’ counts to 24.

169

3.5.7.2 Simulation Results

In this simulation, binary numbers are inserted into the coefficient file randomly.

Figure 3.62 shows the ISim simulation results of a distributed memory block. The results are

recorded in Table 3.13. By comparing the amplitudes in Table 3.13 with the content of the

coefficient file (Figure 3.60), it is found that the results of both are the same. Based on the

first 140 data points captured by using the test-bench, the data are plotted using Microsoft

Excel as shown in Figure 3.63. The data points on the graph can be traced by placing cursor

on one of the data points on the graph. Excel will then display the x and y values of that point.

Figure 3.62: Simulation results of distributed memory block using Isim.

170

Unit Data Unit Data Unit Data Unit Data Unit Data Unit Data Unit Data

1
-7790

21
-5781

41
4781

61
7381

81
7790

101
-4378

121
4775

2
-8046

22
5613

42
6101

62
-3944

82
7412

102
-8046

122
-4054

3
-8174

23
-5037

43
-5457

63
-3009

83
6916

103
-8174

123
-5499

4
-8173

24
6916

44
-4267

64
-2033

84
6311

104
-8173

124
-5461

5
-8043

25
7412

45
-5458

65
61

85
5615

105
3202

125
5462

6
-7786

26
7790

46
4266

66
-540

86
4823

106
-890

126
5502

7
-7412

27
8046

47
5122

67
175

87
3955

107
6540

127
-5441

8
-6916

28
8174

48
-683

68
-4502

88
3024

108
7891

128
7489

9
4921

29
8173

49
5450

69
-767

89
2033

109
-3171

129
-2731

10
-5156

30
8046

50
-5400

70
3955

90
1021

110
-2251

130
-342

11
971

31
7790

51
5781

71
-654

91
6

111
5812

131
5802

12
-3944

32
7412

52
-2902

72
5606

92
-1021

112
-3943

132
5461

13
61

33
6916

53
-6562

73
6311

93
-2038

113
5397

133
336

14
-2033

34
6311

54
-5849

74
6916

94
-3012

114
8021

134
5471

15
-2693

35
5615

55
297

75
7412

95
-3944

115
-5464

135
-4770

16
6

36
4823

56
-1362

76
7790

96
-4813

116
7509

136
-1407

17
517

37
3955

57
6572

77
8046

97
-1712

117
5386 137 -6832

18
-7170

38
3024

58
-6916

78
8174

98
-6303

118
4437 138 1360

19
-6680

39
2033

59
-1256

79
8173

99
-5153

119
6101 139 -5461

20
-5139

40
1021

60
-5606

80
8046

100
-7412

120
-2795 140 5909

Table 3.13: First 136 data points captured by the test-bench.

171

Figure 3.63: Simulated results of a random signal.

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120 140 160

Unit Time

Amplitude

172

Chapter 4

Hardware Implementation, Testing and Results

This chapter discusses the implementation of a high-speed RF transmitter by transferring the

design in Chapter 3 to a T-Rex v4.0 board. To accomplish this, the existing VHDL files are

modified to activate the on-board clock chip and DAC through serial programming. In this

chapter, the programming file, which is used to configure the clock chip and DAC are loaded

into the Spartan-6. These two chips are then examined with an embedded, software-based

logic analyser called Chipscope. Chipscope is software developed by Xilinx that allows the

user to view any internal signal or node, including embedded hard or soft processors of a

design system. Signals are captured in the system at the speed of operation and brought out to

a computer screen via the Chipscope Pro Analyser tool.

After the clock chip and DAC are found to perform properly, the ability of an 8-core DDS

module and multi-frequency RF generator are tested on the prototype board. The phase

coherence is tested by switching an output signal from one frequency to another. Finally, a

distributed memory block of Spartan-6 is configured to generate a custom signal by loading a

coefficient file into the memory block. A Tektronix MSO 4104 Mixed Signal Oscilloscope is

used to evaluate the results from all experiments.

173

4.1 Overview of T-Rex v4.0

Figure 4.0 shows the block diagram of a T-Rex v4.0 board. The components

highlighted in red are available on the evaluation board, but they are reserved for future

development in an NMR RF receiver, which is not part of the research in this thesis. In

contrast, components highlighted in green are the modules, which will be used to implement

the NMR RF transmitter.

Figure 4.0: Block diagram of T-Rex v4.0 [46].

174

Figure 4.1: Top view of T-Rex v4.0.

175

Figure 4.1 shows the top view of the T-Rex v4.0 experimental board. The crystal

oscillator (highlighted in yellow) supplies a 100 MHz clock signal to the clock chip

(highlighted in blue). This clock chip regenerates a 2 GHz clock signal to the DAC chip

(highlighted in orange) and a 100 MHz clock signal to the Spartan-6 chip (highlighted in red).

Clock chip LMK04806B is manufactured by Texas Instruments. It is a high performance

clock conditioner with superior clock jitter cleaning, generation and distribution with

advanced features such as dual loop architecture, which consists of two high performance

PLLs, a low-noise crystal oscillator circuit, and an effective VCO. The first PLL in the clock

chip provides a jitter cleaner while the second PLL performs the clock generation to the

system [42].

The 14-bit DAC chip (AD9739) is a dual-port chip operating at 2.5 GSPS. It has an

embedded input clock pin (DCI) and an output clock pin (DCO). The DCI clock is a low-

voltage differential signal (LVDS) from the Spartan-6 chip for driving data transmission in

the DDR format to AD9739. This DCI clock is essentially an alternating 010101...01010 bit

pattern with a frequency equal to 1/4 of the DAC system clock. To simplify the

synchronisation with the host processor in DAC, the DAC chip passes an LVDS clock signal

via its DCO port to the Spartan-6 chip, which is also equal to the DCI frequency [8].

176

4.2 Serial Programming on DAC and Clock Chips

Programmable registers of both DAC and clock chip must be configured to

monitor various internal parameters of both chips. The registers pertaining to similar

functions are grouped together and assigned adjacent address. There are some

precautions that should be taken while carrying out the serial programming. Firstly,

the bits of a register should be assigned '0' if it is undefined. Meanwhile, registers

which are unrelated should not be written. Hardware reset is recommended upon

power-up to place the registers in a known state. The initialisation is necessary before

starting the programming of the chip.

In this project, the LMK04803B clock chip is the first component to undergo a

configuration process. It needs to generate two respective clock signals, 2 GHz to

DAC and 100 MHz to Spartan-6. 100 MHz will be redistributed as a 10 MHz signal

from the FPGA device to drive the SPI configuration of DAC. Both DAC and clock

chips have a unique serial programming protocol. The DAC chip uses a standard SPI

configuration which consists of three or four SPI ports to program the SPI registers.

This method is a common SPI standard which is widely used in most electronic

components available in the market. In contrast, the clock chip utilises a Serial

MICROWIRE method which consists of three sequential ports to program the chip

registers. Details on both configurations are explained in the following section.

177

4.2.1 Clock Chip Configuration: LMK04803B

The main purpose of the clock chip configuration is to generate a 100 MHz

clock to Spartan-6 and a 2 GHz clock to DAC chip.

The LMK04803B chip is programmed using 32-bit registers. Each register

consists of a 5-bit (bit-0 to bit-4) address field and a 27-bit data field (bit-5 to bit-31).

The contents of each register are clocked in bit-31 being the first, and bit-0 being the

last.

Programming ports of LMK04803B are ‘DATAuWire’, ‘CLKuWire’, and

‘LEuWire’ as shown in Figure 4.2. The ‘LEuWire’ line works as an acknowledge

signal to notify the clock chip on the incoming register. The ‘DATAuWire’ pin of the

LMK04803B chip is clocked into a shift register on each rising edge of the

‘CLKuWire’ signal. A register is sent from the shift register to the register addressed

on the positive edge of the ‘LEuWire’ signal.

During the configuration of the LMK04803B chip, an FPGA device controls

the ‘LEuWire’ signal from high to low. Then, the FPGA device starts to oscillate the

‘CLKuWire’ signal. The serial data of a register are clocked on the falling edge of the

‘CLKuWire’ signal so that the clock chip will capture the incoming register in the

middle of the data valid window. After the last bit is transmitted, the FPGA device

toggles the ‘LEuWire’ signal from low-to-high-to-low to latch the contents into the

register selected by the address field. As recommended by Texas Instruments, the

registers should be programmed in numerical order, from R0 to R16, and R24 to R31

so that the device can operate properly.

After the configuration, the VCO in the clock chip should be locked, and the

‘DATAuWire’, ‘CLKuWire’ and ‘LEuWire’ lines will be returned to '0'. If the

‘CLKuWire’ and ‘DATAuWire’ signals are toggled while the VCO is locked, in some

cases if these lines are shared by other parts, phase noise may be degraded during the

programming process [42]. Figure 4.2 and Table 4.0 show the minimum timing

required at each programming port.

178

Figure 4.2: MICROWIRE timing diagram [42].

Table 4.0: MICROWIRE timing diagram [42].

179

4.2.1.1 Development of MICROWIRE for an LMK04803B

Parameter settings of LMK0403B are quite complicated as plenty of registers

that must be configured to meet the design requirements. However, the complexity of

setting the programmable registers can be avoided by using software ‘CodeLoader 4’.

This software is developed by Texas Instruments, which provides an interface for

configuring the features of LMK0403B. The main interface of ‘CodeLoader4’can be

seen in Figure 4.3.

Figure 4.3: Interface of CodeLoader4.

Bit selection of the registers can be done simply using 'CodeLoader4'. By

configuring each component of the clock chip via the interface as shown in Figure 4.3,

a summary of the bit setting is generated as shown in Figure 4.4. Definitions of every

bit of each register can be found on the data sheet provided by Texas Instruments [42].

Hence, it will not be further explained in this thesis.

180

Figure 4.4: Binary numbers of R0 to R31 generated by CodeLoader4.

