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DECIDING KNOWLEDGE IN SECURITY PROTOCOLS
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Abstract. In the last decade, formal methods have proved their in-
terest when analyzing security protocols. Security protocols require
in particular to reason about the attacker knowledge. Two standard
notions are often considered in formal approaches: deducibility and in-
distinguishability relations. The first notion states whether an attacker
can learn the value of a secret, while the latter states whether an at-
tacker can notice some difference between protocol runs with different
values of the secret. Several decision procedures have been developed
so far for both notions but none of them can be applied in the context
of e-voting protocols, which require dedicated cryptographic primitives.
In this work, we show that both deduction and indistinguishability are
decidable in polynomial time for two theories modeling the primitives
of e-voting protocols.
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Introduction

Security protocols aim at securing communication over public networks. They
achieve various goals such as secrecy, authenticity or anonymity, using crypto-
graphic primitives like encryption and signatures. In the last decade, several
decision procedures have been developed to check the security of cryptographic
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protocols. For example, secrecy is NP-complete when limiting the number of ses-
sions [21]. Several tools have been developed for automatically analyzing security
protocols (see e.g. [3,6]).

In formal approaches, the analysis of protocols often requires precise formula-
tions of the knowledge (capability) of protocol participants and attackers. Indeed,
most of security goals of voting protocols can be expressed or encoded in terms of
attacker knowledge (see e.g. [13]). Many formal definitions explain the knowledge
of an attacker in terms of message deducibility. Intuitively, deducibility focuses on
the following question: given a set of messages φ and a secret s, can an attacker
compute s from φ?

However, this concept of deducibility is not always suitable for expressing the
knowledge of an attacker. For instance, consider an e-voting protocol that trans-
mits an encrypted choice value of a vote. In this case, it is not sufficient to ask
whether an attacker can deduce the value, since he knows all possible values of a
vote. A more powerful notion of indistinguishability has been introduced in the
framework of applied pi calculus [2]: a secret is preserved if an attacker can never
distinguish between protocol runs with different values of the secret. This no-
tion is called static equivalence. The term static reflects the fact that this notion
applies only to messages transmitted and ignores the protocol behavior. Decidabil-
ity of both deduction and static equivalence have been studied (e.g. [1,5,10–12])
for several equational theories including for instance exclusive or, homomorphic
operators, blind signatures or subterm theories.

In this paper, we focus on e-voting protocols, a recent family of protocols.
Such protocols should ensure in particular anonymity of the vote, receipt-freeness
and possibly coercion-resistance [14]. They make use of special cryptographic
primitives such as re-encryption or trapdoor commitment. However none of the
previous decidability results can be applied in the context of e-voting protocols,
even for the two key notions of deduction and static equivalence. In parallel to our
work, Ciobâcă et al. [9] have developed a new decision procedure, inspired from [5].
Their procedure in particular terminates for the trapdoor commitment primitive,
yielding a first decidability result. However, no decidability result is provided for
re-encryption or designated verifier proofs.

We consider two particular equational theories used when modeling e-voting
protocols. The first equational theory, denoted by ELee models the properties of
re-encryption and designated verifier proofs, particularly important in the Lee
et al. protocol [18]. The second equational theory, denoted by EOka models the
properties of blind signatures schemes and trapdoor bit commitment scheme, par-
ticularly important in the Okamoto protocol [20]. Our main contribution is to
show that both deducibility and static equivalence are decidable in polynomial
time for any of these two theories. This is a first (and necessary) step towards a
decidability result in the active case. One ingredient of our proof is the locality
property [19], for which we design an appropriate notion of subterms. For static
equivalence, our proofs are also inspired from the technique developed in [1] for
convergent subterm theories.
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Outline of the paper: In Section 1, we introduce some basic notions and
notations as well as deducibility and static equivalence notions. In Section 2 we
present the two studied theories modeling the e-voting protocols. We present our
decidability results for deduction in Section 3, and our decidability results for
static equivalence in Section 4. In last section we conclude by summarizing our
results.

1. Preliminaries

In this section, we present some basic notions and notations following [2].
We suppose the reader familiar with rewriting systems [15].

1.1. Syntax

A signature Σ consists of a finite set of function symbols, each with an arity.
We write ar(f) for the arity of a function symbol f . A function symbol with
arity 0 is a constant symbol. Given a signature Σ, an infinite set of names N , and
an infinite set of variables, the set of terms is defined by the grammar:

L,M,N, T, U, V ::= terms
k, . . . , n, . . . , s names
x, y, z variables
f(M1, . . . ,Mk) function application

where f ranges over the function symbols of Σ and k matches the arity of f .
A term is closed when it does not have free variables (but it may contain names
and constant symbols). We use fn(M) to denote the set of names that occur in
the term M , and head(M) to denote the head function symbol of M .

