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SOME MAJORISATION, PERTURBATION AND NONNEGATIVE 

MATRIX THEORY 

Frank CRITCHLEY 
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University of Warwick 
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England 

Abstract: Résulte from three branches of muthtinatics are drawn toyether in a study of princi­
pal comportent anulysis. Thèse résulte illumine the properties of the method and both explain 
and extend empirical findings with it. Finally, a new standardisation is briefly indicated. 

Résumé: Quelques résultats de trois parties des mathématiques sont assemblés dans une étude 
de l'analyse en composantes principales. Ces résultats donnent de la lumière sur les propriétés 
de cette méthode et expliquent et êtendtnt quelques phénomènes empiriques trouvés avec cette 
méthode. Finalement, on indique un nouveau choix de la normalisation des échelles des 
variables. 
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1. INTRODUCTION 

We study principal comportent anaiysis from the viewpoint of three branches of mat hé­
maties. This provides new insights and properties of the method as well as both explaining 
and extending boinc well-known empirical results from using it. Finally, a new possibility is 
indicated for standardising the scaies of the variables when they are positively correlated. 
This possibility wili be explored further in a Iater paper. 

The three brandies of mathematics are majorisation (section 2), the perturbation 
theory of a simple eigenvalue (and its normalised eigenvector) of a real symmetric matrix 
(section 3) and nonnegative matrix theory (section 4). 

Manuscrit reçu le 30.10.86, révisé le 4.1.88 



. 9 . 

2. MAJORISATION 

Let / / be a real, symmeLric non négative défi ni te p x p matrix. Wc think of // as being 
oit lier the sample or the population covariance matrix of a set of p randoin variables. 
In principal cornponent anaiysis, there is often interest in the k largest or the k smallest 
eigenvalues of / / . We lo&e no generality in supposing that both the vector A = (Ai, . . . Xp)1 

of eigenvalues of / / and the vector £ = ( / in , . . . ,APP)7' of its diagonal éléments lie in 
D+ = {(3-1,-4--2,...,xp)

T\xi > x-i > ... > xv > 0}. Then: 
Theorein 1: (Schur (1923)): tx -f . . . + £„ = A, + . . . + Ap and Vfc = 1 , . . . p - 1: 

U + • • • + 4 < Ai + . . . + Ajt; équivalents :£„ + . . . + *,-*+! > Ap + . . . + \v-k+\. 

We say £ ib majorised by \, wrilten £ -< A. This resuit actually holds for auy lier mil la n 
matrix as s»hown by Fan (1949) using extreniai properties of Ai + . . . + A* and Ap + . . . + 
Ajj-jb+i given in Fan (1950). Thèse twiu sets of optimal properties hâve natural statistical 
interprétations in a principal cornponent anaiysis, as noted in the case of the k largest 
eigenvalues by Rao (1973, p. 591). The importance of Theorem 1 was enhanced when Horn 
(1954) and Mirsky (1958) showed that no stronger ordering between £ and A is generally 
truc. The excellent book by Marshall and Olkia (1979) expands the above remarks and 
gives an oncyclopaedic account of the uiany inoqualities flowing from £ -< A. We note hère 
some applications of interest for principal cornponent anaiysis where the diagonal éléments 
£ hâve a natural interprétation and where 11 is known to be nonnegative défini te. 

It is well known empirically that if a single variable h as a much higher variance than 
the rest, then a single eigenvalue will dominate a principal cornponent anaiysis. Theorem 1 
shows why this is so, généralises this resuit from one to any number k of dominant variables 
and establishes the natural converse that if k variances are negligible with respect to the 
remainder then the saine is truc of the eigenvalues. An examplc of the practical utility of 
this resuit is given in Critchley (1983). 

