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PRINCIPAL COMPONENT ANALYSIS:
SOME MAJORISATION, PERTURBATION AND NONNEGATIVE
MATRIX THEORY

Frank CRITCHLEY
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England

Abstract: Resulls from three brunches of mathematics are drawn together in a study of princi-
pal component anulysis. These results dlunine the properties of the method and both explain
and exstend empirical findings with it. Finally, a new standardisation is briefly indicated.

Résumé: Quelques résultats de Lrois parties des mathématiques sont assemblés dans une étude
de U’analyse en composantes principales. Ces résultats donnent de la lumiére sur les propriétés
de cette méthode et expliquent et élendent quelques phénomeénes empiriques trouves avec cetle

méthode. Finalement, on indique un nouveau choiz de la normalisation des échelles des
variables.
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1. INTRODUCTION

We study principal component analysis from the viewpoint of three branches of mathe-
matics. This provides new insights and properties of the method as well as both explaining
and extending some well-known empirical results from using it. Finally, a new possibility is
indicated for standardising the scales of the variables when they are positively correlated.
This possibility will be explored further in a later paper.

The three branches of mathematics are majorisation (section 2), the perturbation
theory of a simple eigenvalue (and its normalised eigenvector) of a real symmetric matrix
(section 3) and nonnegative matrix theory (section 4).
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2. MAJORISATION

Let H be a real, symmetric nonnegative definite p x p matrix. We think of /I as being
either the sample or the population covariance matrix of a set of p random variables.
In principal component analysis, there is often interest in the & largest or the & smallest
eigenvalues of /I. We lose no generality in supposing that both the vector A = (Ag,... )T
of cigenvalues of If and the vector ¢ = (hy,...,h,,)" of its diagonal elements lie in
Dy = (21,22, .., &) ey 2 24 > ... > 2, >0}, Then:

Theorem 1: (Schur (1923)): &4+ ...+ =M+ ...+ N andVhk=1,...p-1:

G4+ <A+ ...+ Mg equivalently s €+ oo+ kgt 2 Ap + oo F Apk41.

We say ¢ is majorised by ), written € < A. This result actually holds for auy Herwmitian
watrix as shown by Fan (1949) using extremul properties of Ay + ...+ Apand Ay + ...+
Ap—k41 given in Fan (1950). These twin sets of optimal properties have natural statistical
iuterpretations in a principal component analysis, as noted in the case of the & largest
eigenvalues by Rao (1973, p. 591). The importance of Theorem 1 was enhanced when Iorn
(1954) and Mirsky (1958) sliowed that no stronger ordering between ¢ and A is generally
true. The excellent book by Marshall and Olkin (1979) expands the above remarks and
gives an encyclopaedic account of the many inequalities flowing from £ < A. We note here
some applications of interest for principal component analysis where the diagonal elements
¢ have a natural interpretation and where H is known to be nonnegative definite.

It is well known empirically that if a single variable has a much higher variance than
the rest, then a single eigenvalue will dominate a principal component analysis. Theorem 1
shows why this is so, generalises this result from one to any number k of dominant variables
.and establishes the natural converse that if k variances are negligible with respect to the
remainder then the same is true of the cigenvalues. An example of the practical utility of
this result is given in Critchley (1983).

Recall that a real-valued function ¢ defined on a subset A of R™ is said to be Schut-
convex on A if 2 < y on A implies ¢(x) < ¢(y). Thus it follows at once from Theorem 1
and consideration of the set Dy to which £ and A here belong that:

2

Theorem 2: Let ¢ be a Schur-couvex function on D4. Then:

L) < ¢(d) (1)

If also ¢ is non-decreasing (non-increasing) in each argument, then the stronger result
holds that:

¢(£lv--~vek)S¢(’\lv"'v’\k)vk=lv"'p (2)

ord(€pmictty ey bp) S O Apittr-- s Aphhk=1,...p 3)
respectively.
Thus the whole set of variances, the k largest variances and the k smallest variances

give a varicty of information about the corresponding subsets of the spectrum of eigenvalues
of /. Examples of this are, in the same numbering as the above theorem:
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(1a)  @(xry. ..y 2p) = B g(a:) with g(+) convex. In particular, the variance of the eigen-
values A1,...,Ap is never less than the variance of the variances £y, ...,4,.

(1LY o(z1,...02p) = Tz with by > ... 2> b,. This provides a host of inequalities between
the same ordered contrast of £ and of A. For example, taking by = 1 and b; = ~1 for all
t > 1, we find that if the largest variance exceeds the sum of all the other variances then
the same is true of the eigenvalues.