Two clock outputs, CLKout2 and CLKout8 are selected because these two

clocks are routed to Spartan-6 on T-Rex v4.0. During the experiment on the serial

programming of LMK04803B, these CLKout2 and CLKout8 are set to 400 and 100

MHz, respectively. However, 400 MHz will be replaced by 2 GHz during the

experiment on signal synthesis. The changing of 400 MHz to 2 GHz can be done by

replacing R1 with 0x001400A1 while the rest of the registers remain unchanged.

Setting the R1 to 0x001400A1 is equivalent to changing the clock divider of CLKout2

from 5 to 1 through the interface of CodeLoader4.

181

Table 4.1 lists all of the register settings required to generate a 400 and a 100

MHz clock.

Register Write Value Description

R0 (INIT) 0x80160100 Reset the clock chip

R0 0x00140280 Clear the Reset bit at R0, bit-17. Program as necessary to

configure the clock outputs, CLKout0 to CLKout11, as desired.

These registers configure clock output controls such as power

down, digital delay and divider value, analog delay select and

clock source select.

R1 0x00140021

R2 0x00140282

R3 0x00140283

R4 0x00140284

R5 0x00140285

R6 0x05000006 Program as necessary to configure the clock outputs, CLKout0 to

CLKout11, as desired. These registers configure the output format

for each clock output and

the analog delay for the clock output groups.

R7 0x00000007

R8 0x00010008

R9 0x55555549

Program this register as shown in the register map for proper

operation.

R10 0x9002410A

For setting the OSCouts, VCO divider, and 0-delay.

• Enable and configure clock outputs OSCout0/1.

• Set and select a VCO divider (VCO bypass is

recommended).

• Set 0-delay feedback source if used.

R11 0x0400200B

For setting the Part mode, Synchronise (SYNC), and XTAL.

• Program to configure the mode of the part, to

configure SYNC functionality and pin, and to enable

crystal mode.

R12 0x1BCC006C

For setting the Pins, SYNC, and holdover mode.

• Status_LD pin, more SYNC options to generate a

SYNC upon PLL1 and/or PLL2 lock detect.

• Enable clock features such as a holdover.

R13 0x3B13926D

For setting the Pins, holdover mode, and CLKins.

• Status_HOLDOVER, Status_CLKin0, and Status_CLKin1

pin controls.

• Enable clock inputs for use in specific part modes.

R14 0x1300000E

For setting the Pins, LOS, CLKins, and DAC.

• Status_CLKin1 pin control.

• Loss of signal detection, CLKin type, DAC rail detect

enable and high and low trip points.

R15 0x8000800F

 For setting the DAC and holdover mode.

• Program to enable and set the manual DAC value.

• HOLDOVER mode options.

R16 0xC1550410

For setting the Crystal amplitude.

• Increasing XTAL_LVL can improve tunable crystal

phase noise performance.

R24 0x00000098

For setting the PLL1 and PLL2.

• PLL1 N and R delay and PLL1 digital lock delay value.

• PLL2 integrated LF.

R25 0x02C01919
 Program to configure DAC update clock divider and

PLL1 digital lock detect count.

R26 0xAFA8001A Program to configure PLL2 options.

R27 0x1C000A1B

For setting the CLKins and PLL1.

• Clock input pre-dividers.

• Program to configure PLL1 options.

R28 0x00200C9C Program to configure PLL2 R and PLL1 N.

R29 0x0180011D Program to configure the oscillator input frequency, PLL2 fast

182

phase detector frequency mode, and PLL2 N calibration value.

R30 0x0200011E Program to configure PLL2 prescaler and PLL2 N value.

R31 0x000000FF Program to set the uWire_LOCK bit.

Table 4.1: Register values of 400 MHz and 100 MHz clock signals [42].

During the serial programming, registers are programmed, with R0 being the

first and R31 the last as shown in Table 4.1. Programming register R0 involves

initiating the chip to the default state by setting the reset bit (b17) to 1. After that,

register R0 is programmed again to clear the reset bit. Then, R0 to R16 and R24 to

R32 are programmed in numerical order to the clock chip by using the serial

programming method as shown in Figure 4.2.

 After all the registers have been programmed, the PLLs should be locked. The

clock chip starts to generate the 400 MHz clock on CLKout2 and the 100 MHz clock

on CLKout8. These clocks are generated using a VCO frequency of 2000 MHz. 400

MHz and 100 MHz are generated by dividing the VCO frequency by 5 and 20,

respectively.

 The process of obtaining 400 MHz can be done through the programming R1

[15:5] with ‘00000000101’. This is similar to setting CLKout2_3_DIV = 5. For a 100

MHz clock, the programming is done on R4 [15:5] by inserting ‘00000010100’ to R4

[15:5]. This would set CLKout8_9_DIV=20. The OSCin port must be driven with a

valid signal before programming R30 in order to achieve proper frequency calibration.

Any changes to the ‘PLL2 R divider’ or the ‘OSCin’ frequency require R30 to be

reloaded so that the frequency calibration process can be triggered. Refer to reference

[42], page 61 to page 99 for the functions of other registers.

183

4.2.1.2 Implementation of Serial Programming for an LMK04803B

A start-up clock from Spartan-6 must be activated before starting the

sequential programming of LMK04803B. The internal oscillator of the Spartan-6

device generates a 50 MHz signal. The 50 MHz clock is stepped down to a lower

clock speed to clock the serial programming. Figure 4.5 shows the initialisation of the

start-up clock in VHDL.

Figure 4.5: Initialisation of a Spartan 6 start-up clock.

In Figure 4.5, 'EOS' indicates the configuration status of the start-up clock in

Spartan-6. ‘EOS’ is ‘1’ means that the built-in oscillator has started to generate a 50

MHz internal clock.

184

Figure 4.6: VHDL coding of serial programming of LMK04803B.

In Figure 4.6, the VHDL program (highlighted in red) is used to shift the

register bits from ‘data_64’ to the clock chip via DATAuWire. A 50 MHz start-up

clock is stepped down to 12.5 MHz by sending ‘001100110011...’ bit pattern to the

clock chip via the CLKuWire line. After transmitting the 32-bit serial data to the

clock chip, the same process is repeated on the next register. ‘cnt1’ is a counter used

to synchronise the serial data (DATAuWire) and the serial clock (CLKuWire).

The program highlighted in blue is the example of the state machine, which is

used to point a register and place it in a buffer for transmitting to the clock chip. In

fact, the VHDL program of the state machine covers R0 to R31. R0_INIT is a reset

cycle to drive the clock chip back to its default state.

Serial programming of LMK04803B only requires a ‘write’ process to

configure the chip. It does not need any ‘read-back’ operation to read the returned

185

status from the clock chip. The results of the configuration can be verified by

measuring the clock signals on the T-Rex v4.0 prototype board using an oscilloscope.

186

4.2.1.3 Tests and Results

The parameters from Table 4.1 will be programmed into the LMK04803B

chip. Register R0 (INIT) resets the hardware and initialises the programmable

registers of the clock chip. The purpose is to place all the registers in a known state. A

register map table from the data sheet of LMK04803B can be referred while setting

the register R0 to R31.

The registers in Table 4.1 managed to generate 400 MHz and 100 MHz clocks

on the CLKout2 and CLKout8 outputs. 2 GHz is too fast and cannot be captured by

the MSO4104 oscilloscope. Therefore, it was replaced by a 400 MHz clock to test that

the serial programming is functioning properly. As required by the DAC chip, the 2

GHz clock will be used in the final stage to run the entire RF system. 400 MHz can be

changed to 2 GHz by reconfiguring the register R1 while other registers are kept

unchanged.

187

Figure 4.7 shows the real-time simulation results of registers (R9 and R10)

using Chipscope. Chipscope is used to capture the activities of the internal logics of

the FPGA device. After loading the programming file into Spartan-6, 32-bit data are

transmitted to the clock chip on the falling edge of the CLKuWire line. At the

receiving end, it will be processed by the clock chip on the rising edge of the

CLKuWire line.

Figure 4.7: Real-time simulation results.

In Figure 4.7, the Chipscope analyser shows that the clock transition of

CLKuWire occurs in the middle of the data valid window of DATAuWire. This

situation can be simplified by Figure 4.8.

Figure 4.8: Simplified diagram of clock transition on data valid window.

If a 32-bit data is transmitted to the chip on the rising edge of CLKuWire, the

clock signal may trigger the chip at the wrong time if there is a slight jitter that

disturbs the clock edges. This may lead the chip to process incorrect data.

After the transmission of the 32-bit data is over, the LEuWire line toggles

again to repeat the transmission process by inserting the data of other registers.

Sequential programming is completed after the clock chip generates two clock signals

to the DAC chip and Spartan-6.

188

An oscilloscope is used to measure the generated clock signals from the T-Rex

v4.0 board. The results are shown in Figure 4.9 and Figure 4.10.

Figure 4.9: 100 MHz clock signal at CLKout8.

189

Figure 4.10: 400 MHz clock signal at CLKout2.

The output clocks look like sine-waves because the oscilloscope has

insufficient bandwidth to include enough harmonic content that sharpens the

transition times and flattens the top of the signals. An ideal square-wave is impractical

because it requires infinite bandwidth to achieve the transitions between high and low

signal levels. In practice, finite bandwidth is the limitation of the oscilloscope to

capture a perfect square-wave. The Tektronix MSO 4104 oscilloscope has 1 GHz

bandwidth. By comparing bandwidth to the 100 MHz and 400 MHz clock signals, the

bandwidth of the oscilloscope might not be large enough to capture adequate

harmonics to maintain the 'clean' square-wave.

190

4.2.2 SPI Configuration for DAC Chip: AD9739

The purpose of the DAC serial configuration is to enable the DAC chip to

detect a 2 GHz clock from the clock chip, to generate and to capture a data driven 500

MHz clock from Spartan-6 and to convert two sets of digital data to an analog signal.