Given a signature Σ, an infinite set of names N and an infinite set of variables
X , we denote by T (Σ) (resp. T (Σ,X )) the set of terms over Σ ∪ N (resp. Σ ∪
N ∪ X ). The former is called the set of closed terms over Σ, while the latter is
called the set of terms over Σ. We denote by Σ0 the set of the constant symbols
of Σ. The size |T | of a term T is defined by |T | = 1 if T ∈ X ∪ N ∪ Σ0 and
|f(T1, . . . , Tk)| = 1 +

∑k
i=1 |Ti|. A substitution is a function that maps variables

to terms σ : X → T (Σ,X ). We write σ = {T1/x1, . . . , Tn/xn} to say that xiσ = Ti

for 1 ≤ i ≤ n and xσ = x for x �= xi. We define the domain of σ, denoted by
dom(σ), to be the set {x ∈ X | xσ �= x}.

A theory (Σ, E) is defined by a signature Σ and a set of equations E given
by

⋃n
i=1{Mi = Ni} with Mi, Ni ∈ T (Σ,X ). The size of E, is given by cE =

max1≤i≤n(|Mi|, |Ni|, ar(Σ) + 1), where ar(Σ) is the maximal arity of a function
symbol in Σ. We simply write E for the theory (Σ, E). The relation =E is obtained
from the equations of E by reflexive, symmetric and transitive closure. Moreover,
it is closed under application of contexts and substitutions. We use the symbol
== to denote syntactic equality between terms.

Let R be a rewrite system. We write U → V if U and V are terms and U may
be rewritten to V (in one step) using a rule of R. As usual, if R is convergent then



272 M. BERRIMA ET AL.

U↓ denoted the normal form of U . We write →R instead of → when the rewrite
system is not clear from the context. Given two terms U and V , if there exists a
rule l → r of the rewriting system R and some substitution θ such that U = lθ
and V = rθ, then we say that the reduction U → V occurs in head, and we write
U

h−→ V .
A context C is a term with holes, or (more formally) a term with distinguished

variables such that each of them occurs at most once in the context. When C is
a context, with n distinguished variables x1, . . . , xn, we may write C[x1, . . . , xn]
instead of C in order to show the variables, and when T1, . . . , Tn are terms we
may also write C[T1, . . . , Tn] for the result of replacing each variable xi with the
corresponding term Ti.

1.2. Frames

In the applied pi calculus [2], a message sequence is organized into a frame
νñσ, where ñ is a finite set of names (intuitively, the fresh ones), ν is the restric-
tion operator which intuitively introduces fresh names, and σ is a substitution
of the form: {M1/x1, . . . ,Mk/xk} with dom(σ) = {x1, . . . , xk} and M1, . . . ,Mk

are closed terms representing transmitted messages. If the Mi for 1 ≤ i ≤ n
are in normal form, then we say that φ is in normal form. The variables enable
us to refer to each Mi, for example for keeping track of their order of transmis-
sion. The free names of a frame φ, denoted fn(φ), are defined to be the set
{n | n ∈

⋃k
i=1 fn(Mi) and n /∈ ñ}.

We introduce the definition of a term by composition and a term by decompo-
sition with respect to a frame and a theory.

Definition 1.1. Let E be a theory, φ = νñσ be a frame in normal form, and
t, ti ∈ T (Σ,X ) for i = 1 . . . k, we say that:

• t is a term by decomposition if t == f(t1, . . . , tk) and
f(t1σ↓, . . . , tkσ↓) h−→E tσ↓,

• t is a term by composition if t is a variable or if t == f(t1, . . . , tk) and
f(t1σ↓, . . . , tkσ↓) == tσ↓.

1.3. Deduction

Given a theory E and a frame φ that represents the information available to an
attacker, we may ask whether a given closed term M may be deduced from φ. This
relation is written φ �E M (or shortly φ � M when E is clear from the context).
It is axiomatized by the following rules:

νñ.σ �M if ∃x ∈ dom(σ) s.t xσ = M
νñ.σ � s if s /∈ ñ

φ �M1 · · · φ �Mk

φ � f(M1, . . . ,Mk)
if f ∈ Σ

φ �M M =E M ′

φ �M ′ ·
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Intuitively, the deducible messages are the messages of φ and the names that are
not protected in φ, closed by equality in E and closed by application of functions.
The following proposition provides a characterization of deduction [1].

Proposition 1.2. Let M be a closed term and φ = νñσ be a frame. Then φ �E M
if and only if there exists a term ζ such that fn(ζ) ∩ ñ = ∅ and ζσ =E M .

Such a term ζ is a recipe of M . It represents the attacker actions in order to
obtain M .

Example 1.3. As an example, consider the equational theory Eenc of pairing
and symmetric encryption. The signature is Σenc = {pair, enc, fst, snd, dec}. The
function enc allows to encrypt a message x by a key y, dec allows to extract a
message x from a ciphertext message enc(x, y) by using the same key y, whereas
fst and snd are functions that represent the projection functions on respectively
the first and the second component of a pair pair(x, y) . The theory Eenc is defined
by the axioms:

fst(pair(x, y)) = x snd(pair(x, y)) = y dec(enc(x, y), y) = x.

Let φ = νk, s.{enc(s, k)/x, k/y}. Then φ � k and φ � s. Furthermore, we have
k =Eenc yφ and s =Eenc dec(x, y)φ. In this case, a recipe for obtaining k is y and
a recipe for obtaining s is dec(x, y).