(2a)  @(x1,...,21) = X g(z:) with g(-) convex aud i increasing on z > 0. In particular,
if 2% denotes max(z,0):

TE (G —a)t <TE (M-a)tk=1,...,pa € R.

(2b) @(2ry...,zk) = bTz with by > ... > b, > 0.
(2¢) @(=1,...,24) any symmetric gauge function (Marshall and Olkin, 1979, page 96).
In particular,

G+ 46 <N 4.+ k=1,...,p7r> L

(32) Tpmigty...,2p) = XY p-k4+19(2i) convex and decreasing on z > 0. In particular,
for H positive definite:

et G S AL A k=1,

(3b)  I(Tp-it1s...,2p) = bF 'z with 0> bpkp1 2 ... 2 by

On account of the great difficulty of the mathematics of other cases, the distribution
theory and inference methods for principal component analysis are almost entirely limited
to the case where H is a covariance matrix. However, because of the effects of different
scales of measurement of the p variables alluded to above and discussed further in the
next section it is common to standardise H in some way. Note that when a correlation
matrix is used, or more gencrally when all the variances are equal, Theorem 1 gives no
information about A in terms of £

In section 4 we consider the case where all the elements of F are positive. We have
then the following result which is stronger than Theorem 1:
Theorem 3 (Berman and Plemmons, (1979), p. 97)

£1+...+£p=A1+...+A,,lllS,\l andforall 1< j<k<p:

Bt Ga) b+ 6 < (M40 + Aj) + Ak

3. PERTURBATION THEORY

Consider again the case where a small number of variances dominate the rest. The
case of k negligible variances is analogous and is not discussed separately. Little is lost in
assuming that the k dominant variables are not highly correlated with each other. Indeed,
perhaps at the loss of some interpretability, these correlations are of course removable



entirely by a preliminary rotation in the corresponding k dimensional subspace and a
possible subsequent reduction of k. Taking these correlations to be 0(¢), where £ denotes
the order of the other p — k standard deviations, and exploiting non-negative definiteness,
we may regard I/ as a perturbed version of

B = diag(ty,...,4&,0,...,0) = 55 tieel
where ¢, denotes the ith unit coordinate vector is RP. Specifically, we have:
1 ;
H=B+¢eC+ ;ja’D + 0(e%)

where ¢;; = 0 for i = j £ k and for min(i,7) > &
and: d,; = 0 for min (4, 7) < k.

Under the condition that ¢;,...,¢; are distinct, we may use standard perturbation
theory for a simple eigenvalue of a real symimetric matrix. For each i = 1,...k, assume
that the corresponding perturbations of &;,¢e; are:

£(€) = & +epi + =<y, + 0(e3)

N -

and:

1 .
e€) = e, + e[, + 559, + 0(&Y).

Then applying Lemma 2.1 of Sibson (1979) we have at once:
Theorem 4: y; =0,v; = '2{}315_,#5;.-6:’_’-/(2; ~-¢)+ K“IE»;.-C?j

/ cll/(e| - ll) \
Ci,i—l/(e;' —4)

0
C:,i+|/(ea - fi+1)

e/ (b — &)
Cike1 /8

\ C.ps/l. )

Corollary 5: If the k doniinant variables are uncorrelated with each other,

vi = 278,56t} and £, = £71(0,...0,Cikp1, - .-, Cip)

In particular, the eigenvalue ¢, and the only non-zero component of g, are unchanged to first
order. In the case of a single dominant variable, and also when the dominant variables
are uncorrelated with each other, the second order change in ¢; is non-negative, which
refines the corresponding statement in Theoremn 1. In this latter case, all components of
¢; associated with the dominant variables are unchanged to first order.



These results then explain theoretically, refine and extend what is commonly observed
in practice: dominant variances are associated with dominant eigenvalues and have corre-
sponding ecigenvectors close to the relevant unil coordinate vectors. For an example, see
Tables 2.2 and 2.4 of Kendall (1975).

Theorem 4 also shows that if two or more of the dominant variances should happen
to be close wheu the associated variables are not uncorrelated then the corresponding
clements of the corresponding eigenvectors can be volatile. For example if £, = £; while
c12 # 0 then the second component of !_1 and the first components of L‘, can be large
as their denominator is in modulus (; — £;). This is natural in the sense that in the
limit £; — €3, the first two elements of corresponding eigenvectors are indeterminate. This
same perturbation theory underlies the general warning against interpreting too closely the
elements of eigenvectors corresponding to eigenvalues that are very close: such elements
are highly sensitive to small changes in the date. The analogous effects of multicollinearity
in regression where several cigenvalues are near zero are well documented. An extreme
form occurs in the principal component context when analysing a non-diagonal correlation
matrix in which the correlations vary little if at all, as in Example 8.3 of Morrison (1976).
For some further discussion see also Critchley (1985).