An AD9739 chip applies a standard SPI configuration method for

programming the SPI registers. The default SPI interface contains four SPI ports such

as SDO (Serial Data Output), SDIO (Serial Data Input Output), serial clock (SCLK)

and Active Low CE (*CS). The 3- or 4-wire SPI allows read/write access to all the

registers that configure the chip internal parameters. An SPI register contains 16-bit

data. The first 8-bit indicates the address of a register while the rest of the bits

represent the content of the register. The maximum frequency of an SCLK is 20 MHz

but only 10 MHz is used because it is a typical clock speed recommended by Analog

Devices. The 10 MHz clock signal is regenerated by the built-in PLL of Spartan-6,

which is based on the 100 MHz clock signal from the LMK04803B chip.

 The SDO pin becomes active when an 8-bit data is ready to be transmitted to

the host processor. Otherwise, it remains tri-state all the time. The SPI configuration

of the DAC chip provides a flexible, synchronous serial communication port with 3.3

V series I/O. The 3.3 V voltage level is compatible with many industry-standard

microcontrollers and microprocessors and with most transfer formats [8].

 The SPI configuration of the DAC chip can be implemented in 3- or 4- wire

SPI interfaces. If the 3-wire SPI interface is selected, the SDO pin will remain tri-state

during the whole configuration process while the SDIO pin becomes bidirectional.

This means the SDIO pin reads register bits from the FPGA device during a write

operation. The SDIO pin will change to an input pin when the output data from the

DAC chip appears on the SDIO pin. If the 4-wire SPI interface is selected, the SDIO

pin becomes an input pin to receive 8-bit data from the FPGA device while SDO pin

will remain as an output pin to return register bits to the FPGA device.

191

4.2.2.1 Development of SPI Configuration for an AD9739

The first step in the SPI configuration is to issue a hardware or software reset

to the SPI register at 0x00. This step places all the AD9739 SPI registers in a known

state. After the reset procedure, FPGA begins to configure the SPI registers by writing

relevant bits to the DAC chip.

Figure 4.11: SPI timing diagram of AD9739 [8].

 Figure 4.11 shows that two stages are needed to complete a configuration of a

register. The first stage is an instruction cycle, which has an MSB bit to represent the

indicator bit of 'Read/Write'. The 'Read/Write' bit = '1' indicates that the 7-bit address

is sent to the DAC chip to initiate a read-back routine. When 'Read/Write' equals to '0',

a specific register in the DAC chip will be programmed (write routine). The '*CS' line

goes low to start the configuration of AD9739. The SCLK clock will drive serial data

on the SDIO line on every falling edge of the SCLK signal so that the data can be read

by the DAC chip on every rising edge of the SCLK clock [8]. This process makes

sure that the rising edge of the SCLK clock is located at the middle of the valid data

window so that the DAC chip does not capture the wrong information if a minor

phase shift exists in the clock signal.

 To initiate the write routine, the 'R /*W' bit is set to '0'. After the '*CS' line

goes low, the 7-bit address is placed on the SDIO line. The address is then shifted to

the DAC chip on the falling edge of the SCLK clock over the next eight clock cycles.

During the data transfer cycle, 8-bit data will be transmitted to the DAC chip via

SDIO on the falling edge of the SCLK clock. Sending serial data on the falling edge

from FPGA to DAC assures that the 8-bit data will be read by the DAC chip on the

rising edge of the SCLK clock.

 After eight clock cycles, the '*CS' line goes high again after the last bit of the

register is processed by the DAC chip. During the write operation, SDO line is

192

maintained tri-state because the read-back procedure is not required at this moment

[8].

To initiate the read-back routine, the 'R / *W' bit is set to '1'. The '*CS' line

goes low to enable the SCLK clock so that the 7-bit address can be shifted to DAC on

the falling edge of the SCLK clock. After eight clock cycles, the SDIO pin remains at

high impedance throughout the data transfer cycle. At this moment, the SDO pin

becomes active, and it returns 8-bit data to the Spartan-6 device on the rising edge of

the SCLK clock. The Spartan-6 device processes the 8-bit data on the falling edge of

the SCLK clock. The *CS line goes high after the 8-bit data are received by the DAC

chip.

193

4.2.2.2 Implementation of SPI Configuration for an AD9739

Figure 4.12(A): Write routine of SPI configuration (Not a full VHDL program).

194

Figure 4.12 (B): Write routine of SPI configuration (Not a full VHDL program).

195

Figure 4.12 (A and B) shows the main VHDL routine of SPI configuration of

AD9739. In the figures above, the VHDL codes highlighted in green are the state

machine of the entire configuration. The state machine transfers the serial data to a

buffer for transmitting to the DAC chip via a 'transmit routine' (highlighted in blue).

Two variables, ‘dac_sdio_en’ and ‘dac_cs_en’, are used to control the SCLK clock

and *CS signals. These two variables contain pre-set values which are used to control

SCLK and *CS to start and to end a programming process on a register.

dac_sdio_en [21:0] <= “1110000000000000000111";
dac_cs_en [21:0] <= “1100000000000000000011”;

The pre-set values of these two arrays are retrievable by a counter, cnt1, on

every 10 MHz SCLK clock. The content of ‘dac_cs_en’ informs the *CS line to

enable or disable the serial programming process. ‘dac_cs_en’, read as ‘0’, enables

the *CS line and vice versa. When *CS is valid, the SCLK clock is enabled by the

combinational logics of both ‘dac_sdio_en’ and ‘dac_cs_en’. The SCLK line starts to

oscillate a clock signal to the DAC chip when ‘dac_sdio_en’ and ‘dsac_cs_en’ are

read as ‘0’. Else, the SCLK oscillation will be ceased.

After a register is programmed, the *CS and SCLK lines will remain in ‘high’

for six cycles due to the logic high in ‘dac_sdio_en’ and ‘dac_cs_en’. Then, the serial

programming is enabled again to program the next register. The six cycles are used to

break down the programming session of each register so that the waveforms of SCLK,

SDIO and *CE can be clearly observed on the computer screen.

 During the SPI configuration, not all the registers have to be programmed.

Some of the registers such as 0x2A and 0x21 request the read-back routine. The

purpose of the read-back routine is to acknowledge the Spartan-6 device with the

DAC configuration outcomes. Hence, a variable, 'dac_status' is used to switch the

programming modes. Three possible modes are assigned to the ‘dac_status’ variable

as listed in Table 4.2.

196

dac_status (hex) Mode

‘0000’ Initiate transmission of data to the DAC chip

‘8000’ Enable Read-back process

‘fff0’ Reset temporary variables

Table 4.2: Modes in SPI configuration.

'dac_status' is "0000" by default initiates the transmission of serial data to the

DAC chip. If the state machine points to Register 0x2A and Register 0x21, the

Spartan-6 device requests read-back the configuration status of the DAC chip. After

transferring the addresses to these registers during the instruction cycle, the DAC chip

informs Spartan-6 on the configuration status by returning an 8-bit data to the

Spartan-6 device. If the 8-bit data shows correct answer, the entire SPI configuration

is considered successful and the configuration process will be terminated. Otherwise,

the DAC chip needs to be reconfigured again. In order to read from the DAC chip, the

'dac_status' variable should be set to "8000" to trigger the 'read routine' so that the

related VHDL program will capture the results from the DAC chip. After receiving

the read-back data from the DAC chip, the 'dac_status' variable is set to 'fff0' to reset

all the temporary variables as highlighted in red in Figure 4.12 (A).

The SPI configuration can be started by initiating the R/*W bit as '0' to the

DAC chip. Then, the 7-bit address and the 8-bit data of a specific register is shifted to

the DAC chip after R/*W. In 'transmission routine', the 'cnt1' counter counts in

descending order in the 'DAC_SDIO' array (Figure 4.12A). The contents of the array

will be transmitted to the DAC chip in a bit-by-bit sequence. When 'cnt1' reaches zero,

the state machine will allocate data of another register to 'DAC_SDIO'.

197

Figure 4.13 shows the VHDL program that is developed to read the 8-bit data

returned from AD9739 via the SDO pin. In order to execute the read-back process, the

R/*W bit is set to 'high' to initiate a read routine. Once the DAC chip received R/*W

and the 7-bit address of a register, the 8-bit data of the register will be returned to

Spartan-6.

Figure 4.13: Read process of SPI configuration.

During the read routine, the 'cnt2' counter will start to count in descending

order from 16 to 7. As long as 'cnt2' counts between 16 and 7, the read-back process

will be idled because it needs to wait for the address to be transferred to the DAC chip.

Once the 'cnt2' counts below 7, the SDO line becomes active. It will start to capture

the 8-bit data returned from the DAC chip and store them in 'DAC_READ'. The

results from the 'DAC_READ' array will be transferred to the ‘dac_read_temp’ array

for examination. If the results do not show correct answers, the DAC chip will be

reconfigured. Otherwise, the configuration carries on to the next registers.

All SPI programming is mainly to configure the mu controller and data

receiver controller (Rx controller) in the DAC chip. A mu controller is used to adjust

the timing relationship between internal digital and analog domains of AD9739 such

that the data are successfully transferred into a TxDAC core at rates of up to 2.5

198

GSPS [8]. The transfer rate is monitored by the Delay Lock Loops (DLL) in the mu

controller. The Rx controller is used to search the closest rising edge of the input

clock (500 MHz data driven clock from Spartan-6) by simultaneously adjusting the

delays in the clock used to register the input clocks and data inputs [8].

For the DAC chip, 0x2A and 0x21 are the only registers that request a read-

back process. Based on Analog Devices, these registers should return 0x01 and 0x09

to Spartan-6. Register 0x2A indicates the DLL in a mu controller is configured

properly and 0x09 indicates the data receiver controller is enabled.

199

4.2.2.3 Tests and Results

In Table 4.3, the columns 'Address' and 'Write Value' are the sequential data

used to program the DAC chip. The data listed in 'Write Value' are the parameters

used to set the SPI registers.