1.4. Static equivalence

We say that two terms M and N are equal in the frame φ under a theory E, and
write it (M =E N)φ, if and only if φ = νñ.σ, Mσ =E Nσ , and {ñ} ∩ (fn(M) ∪
fn(N)) = ∅ for some names ñ and substitution σ. Then we say that two frames
φ and ψ are statically equivalent, and write φ ≈E ψ, when dom(φ) = dom(ψ) and
when, for all terms M and N , we have (M =E N)φ if and only if (M =E N)ψ.

Example 1.4. For example, consider again the theory Eenc defined in Exam-
ple 1.3. Let φ = νk.{enc(s, k)/x, k/y} and ψ = νk.{enc(s′, k)/x, k/y}. We have
(dec(x, y) =Eenc s)φ but not (dec(x, y) =Eenc s)ψ. Therefore φ and ψ are not
statically equivalent.

2. E-voting theories

In this section, we present two e-voting theories: the theory ELee, used for
modeling the properties of the primitives used in the protocol proposed by Lee
et al. [18] and the theory EOka, used for modeling the properties of the primitives
used in the protocol proposed by Okamoto [20]. Their modeling has been taken
from [14].
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2.1. DVP and re-encryption

The protocol due to Lee et al. relies on two particular cryptographic prim-
itives: re-encryption and designated verifier proofs (DVP) of re-encryption. A
re-encryption of a ciphertext (obtained using a randomized encryption scheme)
changes the random coins, without changing or revealing the plaintext. A DVP of
the re-encryption proves that the two ciphertexts contain indeed the same plain-
text. However, a designated verifier proof can only convince one intended person,
e.g., the voter, that the re-encrypted ciphertext contains the original plaintext.
(see [14] for more explanation).

We consider the signature ΣLee = {getpk, host, pk, checksign, sign, decrypt,
rencrypt, penc, dvp, checkdvp, ok, f0}. The functional symbols are of respective
arity 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 0, 2. The theory ELee is then defined by the
following equations:

(1) getpk(host(x)) = x
(2) checksign(sign(x, y), pk(y)) = x
(3) decrypt(penc(x, pk(y), z), y) = x
(4) rencrypt(penc(x, pk(y), z), w) = penc(x, pk(y), f0(z, w))
(5) checkdvp(dvp(x, rencrypt(x, y), y, pk(z)), x, rencrypt(x, y), pk(z)) = ok
(6) checkdvp(dvp(x, y, z, w), x, y, pk(w)) = ok.

The first equation models the fact that one can obtain the public key of each host
(modeled by the functions getpk and host). In this model, it is indeed assumed
that host(x) is the host associated to the public key x. The second equation mod-
els digital signatures as being signatures with message recovery, it means that the
signature (modeled by the term sign(x, y)) of the message x by the key y, can
be extracted using the checksign function and the public key corresponding to y.
The third equation is used for modeling the asymmetric probabilistic encryption
(modeled by the function penc) using a random coin. The term penc(m, pk(a), r)
represents the encryption of m with the public key pk(a) with the random coin r.
The fourth equation models the re-encryption primitive (modeled by the function
rencrypt). Indeed, it is possible to obtain a different encryption of the same mes-
sage with another random coin, which is modeled by a function f0 of the original
one and the one used during the re-encryption. In equations (5) and (6), the dvp
symbol allows to build a designated verifier proof of the fact that a message is a
re-encryption of another one and checkdvp symbol allows the designated verifier
to check that the proof is valid. Note that checkdvp also succeeds for a fake dvp
created using the designated verifier’s private key. This is crucial in the context
of e-voting protocols to protect a voter against coercion. Indeed, this primitive
prevents a voter from proving to a third party that he has voted in a certain way.

We denote by RELee , the convergent rewriting system associated to ELee ob-
tained by orienting the equations from left to right and applying the completion
procedure [16]. It is defined by the following rewrite rules:

(1) getpk(host(x))→ x
(2) checksign(sign(x, y), pk(y))→ x
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(3) decrypt(penc(x, pk(y), z), y)→ x
(4) rencrypt(penc(x, pk(y), z), w)→ penc(x, pk(y), f0(z, w))
(5) checkdvp(dvp(x, rencrypt(x, z), z, pk(y)), x, rencrypt(x, z), pk(y))→ ok
(6) checkdvp(dvp(penc(x, pk(y), z), penc(x, pk(y), f0(z, w)), w, pk(v)),

penc(x, pk(y), z), penc(x, pk(y), f0(z, w)), pk(v))→ ok
(7) checkdvp(dvp(x, y, z, w), x, y, pk(w))→ ok.

As a preliminary result, it is easy to show that (by inspection of the rewrite
rules) applying a functional symbol to terms in normal form yields a term in
normal form after at most one rewrite step (that must occur in head).

Lemma 2.1. Let RELee be the convergent rewriting system associated to ELee.
Let M,M1, . . . ,Mk ∈ T (ΣLee,X ) be terms in normal form. If f(M1, . . . ,Mk) is
not in normal form, then we have M = f(M1, . . . ,Mk)↓ iff f(M1, . . . ,Mk) h−→M .