Recall that a real- val util fu net ion ÇJ defiued on a subset A of Rn is said to be Schur-
convex on A if x •< y on A implies <p(r) < <£(//). Thus it follows at once from Theorem 1 
and considération of the set D+ to which £ and A hère belong that: 
Theorem 2: Let 0 be a Schur-couvex function on D+. Then: 

*(£)<« A) 0) 

If also ç is non-decreasing ( non- inc leasing) in each argument, then the s t ronger resuit 
holds that: 

* ( ' i . . . . , * 0 < * ( A i A*),* = !,. . . /> (2) 

or:0(£p_fc+i,• • •,Cp) < ¢(À„_*+i, • • • , A p ) , k = l , . . . p (3) 

respect ively. 
Thus the whole set of variances, the k largest variances and the k s malles t variances 

give a variety of information about the corresponding subsets of the spectrum of eigenvalues 
of / / . Examples of this are, in the same numbering as the above theorem: 
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(la) 0 (x i , . . . ,x p ) = ^=l<j{xi) with </(•) convex. In particular, the variauce of the eigen­
values Ai , . . . , Ap is never less than the variance of the variances l\,..., £p. 
( Ib) 0 ( Ï I , . . . , xv) = brx with 61 > . . . > 6p. This provides a host of inequalities between 
the samc ordered contrast of £ and of A. For example, taking 61 = 1 and b{ = - 1 for ail 
i > 1, we find that if the largest variance exceeds the sum of ail the other variances then 
the same is true of the eigenvalues. 

(2a) 0(x-!, . . . , xk) = %i=lg{xi) with </(•) convex and increasing on x > 0. In particular, 
if x+ dénotes max(ir, 0): 

^ , ½ " a)+ < ^=1(A.- - a)+,fc = 1,. . . , * « € R. 

(2b) 0(*i,...,xjfc) = 6 ½ with bi > ... > bk > 0. 

(2c) 4>(xl,...,xk) any symmetric gauge function (Marshall and Olkin, 1979, page 96). 
In particular, 

(*[ + . . . + £J)i < (A; + . . . + Arji,fc= l , . . . , p , r > l . 

(3a) ^(xp_i,.+1,...,x'p) = S{Lp_fc+1*/(arj) convex and decreasing on x > 0. In particular, 
for // positive definite: 

+ + Ç 1 < A p - ^ + 1 + . . . + Ap-1 ,A;=l , . . . 

(3b) 0(xp^jb+lï...,x-p) = 6 rz w i t h 0 > ip_*+t > . . . >6 P . 

On account of the great difficulty of the mathematics of other cases, the distribution 
theory and inference methods for principal cornponent anaiysis are almost entirely limited 
to the case where H is a covariance matrix. llowever, because of the eflects of différent 
scales of measurement of the p variables alluded to above and discussed further in the 
next section it is common to standardise / / in some way. Note that when a corrélation 
matrix is used, or more genorally when ail the variances are equal, Theorem 1 gives no 
information about A in terms of L 

In section 4 we consider the case where ail the éléments of / / are positive. We hâve 
then the foliowing resuit which is stronger than Theorem 1: 
Theorem 3 (Berman and Plemmons, (1979), p. 97) 

1̂ + • • - + £p = Ai + . . . + Ap,£i < A! and for ail 1 < j < k < p : 

Ci + . . . + *j-i) + £*-i + «* < (Ai + . . . + Xj) + A*. 

3. PERTURBATION THEORY 

Consider again the case where a small number of variances dominate the rest. The 
case of k negligible variances is analogous and is not discussed separately. Little is lost in 
a&suming that the k dominant variables are not highly correlated with each other. Indeed, 
perhaps at the loss of some interpretability, thèse corrélations are of course removable 
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entirely by a prelirninary rotation in the corresponding k dimension al subspace and a 
possible subséquent réduction of k. Takiug thèse corrélations to be 0(£), where £ dénotes 
the order of the other p- k standard déviations, and exploiting non-uegative definiteness, 
we may regard 11 as a perlurbed version of 

D= d i a g ( ^ , . . . , ^ , 0 , . . . , 0 ) = ^ ^ , - ^ 

where r, dénotes the i n unit coordinate vector is Rp. Specifically, we hâve: 

// = B + sC + i £ 2 D + 0(e3) 

where cij = 0 for i = j < k and for rnin(î,j) > k 
and: dtJ ~ 0 for min (i, j ) < k. 