Step Address (Hex) Write Value Comment

1 0x00 0x00

Configure for the 4-wire SPI mode with MSB. Note that Bits [7:5] must

be mirrored onto Bits [2:0] because the MSB/LSB format can be

unknown at power-up.

2 0x00 0x20 Software reset to default SPI values.

3 0x00 0X00 Clear the reset bit.

4 0x22 0X0F Set the common-mode voltage of differential DAC Master Clock

(DACCLK_P and DACCLK_N) inputs. 5 0x23 0X0F

6 0x24 0X30

Configure the mu controller. Refer to Table 28 for recommended target

Mu slope and phase settings vs. clock rate.

7 0x25 0X80

8 0x27 0X45

9 0x28 0X6C

10 0x29 0XCB

11 0x26 0X42

12 0x26 0X43 Enable the mu controller search and track mode.

13 Not applicable Not applicable Wait for 160 K × 1/fDATA cycles.

14 0x2A

Read-back Register 0x2A and confirm that it is equal to 0x01 to ensure

that the DLL loop is locked. If it is not locked, proceed to step 10 and

repeat. Limit attempts to three before breaking out of the loop and

reporting a mu lock failure.

15 Not applicable Not applicable Ensure that AD9739 is fed with DCI clock input from the data source.

16 0X13 0X72 Set FINE_DEL_SKEW to 2.

17 0X10 0X00 Disable the data Rx controller before enabling it.

18 0X10 0X02 Enable the data Rx controller for loop and IRQ.

19 0X10 0X03 Enable the data Rx controller to search and track mode.

20 Not applicable Not applicable Wait for 135 K × 1/fDATA cycles.

21 0X21

Read-back Register 0x21 and confirm that it is equal to 0x09 to ensure

that the DLL loop is locked and tracking. If it is not locked and tracked,

proceed to step 17 to repeat the attempt. Limit attempts to three

before breaking out of the loop and reporting an Rx data lock failure.

22 0X06, 0X07 0X00, 0X02 Optional: modify the TxDAC IOUTFS setting (the default is 20 mA).

23 0X08 0X00
Optional: modify the TxDAC operation mode (the default is normal

mode).

Table 4.3: SPI initialisation with SYNC controller disabled [8].

200

 In Table 4.3, step 13 and step 20 are two 'wait cycles’, which must be inserted

into the SPI configuration. The total ‘wait cycles’ are recommended by Analog

Devices to allow the DAC chip to adjust its internal settings based on the serial data

received. After the first wait cycle (at step 13), 0xAA is sent to the DAC chip to

initiate a read process on the Register 0x2A. 0xAA is sent instead of 0x2A because

the R/*W bit of Register 0x2A is set to 'high'. The byte returned from the DAC chip

reveals the status of the mu controller in the DAC chip. If the returning byte equals

0x01, it indicates that DLL in the mu controller is locked. Otherwise, step 10 needs to

be repeated to lock the DLL loop.

 Step 20 from Table 4.3 is the second 'wait cycle' in the SPI configuration.

Once the 'wait cycle' is over, the Register 0x21 would be accessed by placing 0xA1

on the SDIO line. 0xA1 is selected instead of 0x21 because the R/*W bit of Register

0x21 is set to 'high'. If the retuning byte equals 0x09, it indicates that the tracking of

the data receiver controller is established and the DLL loop of the controller has been

locked and has not been lost. Otherwise, the configuration proceeds to step 17 to

repeat the attempt. The attempts will be limited to three before breaking out of the

loop and reporting an Rx data lock failure.

201

Chipscope: output waveform of Write process

Figure 4.14: Write routine to SPI interface.

Figure 4.14 shows the real-time simulation results captured using Chipscope.

A few cycles delays are inserted to break down the transmission of each register so

that the waveform of these registers can be seen clearly on the Chipscope analyser.

The extra idle cycles between each register do not affect the configuration of the DAC

chip.

The results show that 0x29CB and 0x2642 have been written to the AD9739

SPI interface. Serial data of 0x29CB is shifted to the DAC chip via the SDIO pin on

every falling edge of the 10 MHz clock. After the instruction cycle, data is received

and captured by DAC on every rising edge of the 10 MHz clock. SCLK and SDIO are

maintained as 'high' after the last bit is processed. After 6 cycles, the writing process

is repeated on the register 0x2642.

202

Chipscope: output waveform of Read-back procedure

In Figure 4.15, the DAC chip has been accessed by Register 0x2A. The serial

data, which are sent over to the DAC chip is 0xAA instead of 0x2A. The reason is

that the R/*W bit of the register is set to '1'. It changes 0x2A to 0xAA. The serial

transmission begins once the SCLK clock is toggled from '1' to '0'. The transmission

of the serial data from Spartan-6 to DAC is registered on the falling edge of the SCLK

clock. In DAC, the reception of the data is registered on the rising edge of the SCLK

clock as seen in Figure 4.15. After the address is processed by DAC, 8-bit data is

returned to the FPGA device on the falling edge of the SCLK clock. In the Spartan-6,

the 8-bit data is registered on the rising edge of the SCLK clock.

Figure 4.15: Read routine to SPI interface at Register 0x2A.

Based on the 'DAC_SDO' line shown in Figure 4.15, the 8-bit data returned

from the DAC chip is 0x01. This indicates that the DLL of the mu controller in DAC

is locked. This means a 500 MHz clock (fDAC/4 where fDAC = 2 GHz) has been

generated by the clock distributor in the AD9739 chip. This 500 MHz clock is fed to

the Spartan-6 via the DCO pin of AD9739 while another 500 MHz clock is

regenerated from the FPGA device by shifting the alternating "101010…" bit pattern

to the DCI pin of AD9739. The alternating bit pattern serves to ensure the coincident

transitions with the sine-wave data (samples for digital-to-analog conversion). This is

because the DCI clock edges must be coincident with the data bit transitions with

minimum skew, jitter, and intersymbol interference [8].

After the mu controller is locked, the Rx controller is enabled by programming

Register 0x10 in the DAC chip. After 135k wait cycles, the status of the Rx controller

is retrievable by accessing Register 0x21 (Figure 4.16). This process could be done by

sending 0xA1 to the DAC chip. 0xA1 is sent instead of 0x21 because the R/*W bit of

the register is set to '1'. It changes 0x21 to 0xA1.

203

After 0xA1 is processed by the DAC chip, the status returned by Register

0x21 is 0x09. 0x09 indicates the Rx controller in AD9739 has been successfully

locked and tracked.

Figure 4.16: Read routine to SPI interface at Register 0x21.

204

Results measured on T-Rex v4.0 after DAC configuration

Before measuring DCO form AD9739, the clock chip is configured to

generate a 2 GHz signal to the DAC chip so that DCO can generate a 500 MHz data

driven clock to Spartan-6.

The signal shown in Figure 4.17 is a 500 MHz clock signal measured on the

DCO pin of AD9739. An oscilloscope shows that the 500 MHz signal has 45.6 mV

amplitude with 2 ns period.

Figure 4.17: 500 MHz clock generated by AD9739 DCO pin to Spartan-6.

The 500 MHz clock is formed by dividing the 2 GHz external clock from the

DACCLK pin. In the DAC chip, the 2 GHz signal is locked and tracked in the DAC

chip by a mu controller. After this, it is divided by four in a clock distributor to

produce 500 MHz. This 500 MHz is then placed on the DCO line and sent back to the

FPGA device.

The amplitude jitter of the 500 MHz clock is due to the quad switch DAC

architecture which causes switching event in both edges of fDAC (DACCLK, a master

clock of AD9739) [8]. An AD9739 chip is built with external clocking mode and it

does not contain an internal oscillator to generate a ‘cleaner’ clock signal to Spartan-6.

This is because the external clocking mode requires an internal clock distributor to

205

regenerate its internal clocks (500 MHz) from an external clock (2 GHz) [8]. As a

result, jitter may couple into the DCO pin [8]. Besides this, there are other factors

contributed to jitters such as the internal circuitry of PLL and the nearby resonating

devices in the system. Furthermore, the T-Rex v4.0 is a prototype and yet to be tested

thoroughly. Undeniably, termination dependency, cross talk, reflection, or

Electromagnetic Interference (EMI) from nearby components may also contribute to

jitter. An effective way to reduce jitter problems is by having a good circuit design to

maintain performance as close to theoretical as possible.

After the serial configuration, the developed 8-core DDS module and multi-

frequency RF module are tested on the T-Rex 4.0 evaluation board. The experimental

results will be further discussed in section 4.3.

206

4.3 Hardware Implementation of High Speed RF Transmitter

The specifications of a high-speed RF transmitter are as below:

System Clock, fsystem : 250 MHz

Frequency Resolution, DF : 0.93 Hz

Input Width of LUT : 25-bit

Output Width of LUT : 14-bit

Depth of sine LUT : 16384 samples

Input width of Phase Accumulators : 25-bit

Depth of Phase Accumulator : 33554432

Total Phase Offsets : 8 sets with 25-bit of each

The output from LUTs is in 2's complement. It cannot be applied to the input

of the AD9739 chip directly because the DAC chip only recognises input data in

offset binary format. Therefore, all the output of a multi-frequency RF generator must

undergo data conversion prior to being processed by the DAC. Figure 4.18 shows the

results without offset binary conversion and they are measured at the output port of

the DAC chip. The waveform shows that the positive and negative cycles of a full

sine-wave are upside down. In order to restore the waveform, the polarity of digital

data must be corrected by inverting the MSB of every sample.

207

Figure 4.18: Analog output without offset binary conversion.

The dual data port of the AD9739 chip receives two data streams

simultaneously. Hence, these two data streams should be sent to the AD9739 chip

from the Spartan-6 device by using an OSERDES module, which contains two

OSERDES blocks. The host processor on the DAC chip provides AD9739 with a

deinterleaved data stream so that DB0 and DB1 data ports receive alternating samples

that are odd/ even data streams. When the AD9739 chip receives the deinterleaved

data, the internal data assembler of the chip multiplexes the alternating samples into

their original order before signal reconstruction takes place.