Proof. (→) Let M1, . . . ,Mk be terms in normal form and assume that f(M1, . . . ,
Mk) is not in normal form, and f(M1, . . . ,Mk) →∗ M . Since M1, . . . ,Mk are in
normal form, then the first step of reduction is in head. If the rule (1), (2), (3),
(5), (6) or (7) is applied then it is clear that the term obtained is in normal form.
If the rule (4) is applied, it is easy to verify that penc(M1, pk(M2), f0(M3,M4))
is in normal form. Thus f(M1, . . . ,Mk) h−→ M ′ with M ′ in normal form. Since
RELee is convergent, we conclude that M = M ′.
(←) If f(M1, . . . ,Mk) h−→M , then by definition of ↓ we have f(M1, . . . ,Mk)↓=M .

�

2.2. Trapdoor bit-commitment

The protocol due to Okamoto is based on a trap-door bit commitment scheme
and on blind signatures. A trap-door bit commitment scheme allows an agent to
open his commitment in many ways. Hence, trap-door bit commitment does not
bind the voter to its vote. Blind signature schemes allow a person to get a message
signed by another party without revealing any information about the message to
the other party (see [14] for more explanation).

We consider the signature ΣOka = {host, getpk, pk, open, sign, checksign, blind,
unblind, tdcommit, f1}. The functional symbols are of respective arity 1, 1, 1, 2,
2, 2, 2, 2, 3, 4. The theory EOka is defined by the following equations:

(1) getpk(host(x)) = x
(2) checksign(sign(x, y), pk(y)) = x
(3) unblind(blind(x, y), y) = x
(4) unblind(sign(blind(x, y), z), y) = sign(x, y)
(5) open(tdcommit(x, y, z), y) = x
(6) tdcommit(x, f1(y, z, w, x), w) = tdcommit(y, z, w)
(7) f1(x0, f1(x, y, z, x0), z, x1) = f1(x, y, z, x1).
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Equations (1) and (2) modeling public keys and digital signatures are the same
as in previous section. Equations (3) and (4) model blind signatures [7], allowing a
person to get a message signed by another party without revealing any information
about the message to the other party. The functions blind and unblind are similar
to perfect symmetric key encryption. The fourth equation allows to extract a
signature out of a blinded signature, when the blinding factor is known. Finally,
equations (5) and (6) model trap-door bit commitment, modeled by the functions
tdcommit and open, that are again similar to perfect symmetric key encryption.
The term tdcommit(x, y, z) models the commitment of the message x under the
key y using the trap-door z. The sixth equation expresses that a commitment
tdcommit(y, z, w) can be viewed as a commitment of any value x. To open this
commitment as x one has to know the key f1(y, z, w, x). Note that this is possible
only if one knows the key z and the trap-door w used to forge the commitment
tdcommit(y, z, w). The last equation models the transitivity of the commitment
key, i.e. if a key k, allowing to open a commitment of v as a commitment of v1,
uses a key k′ allowing to open the commitment of v1 as a commitment of v2, then
the key k allows to open the commitment of v as the commitment of v2.

The main result of [4] ensures that whenever deducibility and static equiva-
lence are decidable for two disjoint theories1, they are also decidable for their
union. Thus, we decompose EOka into two disjoint sub-theories such that EOka =
E1

Oka∪E2
Oka, where E1

Oka is composed of the first four equations, and E2
Oka is com-

posed of the last three equations. We further notice that the first theory actually
corresponds to the equational theory of blind signatures for which both deduction
and static equivalence have been proved decidable in polynomial time [1]. Thus
for proving that deduction and static equivalence are decidable in polynomial time
for Okamoto theory, it is sufficient to prove that both deduction and static equiv-
alence are decidable in polynomial time for E2

Oka since the combination algorithm
of [4] is done in polynomial time.

In the next we simply write EOka instead of E2
Oka, which is defined by equa-

tions (5)–(7).
The rewriting system associated to EOka is obtained by orienting the equations

from left to right and applying the Knuth-Bendix completion algorithm [16], which
yields the following additional equation:

open(tdcommit(y, z, w), f1(y, z, w, x))→ x.

Thus the convergent rewriting system associated to EOka, denoted by REOka
,

is defined by the following rewrite rules:

(1) open(tdcommit(x, y, z), y)→ x
(2) tdcommit(x, f1(y, z, w, x), w)→ tdcommit(y, z, w)
(3) open(tdcommit(y, z, w), f1(y, z, w, x))→ x
(4) f1(x0, f1(x, y, z, x0), z, x1)→ f1(x, y, z, x1).

1Two theories are disjoint if they do not have common function symbols.
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As for the ELee theory, we can show again that applying a functional symbol to
terms in normal form yields a term in normal form after at most one rewrite step
(that must occur in head).

Lemma 2.2. Let REOka
be the convergent rewriting system associated to EOka.

Let M,M1, . . . ,Mk ∈ T (ΣOka,X ) be terms in normal form. If f(M1, . . . ,Mk) is
not in normal form, then we have M = f(M1, . . . ,Mk)↓ iff f(M1, . . . ,Mk) h−→M .