Under the condition that £i,...,£jb are distinct, we may use standard perturbation 
theory for a simple eigenvalue of a real symmetric matrix. For each i = l , . . .fc, assume 
that the corresponding perturbations of £,-,£,• are: 

and: 

£,(£) = et + epi -r -e2vx + 0(£3) 

£ . (0 = £. +¢/ . - + 5 ^ 2 . + 0(^) -

Then applying Lemma 2.1 of Sibsou (1979) we hâve at once: 

Theorem 4: p{ = 0,-u; = 2{^i<^i<kc
2J(ii - ij) + £-%>*<£} 

/ < W ( £ , - £ i ) \ 

and / . = 

Ci..--i/(A--«.-i) 
0 

C>.'+l/(^l ~ ^i+l) 

Ci.k+i/4 

V c,,,/*, y 
Corollary 5: If the k dominant variables are uncorrelated with each other, 

vi = 2 ^ 1 {Sj>*c? } and / . = ^ ( O , . . . 0, ¢,-,4+1,..., c,P)T. 

In particular, the eigenvalue ix and the only non-zero cornponent of e, are unchanged to first 
order. In the case of a single dominant variable, and also when the dominant variables 
are uncorrelated with each other, the second order change in l{ is non-negative, which 
refînes the correspond]ng statement in Theorem 1. In this latter case, ail components of 
ti associated with the dominant variables are unchanged to first order. 
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Thèse results then explain theoretically, renne and extend what is commonly observed 
in practice: dominant variances are associated with dominant eigenvalues and hâve corre­
sponding eigeuvectors close to the relevant unit coordinate vectors. For an example, see 
Tables 2.2 and 2.4 of Kendall (1975). 

Theorem 4 also shows that if two or more of the dominant variances should happen 
to be close wheu the associated variables are not uncorrelated then the corresponding 
éléments of the corresponding eigenvectors can be volatile. For example if l\ « £2 while 
C12 7É 0 then the second cornponent of / x and the first components of / 2 can be large 
as their denominator is in modulus {£\ — £2). This is natural in the sensé that in the 
limit £\ —• £2» the first two éléments of corresponding eigenvectors are indeterminate. This 
same perturbation theory underlies the gênerai warning against interpreting too closely the 
éléments of eigenvectors corresponding to eigenvalues that are very close: such éléments 
are highly sensitive to s mail changes in the date. The analogous effects of muiticollincarity 
in régression where several eigenvalues are near zéro are well documented. An extrême 
foriri occurs in the principal cornponent context when analysing a non-diagonal corrélation 
matrix in which the corrélations vary little if at ail, as in Example 8.3 of Morrison (197C). 
For some further discussion see also Critchley (1985). 

4. POSITIVELY CORRELATED VARIABLES 

It frequently happens that (nearly) ail the corrélations in a principal cornponent anal­
yses are positive. In such cases it is common empirical expérience that the dominant 
eigcnvector lias ail its éléments positive. Kendall (1975, p.24-5) commcnts to this cffect in 
a worked ex ample. It is easy to see theoretically why this is so. Suppose now that 11 > 0 
where we interpret matrix and vector inequalities such as this elemerilwise. The classical 
work of Perron (1907) and Frobenius (1908, 1909) using only this positivity property of 
H gives: 
Theorem 6: 

(i) The largest eigenvalue A = Ai of / / is positive and simple 

(ii) / / has an eigcnvector g > Q corresponding to A. 