208

4.3.1 Experimental Results of 8-core DDS System

 In this section, a T-Rex v4.0 board is used to test the VHDL program. Six

random frequencies, 100 kHz, 500 kHz, 210 MHz, 450 MHz, 590 MHz and 750 MHz

are used to test the T-Rex v4.0 board. While the evaluation board is powered up, a

frequency tuning word is loaded into a phase register. The tuning word is then

processed by an offset divider module before going to a phase accumulator. The

output of the phase accumulator is added to each of the eight offset values to

synthesise eight sequential sample phases. These sample phases are converted to

amplitudes by a LUT module and then converted into an analog signal by AD9739.

The frequency tuning word of each signal can be calculated using equation (2.0):

For 100 kHz signal,

� � 100	K��	V	2&�

250	��� 	 � 13422

For 500 kHz signal,

� � 500	K��	V	2&�

250	��� 	 � 67108

For 210 MHz signal,

� � 210	���	V	2&�

250	��� 		 � 28185722

For 450 MHz signal,

� � 450	���	V	2&�

250	��� � 60397977

For 590 MHz signal,

� � 590	���	V	2&�

250	��� 		 � 79188459

For 750 MHz signal,

� � 750	���	V	2&�

250	��� � 100663296

209

Table 4.4 shows the phase offsets of the six random frequencies. The step size,

which is the 1st phase offset of each signal, can be calculated by using equation (3.5).

From the table it can be seen that the step size is proportional to the signal

frequency. When the frequency increases, the step size decreases. This implies that

the total number of samples required forming a cycle of sine-wave decreases at higher

frequencies.

 Every time the phase accumulator generates an output, it is to be added to 1st –

8th phase offset values as shown in Table 4.4 below. This results in eight samples

being generated on every rising edge of a 250 MHz clock. With the phase offsets, the

system can overflow quickly to reach the output frequency.

Sequential
100

kHz

500

kHz
210 MHz 450 MHz 590 MHz 750 MHz

1
st

(Step Size)

1677 8388 3523215 7549747 9898557 12582912

2
nd
 3355 16777 7046430 15099494 19797114 25165824

3
nd
 5033 25165 10569646 22649241 29695672 37748736

4
th
 6711 33554 14092861 30198988 39594229 50331648

5
th
 8388 41943 17616076 37748736 49492787 62914560

6
th
 10066 50331 21139292 45298483 59391344 75497472

7
th
 11744 58720 24662507 52848230 69289902 88080384

8
th
 13422 67108 28185722 60397977 79188459 100663296

Table 4.4: Eight Phase offsets of six signals.

 After loading the programming files into the Spartan-6 device, the output

signals of each frequency are measured and recorded. The screen shots of 100 kHz,

500 kHz, 210 MHz, 450 MHz, 590 MHz and 750 MHz output signals are shown in

Figures 4.19 - 4.24.

210

Figure 4.19: 100 kHz sine-wave.

Figure 4.20: 500 kHz sine-wave.

211

Figure 4.21: 210 MHz sine-wave.

Figure 4.22: 450 MHz sine-wave.

212

Figure 4.23: 590 MHz sine-wave.

Figure 4.24: 750 MHz sine-wave.

213

4.3.1.1 Discussion

Figures 4.19 - 4.24 show that the sinusoidal signals have been successfully

generated by the 8-core DDS system. The 100 kHz and 500 kHz signals are generated

based on over-sampling while other frequencies are generated based on under-

sampling.

During signal synthesis, the step size that is also the 1st phase offset of a signal

is calculated by dividing the frequency tuning word of the signal by eight. 2nd to 8th

phase offsets are created based on the multiple of the step size. The eight phase offsets

are created in parallel and they are added with accumulated phases simultaneously.

Adding an accumulated phase with each of the phase offsets can improve the

total sample phases in a signal by 8 times. It also forces the 25-bit phases to overflow

quicker so that the amount of revolution is identical to the frequency of an output

signal. After this, eight consecutive sample phases are converted to amplitudes by a

LUT module. Digital amplitudes are then converted to an analog signal by AD9739.

Despite the fact that the offset values used in under-sampling and over-

sampling are known as phase offsets, both contain different information. For any

signal within the 1st Nyquist zone, the eight phase offsets contain the data to

reproduce eight sample phases, which deliver the same output frequency as the

accumulated phases generated by a phase accumulator. In other words, the phase

offsets increase the total number of samples in a sine-wave over a unit time without

changing the output frequency. Regarding under-sampling, the phase offsets contain

information to shift an accumulated phase to eight sample phases of higher frequency

signal. The purpose is to force the eight sample phases to overflow quicker so that a

higher frequency signal can be achieved. This concept is to generate a high-speed

signal by using a low speed signal. A high-speed signal normally refers to the output

signal while a low speed signal refers to the image frequency of the output signal. The

entire procedure is akin to imitating the samples of the output signal by offsetting the

samples of aliased signal.

From Figure 4.19-4.24, the total samples used to form a high-speed sine-wave

are fewer than for a lower speed signal. When the frequency of a sinusoidal signal is

higher, the sine-wave has a shorter cycle period. A higher speed signal requires the

214

25-bit sample phase to overflow quicker so that revolution can be achieved faster.

When the overflowing becomes faster, the total amount of phase hopping becomes

less and therefore, fewer samples are allocated for a signal. Consequently, the sample

distribution makes a signal harder to maintain a sinusoidal shape. As a result, the

amplitude might be distorted. The 8-core DDS module is not desirable to generate a

signal beyond 750 MHz because any signal beyond that frequency is unstable. The

distortion gets significant if the output frequency is even higher. As a result, the upper

frequency, which can be generated by the 8-core DDS module, is 750 MHz.

Figure 4.19 and Figure 4.20 show that the amplitude voltage levels have

increased from 82.4 mV to 312 mV when the frequencies increase from 100 kHz to

500 kHz. The 100 kHz and 500 kHz frequencies have lower amplitude voltage levels

compared to other frequencies, which are due to the effect of the on-board RF

transformer. The transformer has 75 ohms impedance and 5 MHz - 3000 MHz

frequency range. 100 kHz and 500 kHz are not within the acceptable range of the

transformer [67]. The attenuation of the signals is due to the insertion loss and the

input return loss of the transformer. The 500 kHz signal has higher amplitude than a

100 kHz signal because 500 MHz is closer to the minimum frequency of the RF

transformer. Therefore, the attenuation at 500 kHz is less than 100 kHz. Any signal at

1 MHz or less could have insertion loss and input return loss as high as 1.85 dB and

10.86 dB, respectively [67].

 Figure 4.21 to Figure 4.24 show that the amplitude voltage levels are

inversely proportional to the signal frequencies. When the signal frequencies increase,

the amplitude voltage levels are decreased. More attenuation at higher frequencies is

due to the effect of the low-pass filter used on the evaluation board. The low-pass

filter has frequency ranges from DC to 490 MHz with 1.2 dB at the pass-band and up

to 40 dB at the stop-band [68].

In summary, the combination of the RF transformer and low-pass filter

provides more attenuation at higher frequencies than at lower frequencies. The

attenuation makes the amplitude decrease when the signal frequency increases.

Nonetheless, for signals below 5 MHz the signal amplitude decreases at lower

frequency.

215

4.3.2 Experimental Results of Phase Coherence

The experiment is carried out by placing the tuning word of 200 MHz and 530

MHz signals to 'preset_inc1' and 'presetn_inc2'. These two frequencies are used

because the differences between them are large enough to be viewed on an

oscilloscope.

Before starting the switching process between these two signals, separated

waveforms of 200 MHz and 530 MHz are recorded in Figure 4.25 and Figure 4.26.

Note that the variance in the amplitude is due to the finite resolution of the

oscilloscope.

Figure 4.25: 200 MHz sine-wave.

216

Figure 4.26: 530 MHz sine-wave.

In Figure 4.25, the peak-to-peak of the 200 MHz sine-wave has about 4.6

divisions along the vertical axis. Each division is 50 mV so a 200 MHz sine-wave has

≈ 230 mV of amplitude. Figure 4.26 shows that the peak-to-peak of the 530 MHz

sine-wave has about 5 divisions along the vertical axis. Each division is 20 mV so the

530 MHz signal is approximately ≈ 100 mV.

The 200 MHz sine-wave in Figure 4.25 has 4 cycles of 200 MHz sine-wave

per division on the horizontal axis. This means each division is equal to 4 X 5.048 ≈

20.192 ns (5.048 ns is the period of the signal measured using an oscilloscope). In

contrast, a single sine cycle of a 530 MHz signal occupies about 1.8 divisions along

the horizontal axis. This means each square on the x-axis of a 530 MHz signal is

equal to 1.886 ns/ 1.08 ≈ 1.048 ns per division (1.886 ns is the period of the signal

measured using an oscilloscope). During the switching process between two signals, it

is difficult to capture both signals by using an oscilloscope because the entire process

is fast. In order to make sure a screen shot contains both signals, the switching process

was repeated on every 11th cycle of the 250 MHz clock.

A 200 MHz sine-wave was oscillated when the T-Rex 4.0 board was turned on.

After 40 ns, 'Selector' switched the output signal to 530 MHz. 'Selector' switched

again after another 40 ns. Then, the 530 MHz sine-wave was replaced by a 200 MHz

217

sine-wave. The entire switching process was repeated so that the results, as shown in

Figure 4.27, can be captured from the oscilloscope.

Figure 4.27: Switching between 200 MHz and 530 MHz.

Figure 4.27 shows the switching between 200 MHz and 530 MHz sine-waves.

The 200 MHz sine signal after switching from 530 MHz is in-phase with the 200

MHz sine signal before switching to 530 MHz.

In Figure 4.27, the amplitude and frequency measurement during the

switching process is inaccurate because the oscilloscope is unable to detect the fast

changing between two signals. The amplitudes of 200 MHz and 530 MHz signals can

be estimated by referring to the total divisions of these signals on the vertical axis.