Proof. (→) Let M1, . . . ,Mk be terms in normal form. Assume that f(M1, . . . ,Mk)
is not in normal form, and f(M1, . . . ,Mk)→∗ M . Since M1, . . . ,Mk are in normal
form, then the first step of reduction occurs in head. If the rule (1) or (3) is applied
then it is clear that the term obtained is in normal form. There remain the cases
of the rules (2) and (4). Let us examine these two cases:

– For the case when the rule (2) is applied. Let M ′
1,M

′
2 be two terms such

that tdcommit(M1,M2,M3)
h−→ tdcommit(M ′

1,M
′
2,M3) with M2 of the

form f1(M ′
1,M

′
2,M3,M1). The only case where the term tdcommit(M ′

1,
M ′

2,M3) can be reduced further is when M ′
2 is of the form f1(M ′′

1 ,M
′′
2 ,M3,

M ′
1) for some terms M ′′

1 ,M
′′
2 . But in such case, we have M2 = f1(M ′

1,
f1(M ′′

1 ,M
′′
2 ,M3,M

′
1),M3,M) (for some term M) is not in normal form,

contradiction. Thus we conclude that tdcommit(M ′
1,M

′
2,M3) is always in

normal form.
– For the case when the rule (4) is applied. We have f1(M1,M2,M3,M4)

h−→
f1(M ′

1,M
′
2,M3,M4) with M2 of the form f1(M ′

1,M
′
2,M3,M1). The only

case where f1(M ′
1,M

′
2,M3,M4) is not in normal form, is the case where

M ′
2 is of the form f1(M ′′

1 ,M
′′
2 ,M3,M

′
1) for some terms M ′′

1 ,M
′′
2 . But in

such case, we have M2 = f1(M ′
1, f1(M ′′

1 ,M
′′
2 ,M3,M

′
1),M3,M1), which is

not in normal form, contradiction.

Thus f(M1, . . . ,Mk) h−→M ′ with M ′ in normal form. Since REOka
is convergent,

we conclude that M = M ′.
(←) If f(M1, . . . ,Mk) h−→M , then by definition of ↓ we have f(M1, . . . ,Mk)↓ = M .

�

3. Decidability of deduction

Our first main contribution is to prove the decidability of deduction for both
theories.

Theorem 3.1. The relations �ELee and �EOka
can be decided in polynomial time.

The rest of this section is devoted to the proof of the theorem. In the remaining
of the paper, E denotes any of the two theories ELee or EOka.

3.1. Locality

Our starting point is the locality technique introduced by [19], and used
in [8,10,12,17]. Given a frame φ, a closed term M and a theory E, the proof
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of φ �E M is local if it involves only terms in the set of subterms of φ∪{M} w.r.t
an appropriate notion of subterms StE . Hence, the locality property guarantees
that the number of computations to obtain a deducible term is bounded by the
number of terms that can be involved in a local proof. The set StE(φ ∪ {M}) is
also denoted by StE(φ,M). Thus, we introduce an appropriate notion of subterms
for each theory, that we use for proving the locality property.

We simply write StLee (resp. StOka) instead of StELee (resp. StEOka
).

Definition 3.2. The set StLee(M) of (extended syntactic) subterms of a term
M ∈ T (ΣLee,X ) is defined as follows:

• StLee(u) = u when u is a variable or a name,
• StLee(penc(M1, pk(M2), f0(M3,M4)))={penc(M1, pk(M2), f0(M3,M4))}∪
StLee(M1)∪StLee(pk(M2))∪StLee(f0(M3,M4))∪{penc(M1, pk(M2),M3)},

• StLee(sign(M1,M2)) = {sign(M1,M2)} ∪ StLee(M1) ∪ StLee(pk(M2)),
• StLee(f(M1, . . . ,Mk)) = {f(M1, . . . ,Mk)} ∪

⋃k
i=1 StLee(Mi) otherwise.

Definition 3.3. The set StOka(M) of (extended syntactic) subterms of a term
M ∈ T (ΣOka,X ) is defined as follows:

• StOka(u) = u when u is a variable or a name,
• StOka(f1(M1,M2,M3,M4)) = {f1(M1,M2,M3,M4)} ∪⋃4

i=1 StOka(Mi) ∪ {tdcommit(M1,M2,M3)},
• StOka(f(M1, . . . ,Mk)) = {f(M1, . . . ,Mk)} ∪

⋃k
i=1 StOka(Mi) otherwise.

The definition of subterms StLee and StOka is extended to frames as expected.
The following lemma states the locality property for both theories.

Lemma 3.4 (locality). Let E be ELee or EOka and let Σ0E be the set of constant
symbols for the equational theory E. Let φ = νñσ be a frame in normal form, M
be a closed term in normal form. If φ �E M then there exists a term ζM , called
local recipe, such that:

• fn(ζM ) ∩ ñ = ∅ and ζMσ =E M .
• for all ζ′ ∈ StE(ζM ), for all ζ′′ ∈ StE(ζ′) we have ζ′′σ↓ ∈ StE(φ, ζ′σ↓) ∪

Σ0E . Moreover, if ζ′′ = f(ζ1, . . . , ζk) and f(ζ1σ↓, . . . , ζkσ↓) h−→ ζ′′σ↓ by
applying a subterm rule2 then we have ζ′′σ↓ ∈ StE(φ) ∪ Σ0E .