By orthogonality of eigenvectors corresponding to distinct eigenvalues, we hâve: 
Corollary 7: In a principal cornponent anaiysis of a positive covariance matrix ail compo­
nents bcyond the first strictly contrast the variables. That is, the associated eigenvectors 
hâve cléments of both signs. 

The minimum and maximum row suins of / / provide bounds for A and also for 7, the 
ratio of the maximal and minimal éléments of the corresponding positive eigen vector j . 
Denoting thèse extrême row sums by a and 6 respectively we hâve the standard results: 

Theorem 8: (Berman and Plemmons, (1979), Theorem 2.35) (i) a < A < 6; (ii) 72 > b/a. 
Equality holds in (i) and (ii) if and only if a = b. 

Part (ii) shows that it is sumeient for q to be far from u = (1 /^5) (1 .1 , . - . , 1)T that b/a 
be much greater than 011e while part (i) shows that b/a = 1 is necessary and sufficient for 
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<l~ <±. This gives some tluoielical iiisight into another empirical finding. Wilh positively 
c.orrelated data, stabilising the variance is likely to reduce b/a and so is often associated 
with q moviiig nearer u. Comparing Ex amples 8.1 and 8.3 of Morrison (1976) illustrâtes 
this weli. 

The eleme.its of / / also provide bounds on the ex tent to which the Perron- Frobenius 
eigenvalues dominâtes the others. We hâve: 

Theorem 9. Let A* = max,,^^(/1^/1^/1^1^1)¾ and m = mintfj(/i,j). Then: 

(ii + t2 - 6)+/6 < A2/A, < (K - 1)/(K + 1) < (£x - m)f(ii + m). 

Proof. Tlie fir*t inequality follows from Thcorems 1 and 8(i). The second and third follow 
from the work oï lloph (1963) and Ostrowski (19C3) on positive matrices and the fact that 
il is non négative défi ni le. 

The lower bound on A-J/AJ may be trivial as 6 > t\. The upper bounds are more 
interesting. They are increasing functions of A' and Ci/ni respectively and demonstrate 
that it is sufïicient that the éléments of / / do not vary greatly for Ai to strongly dominate 
A2, and hence ail the other eigenvalues. For a corrélation matrix they show that: A2/A1 < 
(1 - / 0 / ( 1 + p) where p is the minimal corrélation. Thus, for example, if ail corrélations 
exceed 0.5, Ai is certain to be at least three tirnes bigger than A2, while if p > 0.8, Xi > 9A2. 

One last comment on standardisation. Considcr a re-scaling / / —> G = D~lHD~l 

where now D is a diagonal matrix with du > 0, i = 1,. . .p. A common choice is of 
course du = y/F^ the corrélation matrix G being ailvocated for use in principal cornponent 
anaiysis in that constant diagonal éléments puts the variables on an cqual footing in a 
sensé. Now it is intuitive, and can be shown formally, that D can be chosen so that 
the row suivis of G take any preassigned positive values. This fact and Theorem 8 (ii) 
reinforce the familiar warning against trying to interpret the relative sizes of coefficients 
in the dominant eigen vector g in terms of the relative ''importance" of the corresponding 
variables to the underlying "common factor". Thèse relative sizes dépend strongly on an 
arbitrary if conventional choice of scaling. Only the common-signedness of the éléments 
of g has empirical support, reflecting in a natural way the positivity of the corrélations 
among the variables. Indeed we may use the above fact to suggest another convention for 
standardisation: choose D so that G is doubly-stocha&tic. The variables are then ail on 
the same footing in the sensé that they contribute equally to the dominant eigenvector u. 
In this case, the dominant eigenvalue is, of course, 1 and we note that, as is easily shown: 

Theorem 10 (Berrnan and Plernmons, (1979), p.51): Any other eigenvalue of G is at most 
min{l - (Sj min,iKj),(Ej inax.-p,,) - l } . 

Thèse ideas on standardisation are currently being pursued and we hope to publish 
the results shortly. 
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