The amplitudes of 530 MHz and 200 MHz sine-waves have approximately 2 and 4.4

divisions. Each division on the vertical axis is 50 mV. Hence, the amplitude level of

530 MHz is 2 X 50 mV ≈ 100 mV and the amplitude level of 200 MHz is 4.6 X 50

mV ≈ 230 mV. From the calculation, the 530 MHz and 200 MHz signals after the

switching process are still able to maintain the amplitude voltage levels, the same as

the separated sine-waves shown in Figure 4.25 and Figure 4.26.

The phase coherence of 200 MHz in Figure 4.27 can be verified by comparing

the individual 200 MHz signal in Figure 4.25. By overlaying Figure 4.25 with Figure

4.27, the overlaid waveform in Figure 4.28 can be obtained.

218

Figure 4.28: Phase coherence of 200 MHz sine-wave.

 In Figure 4.28, the 200 MHz signal before and after switching from 530 MHz

(highlighted in black) managed to maintain a fixed phase relationship. Let us assume

the 1st cycle of a 200 MHz signal is indicated by the arrow in Figure 4.28. The 200

MHz signal has oscillated from the 1st to 8th cycle. After that, it was replaced by a 530

MHz signal on the 9th cycles. The 530 MHz signal then oscillates between the 9th and

18th cycle. Again, 530 MHz output was replaced by a 200 MHz signal on the 19th

cycle. Throughout the whole switching process, the 200 MHz signal before and after

switching, is in-phase. It can be verified by comparing the result highlighted in black

with the individual 200 MHz reference signal highlighted in blue. In Figure 4.28, both

signals match each other in terms of their phase and amplitude. This is because the 8-

core DDS module kept generating the 200 MHz samples after they were replaced by

530 MHz signals. Therefore, the switching process does not affect the synthesis of

other signals in the DDS module.

219

4.4 Hardware Implementation of Distributed Memory Block

The specification of the distributed memory block:

System Clock, fsystem : 250 MHz

Depth : variable (16 to 65536)

Data Width : 112

Radix : 2, 10, 16

The distributed memory block can be activated by setting the MSB of

'Selector' to '1XX'; 'X' could be any logics. Once the system reads 'Selector' is equal to

'1XX', the content of the coefficient file is retrieved on every rising edge of the 250

MHz signal.

The sample amplitudes of the 40 MHz sinusoidal signal (Figure 4.29) are used

to run the experiment. The purpose of choosing a 40 MHz sine-wave instead of other

signals is because they are generated by using a distributed memory block that can be

easily compared with the 40 MHz sine-wave generated by using 8-core DDS module.

If random data are used, it is difficult to assess whether the signal generated is correct

or incorrect.

220

4.4.1 Test Results of Distributed Memory Block

In this section, a 40 MHz sine-wave was generated by using a distributed

memory block. It is used to compare with a 40 MHz sine-wave generated by using an

8-core DDS module.

Figure 4.29 shows the 40 MHz sine-wave generated by an 8-core DDS module.

Figure 4.29: 40 MHz signal generated by 8-core DDS module.

 The sample amplitudes generated by the 8-core DDS module (Figure 4.29)

were captured by using a test-bench file. The amplitudes were then copied to the

coefficient file as shown in Figure 4.30. The entire project was then compiled to

generate a programming file and loaded into the Spartan-6 device. Theoretically, the

waveform generated by the memory block must show the same result as generated by

the 8-core DDS module.

221

Figure 4.30: Custom data for 40 MHz sine-wave.

When the system was powered on, the system retrieved the data from the

distributed memory block and the DAC chip converted them to an analog signal. The

analog signal was then measured by using an oscilloscope. The waveform is shown in

Figure 4.31.

Figure 4.31: 40 MHz signal generated by distributed memory block.

By comparing Figure 4.29 and Figure 4.31, we see that both are the same in

terms of signal shape, frequency, and amplitude. This implies that the data are

successfully retrieved from the distributed memory block to DAC. The sine-wave

generated from the distributed memory block is 40 MHz with 25 ns periods and 334

222

mV amplitude voltage level, which are the same as the 40 MHz sine-wave generated

by the 8-core DDS module.

223

4.4.2 FPGA Device Utilisation Summary

Figure 4.32: Device utilisation summary.

224

Figure 4.32 presents a summary of the resources that have been used to

develop a multi-frequency generator in Spartan-6. From it, we can conclude that the

multi-frequency generator only used part of the resources available to construct the

system. However, a plenty of resources that remain unused in Spartan-6. These

resources can be utilised for future improvement such as implementing an RF receiver.

All common components needed by the NMR RF receiver such as band-pass filter,

quadrant detector and so on can be replaced by a Spartan-6 device.

The summary shows most of the slice logic utilisation is less than 20% except

for LUT flip-flop pairs, DSP48A1s, PLL_ADV, and IOB. 779 out of 1364 pairs of

LUT flip-flops have been used to build the multi-frequency RF generator

(approximately 57%). 13.5% (184 out of 1364) LUTs and about 29.4% (401 out of

1364) flip-flops remained unused.

In IOB, 48 out of 79 LOCed IOBs have been occupied. The number shows 60%

of the clock-capable I/Os are used to interface with the clock chip and the DAC chip.

In other words, 40% of the clock-capable I/Os blocks are still available for future

enhancement.

 The primary role of DSP48A1 is to perform arithmetic operations in Spartan-

6. All the arithmetic calculations in the 8-core DDS module require 27% of the

DSP48A1s. 2 of the 4 PLL_ADVs are utilised to monitor the internal clocking of the

8-core DDS module.

Figure 4.33 shows that the VHDL program, which is developed for the multi-

frequency RF generator, has met the timing constraint of a Spartan-6 device. All the

input and output signals are completely routed, which do not cause any redundancy in

the I/O resources. The final timing score shows that the module does not encounter

any timing issues because lower score means better performance.

Figure 4.33: Performance summary.

225

Chapter 5

Conclusion and Future Work

This chapter presents the conclusion of this Master’s thesis as well as the future work

to enhance and improve the NMR RF transmitter.

5.1 Conclusion

 The 8-core DDS system is successfully implemented and is simulated using

Matlab-Simulink and ISim simulator. The discussion of the conceptual designs of the

NMR RF transmitter can be found in Chapter 2. The experimental results provide a

better understanding of how a DDS system generates signals up to 750 MHz with

various frequency tuning words.

The input to a DDS system is known as a frequency tuning word. It is a phase

increment value used to accumulate 25-bit phases to generate an output signal. An 8-

core DDS system consists of a 25-bit phase accumulator that generates 25-bit phases

at 250 MHz. The 25-bit accumulated phases are truncated to 14-bit because this

method can reduce the resources needed to form a LUT without changing the

frequency resolution. Furthermore, a 14-bit phase truncation is selected because each

input port of AD9739 has 14 pins.

In an 8-core DDS module, a single phase accumulator can generate phases of a

signal up to 125 MHz. Nonetheless, the eight phase offsets manage to shift the

accumulated phases to eight consecutive samples. It increases eight more samples in a

sine-wave over a unit time. Therefore, the 8-core DDS module allows signal

generation up to 8 x 125 = 1 GHz. A phase accumulator has 250 MSPS sample rates,

with eight samples generated over a unit time causing the system to have 2 GSPS. The

AD9739 DAC chip has dual data path with each sampling at 1 GSPS. Therefore, the

two sample sets that are sent from Spartan-6 to DAC should be in 1 GSPS of each.

With the DAC chip, the dual-input is multiplexed and is reconstructed as a single

output at 2 GHz sampling rate.

226

The design of an 8-core DDS module is based on under-sampling and over-

sampling. For any output signal that is lower than 125 MHz, the signal frequency is

converted to a tuning word and the sample phases are generated by a phase

accumulator. If the signal is beyond 125 MHz, the samples would be generated by

using under-sampling. In this circumstance, the aliased frequency of the output signal

is used for phase increment in the phase accumulator. The accumulated phases will be

shifted to a higher frequency by eight phase offsets. These phase offsets are calculated

by using the lower band-limit of the Nyquist zone where the output signal is located.

The adding of the offset values with the accumulated phases overflows the 25-bit

sample phases quicker and therefore an output signal with a desired frequency can be

generated by the 8-core DDS module.

In a multi-frequency generator, the VHDL project of an 8-core DDS module is

modified so that the system can generate four signals simultaneously. The output

signals are switchable, but only one output can be selected at a time via a switch. The

multi-frequency generator is designed to sustain the phase coherence of an output

signal. With the phase coherence, the signal that is switching to another frequency

then back to its original frequency is in-phase. This feature is very important because

it makes the excitation of nuclei at different times as possible while the phase

coherence is maintained. This would benefit physicists to examine the physical and

chemical properties of molecules or atoms of the sample under examination in an

NMR system.

A distributed memory block is an alternative solution for the generation of a

custom signal. Any signal can be generated by using this method as long as the

custom data of a desired signal are written into the coefficient file. During the RTL-

level of simulation, a random signal is generated. The random signal is verified by

comparing sample outputs retrieved from the distributed memory block with the

random data written into the coefficient file. When it comes to the T-Rex v4.0 board,

the output signal is hardly verified. This is because analog signal is a representation of

time varying quantities in a continuous signal. It does not contain any discrete values

and therefore it cannot be compared with the coefficient file. Due to this reason, a

sine-wave is preferred for testing the distributed memory block. The sine-wave of the

same frequency is generated by a distributed memory block and an 8-core DDS

227

module. Both are compared and the results show the distributed memory block is

functioning properly.

A T-Rex 4.0 evaluation board is used to test the developed DDS system. All

the VHDL modules presented in this thesis can be readily synthesised except the test-

bench code because it is a virtual environment used to verify the correctness of the

design. Before generating an analog signal by using the T-Rex v4.0 board, both clock

chip and DAC chip from T-Rex v4.0 board should be configured before synthesising

the signal. The clock chip is enabled to generate clock signals to support the clocking

in the entire system while the DAC chip is programmed to convert digital to analog

signal at 2 GSPS.