Proof. Due to the characterization of deduction (Prop. 1.2), there exists a term
ζM satisfying the first condition. We choose one whose size is minimal. The second
condition is proved by induction on the size of ζM .
Base case: ζM is a variable or a name, then the second condition hold since
StE(ζM ) = {ζM}.
Induction step: Let ζM = f(ζ1, . . . , ζk). By minimality of ζM , the terms ζi are
minimal recipes of ζiσ↓. By induction hypothesis we have for all ζ′ ∈ StE(ζi)i=1...k,
for all ζ′′ ∈ StE(ζ′) we have ζ′′σ↓ ∈ StE(φ, ζ′σ↓) ∪ Σ0E . To conclude that for all

2A rule l → r is called subterm rule if r ∈ StE(l) or r is constant symbol. Note in particular
that rule (2) of ROka is a subterm rule.



DECIDING KNOWLEDGE IN SECURITY PROTOCOLS 279

ζ′′ ∈ StE(ζ′) we have ζ′′σ↓ ∈ StE(φ, ζ′σ↓) ∪ Σ0E for any ζ′ ∈ StE(ζM ), it is suffi-
cient to show for all ζ′′ ∈ StE(ζM ), we have ζ′′σ↓ ∈ StE(φ,M) ∪Σ0E . For this, it
is sufficient to prove that for all i = 1 . . . k we have ζiσ↓ ∈ StE(φ,M) ∪ Σ0E ,
since if ζiσ↓ ∈ StE(φ,M) ∪ Σ0E then for all ζ′′ ∈ StE(ζi) we have ζ′′σ↓ ∈
StE(φ, ζiσ↓) ∪ Σ0E ⊆ StE(φ,M) ∪ Σ0E . For the second condition, it is suffi-
cient to show that if f(ζ1σ↓, . . . , ζkσ↓) h−→ ζ′′σ↓ by applying a subterm rule then
M ∈ StE(φ) ∪ Σ0E . Indeed, for any strict subterm of ζM , we can conclude by
induction hypothesis.

– If f(ζ1σ↓, . . . , ζkσ↓) is in normal form, then for all i = 1 . . . k we have
ζiσ↓ ∈ StE(f(ζ1σ↓, . . . , ζkσ↓)) and we conclude.

– If f(ζ1σ↓, . . . , ζkσ↓) is not in normal form. In this case, we treat each theory
separately.
(1) Under ELee theory:
If f(ζ1σ↓, . . . , ζkσ↓) is not in normal form. Since ζ1σ↓, . . . , ζkσ↓ are in normal
form then by Lemma 2.1 we have f(ζ1σ↓, . . . , ζkσ↓) h−→ M . We distinguish five
cases according to f :

– If f = checkdvp, this case cannot appear by minimality of ζM , indeed ok
would be a recipe smaller than ζM .

– If f = getpk, this implies k = 1, so we have ζM = getpk(ζ1) and since ζMσ
can be reduced then head(ζ1σ↓) = host. We distinguish several cases for ζ1.

• ζ1 is a variable, so we have ζ1σ↓ ∈ StLee(φ), and since the applied rule is
a subterm rule then M ∈ StLee(ζ1σ↓) ⊆ StLee(φ), thus we conclude.

• ζ1 = g(ζ′1, . . . , ζ
′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓)

h−→ ζ1σ↓ by applying a rule dif-
ferent from (4). Then by induction hypothesis we have ζ1σ↓ ∈ StLee(φ) ∪
Σ0Lee . Moreover, since the applied rule is a subterm rule then M ∈
StLee(ζ1σ↓) ⊆ StLee(φ) ∪ Σ0Lee , thus we conclude. If the rule (4) is ap-
plied, this case cannot appear because this implies head(ζ1σ↓) = penc and
by equational theory ELee, getpk(ζ1σ↓) cannot be reduced, contradiction.

• ζ1 = g(ζ′1, . . . , ζ′k) and g(ζ′1σ↓, . . . , ζ′kσ↓) is in normal form with g �= host,
this case cannot appear because this implies that getpk(ζ1σ↓) cannot re-
duced, contradiction.

• ζ1 = host(ζ′1), this case cannot appear by minimality of ζM , because we
have ζ′1 smaller than ζM .

– f = checksign, this implies k = 2, so we have ζM = checksign(ζ1, ζ2) and
since ζMσ can be reduced then head(ζ1σ↓) = sign and ζ2σ↓ ∈ StLee(ζ1σ↓). Thus
it is sufficient to prove that ζ1σ↓ ∈ StLee(φ,M) and M ∈ StLee(φ) ∪ Σ0E . We
distinguish several cases for ζ1.

• ζ1 is a variable, so we have ζ1σ↓ ∈ StLee(φ), and since the applied rule is
a subterm rule then M ∈ StLee(ζ1σ↓) ⊆ StLee(φ), thus we conclude.

• ζ1 = g(ζ′1, . . . , ζ
′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓)

h−→ ζ1σ↓ by applying a rule dif-
ferent from (4). Then by induction hypothesis we have ζ1σ↓ ∈ StLee(φ) ∪
Σ0Lee . Since the applied rule is a subterm rule then M ∈ StLee(ζ1σ↓) ⊆
StLee(φ) ∪ Σ0Lee , thus we conclude. If the rule (4) is applied, this case
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cannot appear because this implies head(ζ1σ↓) = penc and by equational
theory ELee, checksign(ζ1σ↓, ζ2σ↓) cannot be reduced, contradiction.