4. POSITIVELY CORRELATED VARIABLES

It frequently happens that (nearly) all the correlations in a principal component anal-
ysis are positive. In such cases it is common empirical experience that the dominant
eigenvector has all its elements positive. Kendall (1975, p.24-5) comments to this effect in
a worked example. It is easy to see theoretically why this is so. Suppose now that I/ > 0
where we interpret matrix and vector inequalities such as this eleinentwise. The classical
work of Perron (1907) and Frobenius (1908, 1909) using only this positivity property of
H gives:

Theorem 6:

(i) The largest eigenvalue A = A; of H is positive and simple
(ii) H has an eigenvector ¢ > Q corresponding to ).

By orthogonality of eigenvectors corresponding to distinct eigenvalues, we have:
Corollary 7: In a principal componeut analysis of a positive covariance matrix all compo-
nents beyoud the first strictly contrast the variables. That is, the associated eigenvectors
Lave elements of both sigus.

The minimum and maximum row suins of ¥ provide bounds for A and also for 7, the
ratio of the maximal and minimal elements of the corresponding positive eigenvector q-
Denoting these extreme row sums by a and b respectively we have the standard results:

Theorem 8: (Berman and Plemmons, (1979), Theorem 2.35) (i) a < A < b; (ii) 42 > b/a.
Equality holds in (i) and (ii) if and only if a = b.

Part (ii) shows that it is sufficient for q to be far from u = (1//)(1,1,...,1)T that b/a
be much greater than one while part (i) shows that b/u = 1 is necessary and suflicient for
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¢ = u. 'This gives some theoretical insight into another empirical finding. With positively
correlated data, stabilising the variance is likely to reduce b/a and so is often associated
with ¢ moving nearer u. Comparing Examples 8.1 and 8.3 of Morrison (1976) illustrates
this well.

The cleme.ts of H also provide bounds on the extent to which the Perron-Frobenius
eigenvalues dominates the others. We have:

Theorem 9. Let K = max,,j,kll(h;,h.kgh.alh,:jl)% and ru = min, j(h,;). Then:

(&1 + 2= b) /b < A/ Ay < (K = 1)/(K + 1) < (& — m)/ (€L + m).
Proof. "T'he first incquality follows from Theorems 1 and 8(i). The second and third follow
from the work of lloph (1963) and Ostrowski (1963) on positive matrices and the fact that
1l is non ucgative definite.

The lower bound ou A/A; may be trivial as b > ¢,. The upper bounds are more
interesting. They are increasing functions of K and ¢;/m respectively and demonstrate
that it is sufficient that the elements of H do not vary greatly for A; to strongly dominate
A2, and hence all the other eigenvalues. For a correlation matrix they show that: A2/A; <
(1 = p)/(1 + p) where p is the minimal corrclation. Thus, for example, if all correlations
exceed 0.5, A; is certain to be at least three times bigger than Ay, whileif p > 0.8, A; > 9),.

One last comment on standardisation. Consider a re-scaling I - G = D-'HD™!
where now D is a diagonal matrix with d;; > 0,i = 1,...p. A common choice is of
course d;; = &, the correlation matrix ¢ being advocated for use in principal component
analysis in that constant diagonal clemnents puts the variables on an cqual footing in a
sense. Now it is intuitive, and can be shown formally, that D can be chosen so that
the row sums of G take any preassigned positive values. This fact and Theorem 8 (ii)
reinforce the familiar warning against trying to interpret the relative sizes of coefficients
in the dominant eigenvector ¢ in terms of the relative “importance” of the corresponding
variables to the underlying “common factor”. These relative sizes depend strongly on an
arbitrary if conventional choice of scaling. Only the common-signedness of the elements
of ¢ has empirical support, reflecting in a natural way the positivity of the correlations
among the variables. Indced we may use the above fact to suggest another convention for
standardisation: choose D so that G is doubly-stochastic. The variables are then all on
the same footing in the sense that they contribute equally to the dominant eigenvector u.
In this case, the dominaut eigenvalue is, of course, 1 and we note that, as is easily shown:
Theorem 10 (Berman and Plemmons, (1979), p.51): Any other cigenvalue of G is at most
min{l — (¥, min,g;;), (£; max;g,,) - 1}.

These ideas on standardisation are currently being pursued and we hope to publish
the results shortly.
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