Six random sinusoidal signals were examined during the hardware testing

session. The results displayed in the thesis show the developed DDS system work as

expected. The results indicate that the DDS system managed to generate signals

ranging from 100 kHz to 750 MHz. However, any signal beyond 750 MHz causes

signal distortion. This is because insufficient samples are generated by the system to

maintain the signal shape as sinusoidal. From the results generated by the T-Rex v4.0

board, any signal below 5 MHz has amplitudes attenuated by the on-board RF

transformer. The attenuation of the signal below 5 MHz is proportional to the signal

frequency. When the signal is at 5 MHz and more, the amplitude attenuation is

inversely proportional to the signal frequency, with attenuation being due to the low-

pass filter on the board.

In conclusion, the results obtained from the simulations and experiments show

the objectives of the research are fulfilled. The methodologies discussed in the thesis

can be applied to any NMR RF transmitter. Any sinusoidal signals that are generated

by using these methodologies must fall within the allowable frequency range from

100 kHz to 750 MHz. Any signal other than a sine-wave can be generated by using

the built-in distributed memory block of Spartan-6. The only precaution of using this

method is that the custom data must be written into the coefficient file by following

the data format as described in Chapter 3.

228

5.2 Future Work

A new solution can be investigated to improve the total samples in a signal

especially at higher frequency. The increment in total samples can extend the

frequency range of an output signal to go beyond 750 MHz. When more samples are

inserted, the signal at higher frequency can be formed because the signal shape can be

maintained by the distribution of the samples in the signal.

The existing 8-core DDS module can be enhanced by using 1/4 of the data

width from a phase accumulator to generate a signal. This solution can be achieved by

mirroring the 1/4 phases of a signal to produce a full sine-wave. This method can

reduce the size of a LUT but it requires an extra bit in the phase accumulator to

determine which axes of the samples should be mirrored. Nevertheless, it is a good

attempt to find out other possible solutions to compress the content of a LUT without

affecting the output.

An NMR RF receiver can be developed in combination with an NMR RF

transmitter. This combination could form a spectrometer for NMR application. A

typical spectrometer consists of analog and digital circuits, which consume a lot of

area on the board. An NMR RF receiver can be implemented by using a single FPGA

device. Many external circuits such as a quadrant detector, an anti-aliasing pre-filter

and so on can be integrated into a single FPGA device [6]. This method could ease the

signal routing and it could reduce the size of the motherboard.

The main purpose of this thesis was to design, develop, and explore the

potential of FPGA to implement a DDS system to generate samples at high speed.

Therefore, it does not consider the impacts of SNR and other forms of noise coupling

into the system. Hence, any future enhancement can include the analysis and study of

noise factors so that a better DDS system with a cleaner output signal can be created.

229

Appendix A

Parameter Settings of MATLAB-Simulink Blocks

1. Parameter setting of System Generator Block

Figure A1: System Generator Block

Notes:

1. This block is exclusively used for FPGA synthesis and implementation by using Matlab-

Simulink.

2. The synthesis and implementation of a single DDS core, 8-core DDS module, and multi-

frequency generator are completed by using the Xilinx VHDL compiler (ISE Project

Navigator) instead of Matlab-Simulink.

230

2. Setting of Gateway In Block

Figure A2: Gateway In Block

Notes: This block is applied to all the Matlab-Simulink simulations

3. Setting of Gateway Out Block

Figure A3: Gateway Out Block

Notes: This block is applied to all the Matlab-Simulink simulations

231

4. Setting of Data Type Conversion Block

Figure A4: Data Type Conversion Block

Notes: This block is applied to all the Matlab-Simulink simulations

5. Constant Block

Figure A5: Constant Block (Constant 3)

Notes:

1. The constant value is set to the desired value as shown in Matlab-Simulink of a single DDS

core, 8-Core DDS module and Multi-frequency RF generator.

2. Other settings are remained default.

232

6. Function Block

Figure A6: Function Block (Fcn1)

Notes:

1. The equation in the expression is used to calculate the frequency tuning word.

2. The setting of this block is applied to Matlab-Simulink of a single DDS core, 8-Core DDS

module, and Multi-frequency RF generator.

7. Gain Block

Figure A7: Gain Block

233

8. Phase Accumulator

Figure A8: Phase Accumulator

Note: ‘Implementation’, ‘Output Frequency’, and ‘Phase Offset Angle’ tabs are remained default.

9. Look-up Table

Figure A9: Look Up Table

Note: ‘Implementation’, ‘Output Frequency’, and ‘Phase Offset Angle’ tabs are remained default.

234

10. Counter in 2 GHz Sine LUT block

Figure A10: Counter

Notes: Only applicable to Sine LUTs of 8-core DDS module and Multi-frequency RF Generator

11. Counter in Mock DAC

 Figure A11: Counter

235

Appendix B:

Parameter Settings of Xilinx IP Cores

1. PLL_Base

Figure B1: Page 3 of Page 6

2. DDS Core - Phase Accumulator

Figure B2: Phase Accumulator

236

3. DDS Core - LUT

Figure B3: LUT

4. Distributed Memory Block

Figure B4: Page 1 of Page 3

237

Figure B5: Page 2 of Page 3

Figure B6: Page 3 of Page 3

Note:

1. The coefficient file is loaded to the highlighted section.

238

References

[1] Nobelprize.org (1944), "Isidor Isaac Rabi- Biography", Retrieved 26/1/2012

from http://www.nobelprize.org/nobel_prizes/physics/laureates/1944/rabi-

bio.html

[2] The Nobel Prize in Physics 1952 Felix Bloch, E. M. Purcell (1952), Retrieved

26/1/2012, from http://www.nobelprize.org/nobel_prizes/physics/laureates/1952/

[3] Agilent Technologies (April 11, 2011), "Development of 1-GHz NMR

Spectrometer- Collaboration with Bridge12 Technologies on DNP

Technology", Retrieved 20/8/2011 from

http://www.agilent.com/about/newsroom/presrel/2011/11apr-ca11027.html

[4] Agilent Technologies, "Waveform Phase Continuity", Retrieved 1/3/2012

from

http://wireless.agilent.com/wireless/helpfiles/n5106a/waveform_phase_contin

uity.htm

[5] Analog Devices (1999), "A Technical Tutorial on Digital Signal Synthesis",

Retrieved 5/3/2010 from http://www.analog.com/static/imported-

files/tutorials/450968421DDS_Tutorial_rev12-2-99.pdf

[6] Analog Devices (2001), "Datasheet: AD6620 67 MSPS Digital Receive Signal

Processor", Retrieved 20/3/2011 from http://www.analog.com/static/imported-

files/data_sheets/AD6620.pdf

[7] Analog Devices (2006), "Data Sheet: AD9736, 14 bit, 1200 MSPS DAC",

Retrieved 26/5/2010 from http://www.analog.com/static/imported-

files/data_sheets/AD9734_9735_9736.pdf

[8] Analog Devices (2009), "Datasheet: AD9739, 14 Bit, 2500 MSPS RF DAC",

Retrieved 12/10/2011 from http://www.analog.com/static/imported-

files/data_sheets/AD9739.pdf

[9] Analog Devices (2009), "MT-085: Fundamentals of Direct Digital Synthesis

(DDS)", Retrieved 7/3/2013 from http://www.analog.com/static/imported-

files/tutorials/MT-085.pdf

239

[10] Andraka, R. (1998), "A Survey of CORDIC algorithms for FPGA based

Computers", In ACM/SIGDA Sixth International Symposium on Field

Programmable Gate Arrays, pp. 1-10.

[11] Simoes, B., Cardoso, J.M. , Cruz, N. , Correia, and C.M.B.A. . (1999), "A

Windows CE stand-alone digital spectrometer", In Nuclear Science

Symposium, pp. 260 – 262.

[12] Cardells-Tormo.F., and Valls-Coquillat.J. (2002), "High Performance

Quadrature Digital Mixers for FPGA", In 12th International Conference on

Field-Programmable Logic and Applications", pp. 905-914.

[13] Cardells-Tormo.F., and Valls-Coquillat.J. (March, 2003), “Area-Optimized

Implementation of Quadrature Direct Digital Frequency Synthesizers on LUT-

Based FPGAs”, In IEEE Transaction on Circuit and System: Analog and

Digital Processing, Vol.50, No.3, pp. 135-138.

[14] Chang, Y.K., and Swartzlander, E.E. (May, 2006), "Digit- Pipelined Direct

Digital Frequency Synthesis Based on Differential CORDIC", IEEE

Transaction on Circuits and Systems, Vol. 53, No.5, pp. 1035-1044.

[15] Dipayan, M., and Kadami, G. R. (2012), "Method and Apparatus for Direct

Digital Synthesis of Signals Using Taylor Series Expansion", PCT Patent

Application PCT/IB2010/054721, 2010.

[16] Fukushima, E., and Roeder. S.B.W. (1981), Experimental Pulse NMR: A Nuts

and Bolts Approach. Westview Press.

[17] Filler, A. (2009), "The History, Development and Impact of Computed

Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI",

Internet Journal of Neurosurgey", Vol. 7, No.1.

[18] Gao, S., Cao, S., and Zhang, Y. (May 22-23,2010), "Sinusoidal Pulse Width

Modulation Design Based DDS", In International Workshop on Intelligent

Systems and Applications (ISA), pp. 1-4.

[19] Herveille, R. (January 2, 2012), "CORDIC Core Specification", Retrieved

21/2/2012 from http:// www.opencores.org

240

[20] Hu, X., Harber, R.G., and Bass, S.C. (1988), "Expanding the Range of

Convergence of the CORDIC Algorithm", In IEEE TRANSACTIONS ON

COMPUTERS, Vol.40 No.1, pp. 13-21.