• ζ1 = g(ζ′1, . . . , ζ
′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓) is in normal form with g �= sign,

this case cannot appear because this implies that checksign(ζ1σ↓, ζ2σ↓)
cannot be reduced, contradiction.

• ζ1 = sign(ζ′1, ζ′2), this case cannot appear by minimality of ζM , because
we have ζ′1 smaller than ζM .

– If f = rencrypt, this implies k = 2, so we have ζM = rencrypt(ζ1, ζ2) and
since ζMσ can be reduced then head(ζ1σ↓) = penc. We have that ζ1σ is of the
form penc(M1, pk(M2),M3) and M = penc(M1, pk(M2), f0(M3, ζ2σ↓)). By Defi-
nition 3.2 of subterms, we know that ζ1σ↓, ζ2σ↓ ∈ StLee(M), then we conclude.

– If f = decrypt, this implies k = 2, so we have ζM = decrypt(ζ1, ζ2) and
since ζMσ can be reduced then head(ζ1σ↓) = penc and ζ2σ↓ ∈ StLee(ζ1σ↓). Thus
it is sufficient to prove that ζ1σ↓ ∈ StLee(φ,M) and M ∈ StLee(φ) ∪ Σ0E . We
distinguish several cases for ζ1.

• ζ1 is a variable, so we have ζ1σ↓ ∈ StLee(φ),and since the applied rule is
a subterm rule then M ∈ StLee(ζ1σ↓) ⊆ StLee(φ), thus we conclude.

• ζ1 = g(ζ′1, . . . , ζ′k) and g(ζ′1σ↓, . . . , ζ′kσ↓)
h−→ ζ1σ↓ by applying a rule dif-

ferent from (4). Then by induction hypothesis we have ζ1σ↓ ∈ StLee(φ) ∪
Σ0Lee , and since the applied rule is a subterm rule thenM ∈ StLee(ζ1σ↓) ⊆
StLee(φ) ∪Σ0Lee , thus we conclude.

• ζ1 = rencrypt(ζ′1, ζ
′
2) and rencrypt(ζ′1σ↓, ζ′2σ↓)

h−→ ζ1σ↓. This case cannot
appear by minimality of ζM , because we have decrypt(ζ′1, ζ2) smaller than
ζM .

• ζ1 = g(ζ′1, . . . , ζ
′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓) is in normal form with g �= penc,

this case cannot appear because this implies that decrypt(ζ1σ↓, ζ2σ↓) can-
not be reduced, contradiction.

• ζ1 = penc(ζ′1, pk(ζ
′
2), ζ

′
3). This case cannot appear by minimality of ζM ,

because we have ζ′1 smaller than ζM .

(2) Under EOka theory:
f(ζ1σ↓, . . . , ζkσ↓) is not in normal form. Since ζ1σ↓, . . . , ζkσ↓ are in normal form
then by Lemma 2.2 we have f(ζ1σ↓, . . . , ζkσ↓) h−→M . We distinguish several cases
depending on which rule has been applied:

– If the rule (1) is applied, then we have ζM = open(ζ1, ζ2). Since ζMσ can be
reduced, then head(ζ1σ↓) = tdcommit and ζ2σ↓ ∈ StOka(ζ1σ↓). Thus it is suffi-
cient to prove that ζ1σ↓ ∈ StOka(φ,M) and M ∈ StOka(φ)∪Σ0E . We distinguish
several cases for ζ1:

• ζ1 is a variable, then ζ1σ↓ ∈ StOka(φ), and since the applied rule is a
subterm rule then M ∈ StOka(ζ1σ↓) ⊆ StOka(φ), thus we conclude.

• ζ1 = tdcommit(ζ′1, ζ
′
2, ζ

′
3). This case cannot appear by minimality of ζM

since ζ′1 is smaller than ζM .
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• ζ1 = g(ζ′1, . . . , ζ′k) and g(ζ′1σ↓, . . . , ζ′kσ↓) is in normal form with g �=
tdcommit, this case cannot appear because this implies that open(ζ1σ↓,
ζ2σ↓) cannot be reduced, contradiction.

• ζ1 = g(ζ′1, . . . , ζ′k) and g(ζ′1σ↓, . . . , ζ′kσ↓)
h−→ ζ1σ↓ by applying a rule differ-

ent from (4). Then by induction hypothesis we have ζ1σ↓ ∈ StOka(φ) ∪
Σ0Oka

, and since the applied rule is a subterm rule thenM ∈ StOka(ζ1σ↓) ⊆
StOka(φ) ∪ Σ0Oka

, thus we conclude. If the rule (4) is applied, this case
cannot appear because this implies head(ζ1σ↓) = f1, thus by equational
theory EOka, open(ζ1σ↓, ζ2σ↓) cannot be reduced, contradiction.