[21] Kallstrom, P. (2010, May 2), "Field-programmable gate array", Retrieved

9/4/2013, from http://en.wikipedia.org/wiki/File:FPGA_cell_example.png

[22] Kerr. R.J., Weaver,L.A (1988), "High Resolution Phase-to-Sine Amplitude

Conversion", PCT Applicatin Number: PCT/US1988/004622

[23] Lauterbur, P.C. and Liang, Z. (2000), "Principles of Magnetic Resonance

Imaging", IEEE Press Wiley Inter-Science.

[24] Lin, C., and Wu, A. (November, 2005), "Mixed-Scaling-Rotation CORDIC

(MSR-CORDIC) Algorithm and Architecture for High-Performance Vector

Rotational DSP Applications", IEEE Transactions on Circuits and Systems,

Vol. 52, No.11, pp. 2385-2396.

[25] Liu, Y., and Li, G. (May 16-18, 2008), "A Microprocessor-Based Nuclear

Magnetic Resonance Spectrometer", In International Conference on

Bioinformatics and Biomedical Engineering, pp. 2264 – 2265.

[26] Liu, Z., Zhao, C., Zhou, H., and Feng, H. (August 30 - September 3, 2006), "A

Novel Digital Magnetic Resonance Imaging Spectrometer", In IEEE

conference on Engineering in Medicine and Biology Society, pp. 280 - 283.

[27] Magritek (2012), "Kea Specifications", Retrieved 17/8/2012 from Magritek:

http://www.magritek.com/products-kea-specifications

[28] Maxfield, C. (2004), "The Design Warrior’s Guide to FPGAs", Newnes.

[29] McClellan,J.H., Schafer, R.W, and Yoder, M.A. (2003), "Signal Processing

First", Prentice Hall.

[30] McDonald, J.S. (2002), "Quick HDL User's and Reference Manual", Retrieved

8/9/2012 from http://paws.kettering.edu/~mcdonald/class/ce422/

[31] Noto, S., and Sarmento, H. (2008), "From Matlab/Simulink to ISE", Retrieved

27/5/2010 from http://prosys.inesc-id.pt/UWBR/Reports/UWBR-matlab-ise.pdf

241

[32] Rabi,I.I., Zacharias, J.R., Millman, S. and Kusch, P. (1938), "A New Method

of Measuring Nuclear Magnetic Moment", Physical Review, Vol. 53, No. 4,

pp. 318.

[33] Punk, O., Döhler, S., and Heuert, U. (May 12-16, 2010), "Modern device

concepts – digital part of a NMR spectrometer", In International Seminor on

Electronics Technology (ISSE), pp. 386-389.

[34] Qi, H. (2001), "ECE310 - Introduction to Signal and System", Department of

Engineering and Computer Science - The University of Tennessee, Retrieved

9/10/2012, from http://web.eecs.utk.edu/~qi/teaching/ece310s01/

[35] Samuel Ginn College of Engineering, "ELEC4200 Lecturer Note: FPGA

Overview", Auburn University, Retrieved 15/5/2013 from

http://www.eng.auburn.edu/~strouce/class/elec4200/FPGAoverview.pdf

[36] Sawyer, N. (2010, June 3), "Application Note XAPP1064 (v1.1): Source-

Synchronous Serialization and Deserialization", Retrieved 2/6/2010 from

http://www.xilinx.com/support/documentation/application_notes/xapp1064.pd

f

[37] Smith III, J.O., and Cook, P.R. (1992), "The Second-Order Digital Waveguide

Oscillator", International Conference on Computer Music, pp. 1-6.

[38] SpinCore Technologies, "RadioProcessor: Complete RF Acquisition and

Excitation System with Digital Detection, Real-Time Signal Processing Signal

Averaging" Retrieved 11/4/2011 from

http://www.spincore.com/products/RadioProcessor/RadioProcessor.shtml

[39] SpinCore Technologies, " PulseBlasterDDS: Programmable TTL and DIrect

Digital Synthesis RF Pulse Generator", Retrieved 13/4/2011 from

http://www.spincore.com/products/PulseBlasterDDS-300/PulseBlasterDDS-

300.shtml

[40] Takeda, K. (March, 2007), "A highly integrated FPGA-based nuclear

magnetic resonance spectrometer". Review of Scientific Instruments, Vol.78 ,

No. 3, pp. 033103-6.

242

[41] Takeda, K. (June, 2008), "OPENCORE NMR: Open-source core modules for

implementing an integrated FPGA-based NMR spectrometer", Journal of

Magnetic Resonance 192, Vol. 192 , No.2, pp. 218-229.

[42] Texas Intruments (March 29, 2012), "LMK04800 Family Low-Noise Clock

Jitter Cleaner with Dual Loop PLLs", Retrieved 28/10/2012 from

http://www.ti.com/lit/ds/symlink/lmk04800.pdf

[43] Turner, C. S. (May, 2003), "Recursive Discrete-Time Sinusoidal Oscillators",

Journal of IEEE Signal Processing Magazine, Vol.20, No.3, pp. 103-111.

[44] Valls, J., Sansaloni, T., Perez-Pascual, A., Torres, V., and Almenar, V. (September,

2006), "The Use of CORDIC in Software Defined Radios: A tutorial", Journal

of IEEE Communication Magazine, Vol.44, No.9, pp. 46-50.

[45] Vanderwerff, M. (2010), "Schematic of T-Rex V3.0", Beta Solution.

[46] Vanderwerff, M. (2011), "Shcematic of T-Rex V4.0", Beta Solution.

[47] Vanderwerff, M (2009), "T-ReX V2.0 Specifications (REV A)", Magritek/

Beta Solutions LTD.

[48] Vankka, J. (November 2000), "Direct Digital Synthesizers: Theory, Design

and Applications", Doctorate Thesis, Helsinki University of Technology.

[49] Vladimirova, T., and Tiggeler, H. (1998), "FPGA Implementation of Sine and

Cosine Generators Using the CORDIC Algorithm", In Military and Aerospace

Applications of Programmable Devices and Technologies Conference, pp. 28-

30.

[50] Volder, J.E. (September, 1959), "The CORDIC Trigonometric Computing

Technique", IRE Transaction on Electronic Computers, Vol. 8, No.3, pp. 330-

334.

[51] Williston, K. (2009), "Digital Signal Processing: World Class Designs",

Newnes.

243

[52] Xilinx (April 28, 2005), "DS246: Logic Core IP DDS v5.0", Retrieved

13/9/2012 from

http://www.xilinx.com/support/documentation/ip_documentation/dds.pdf

[53] Xilinx (April 28, 2005), "DS275: Sine/Cosine Look-Up Table v5.0",

Retrieved 12/7/2012 from

http://www.xilinx.com/support/documentation/ip_documentation/sincos.pdf

[54] Xilinx (June 24, 2009), "UG381(v1.0):Spartan-6 FPGA SelectIO Resources",

Retrieved 12/9/2010 from

http://www.xilinx.com/support/documentation/user_guides/ug381.pdf

[55] Xilinx. (February 23, 2010), "UG384:Spartan-6 FPGA Configurable Logic

Block", Retrieved 12/5/2013 from

http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

[56] Xilinx (October 5, 2011), "DS160:Spartan-6 Family Overview", Retrieved

12/4/2013 from

http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

[57] Xilinx (October 17, 2011), "DS162 (v3.0): Spartan-6 FPGA Data Sheet: DC

and Switching Characteristics", Retrieved 21/5/2010 from

http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf

[58] Xilinx (March 1, 2011), "DS249: LogiCore IP CORDIC V4.0", Retrieved

27/6/2012 from

http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds24

9.pdf

[59] Xilinx (March 1, 2011), "DS558: LogiCORE IP DDS Compiler v4.0",

Retrieved 12/8/2011 from

http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.p

df

[60] Xilinx (October 19, 2011), "DS858: LogiCORE IP CORDIC v5.0" Retrieved

20/12/2011 from

http://www.xilinx.com/support/documentation/ip_documentation/cordic/v5_0/

ds858_cordic.pdf

244

[61] Xilinx (July 20, 2012), "UG382 (v1.7):Spartan-6 FPGA Clocking Resources",

Retrieved 25/7/2012 from

http://www.xilinx.com/support/documentation/user_guides/ug382.pdf

[62] Xilinx (November 5, 2012), "UG474 (v1.4):7 Series FPGAs Configurable

Logic Block", Retrieved 7/5/2013 from

http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_C

LB.pdf

[63] Zhang, X., Xiao, L., Anferova, S., Anferov, V., and Yu, H. (2011),

"Development of a Portable Sectrometer Based on OPENCORE NMR",In

International Conference on Magnetic Resonance Micoscopy Joint Topic

Conference on NMR in Well Logging and Core Analysis, pp. P60.

[64] Zeidman, B. (March 21, 2006), "All About FPGAs", Programmable Logic

Deisng Line, Retrieved 5/4/2013 from

http://www.pldworld.com/html/technote/pldesignline/allaboutfpgas-bobz.htm

[65] Zhang. T, Zhao. J, and Chen, D. (September 9-11, 2011), "A Realization of

WiMAX Digital Intermediate Frequency Based on FPGA", In International

Conference on Electronics, Communications and Control (ICECC), pp. 1853-

1856.

[66] Zhang, Z., and Dong, F. (May 16-28, 2010), "A harmonic signal generator

based on DDS and SOPC", In Control and Decision Conference (CCDC), pp.

1542 – 1547.

[67] Mini-circuits (2013), “Datasheet: RF Transformer TC1-33-75G2+”,

 Retrieved 7/4/2013 from http://www.minicircuits.com/pdfs/TC1-33-75G2+.pdf

[68] Mini-circuits (2013), “Datasheet: Ceramic Low Pass Filter, 50 ohms, DC-490

 MHz, LFCN-490+”,

 Retrieved 15/4/2013 from http://www.minicircuits.com/pdfs/LFCN-490.pdf

245