– If the rule (2) is applied, then we have ζM = tdcommit(ζ1, ζ2, ζ3). Since ζMσ
can be reduced, then head(ζ2σ↓) = f1 and ζ1σ↓, ζ3σ↓ ∈ StOka(ζ2σ↓). Thus it
is sufficient to prove that ζ2σ↓ ∈ StOka (φ,M) and M ∈ StOka (φ) ∪ Σ0E . We
distinguish several cases for ζ2:

• ζ2 is a variable, then ζ2σ↓ ∈ StOka (φ), and since the applied rule is a
subterm rule then M ∈ StOka(ζ2σ↓) ⊆ StOka(φ), thus we conclude.

• ζ2 = f1(ζ′1, ζ
′
2, ζ

′
3, ζ

′
4). This case cannot appear by minimality of ζM since

tdcommit(ζ′1, ζ
′
2, ζ

′
3) is smaller than ζM .

• ζ2 = g(ζ′1, . . . , ζ′k) and g(ζ′1σ↓, . . . , ζ′kσ↓) is in normal form with g �= f1, this
case cannot appear because this implies that tdcommit(ζ1σ↓, ζ2σ↓, ζ3σ↓)
cannot be reduced, contradiction.

• ζ2 = g(ζ′1, . . . , ζ
′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓)

h−→ ζ1σ↓ by applying the rule (1)
or (3). Then by induction hypothesis we have ζ1σ↓ ∈ StOka(φ) ∪ Σ0Oka

,
and since the applied rule is a subterm rule then M ∈ StOka(ζ2σ↓) ⊆
StOka(φ) ∪ Σ0Oka

, thus we conclude. If the rule (2) is applied, this case
cannot appear because this implies head(ζ2σ↓) = tdcommit, thus by equa-
tional theory EOka, tdcommit(ζ1σ↓, ζ2σ↓, ζ3σ↓) cannot be reduced, con-
tradiction.

– If the rule (3) is applied, then we have ζM = open(ζ1, ζ2). Since ζMσ can be
reduced, then head(ζ2σ↓) = f1 and ζ1σ↓ ∈ StOka(ζ2σ↓). Thus it is sufficient to
prove that ζ2σ↓ ∈ StOka (φ,M) and M ∈ StOka (φ)∪Σ0E . We distinguish several
cases for ζ2:

• ζ2 is a variable, then ζ2σ↓ ∈ StOka(φ), and since the applied rule is a
subterm rule then M ∈ StOka(ζ2σ↓) ⊆ StOka(φ), thus we conclude.

• ζ2 = f1(ζ′1, ζ
′
2, ζ

′
3, ζ

′
4). This case cannot appear by minimality of ζM be-

cause we have ζ′4 smaller than ζM .
• ζ2 = g(ζ′1, . . . , ζ

′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓) is in normal form with g �= f1,

this case cannot appear because this implies that open(ζ1σ↓, ζ2σ↓) cannot
be reduced, contradiction.

• ζ2 = g(ζ′1, . . . , ζ
′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓)

h−→ ζ1σ↓ by applying the rule (1)
or (3). Then by induction hypothesis we have ζ1σ↓ ∈ StOka(φ) ∪ Σ0Oka

,
and since the applied rule is a subterm rule then M ∈ StOka(ζ2σ↓) ⊆
StOka(φ) ∪ Σ0Oka

, thus we conclude.
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– If the rule (4) is applied, then we have ζM = f1(ζ1, ζ2, ζ3, ζ4). Since ζMσ can be
reduced to its normal form then head(ζ2σ↓) = f1 and ζ1σ↓, ζ3σ↓ ∈ StOka(ζ2σ↓)
and since ζ4σ↓ ∈ StOka(ζMσ↓), thus it is sufficient to prove that ζ2σ↓ ∈ StOka

(φ,M). We distinguish several cases for ζ2:

• ζ2 is a variable, then we conclude.
• ζ2 = f1(ζ′1, ζ

′
2, ζ

′
3, ζ

′
4). This case cannot appear by minimality of ζM since

f1(ζ′1, ζ
′
2, ζ

′
3, ζ4) is smaller than ζM .

• ζ2 = g(ζ′1, . . . , ζ′k) and g(ζ′1σ↓, . . . , ζ′kσ↓) is in normal form with g �= f1,
this case cannot appear because this implies that f1(ζ1σ↓, ζ2σ↓, ζ3σ↓, ζ4σ↓)
cannot be reduced, contradiction.

• ζ2 = g(ζ′1, . . . , ζ
′
k) and g(ζ′1σ↓, . . . , ζ′kσ↓)

h−→ ζ1σ↓ by applying the rule (1)
or (3). Then by induction hypothesis we have ζ2σ↓ ∈ StOka(φ) ∪ Σ0Oka

,
and since the applied rule is a subterm rule then M ∈ StOka(ζ2σ↓) ⊆
StOka(φ) ∪ Σ0Oka

, thus we conclude. If the rule (2) is applied, this case
cannot appear because this implies head(ζ2σ↓) = tdcommit, thus by equa-
tional theory EOka, f1(ζ1σ↓, ζ2σ↓, ζ3σ↓, ζ4σ↓) cannot be reduced, contra-
diction. �

Example 3.5. Consider the equational theory EOka, the frame φ = νm, n,
r, s.{f1(m,n, r, s)/x1, r/x2, s/x3, n/x4} and M = m. We have that φ � M .
The recipe ζM = open(tdcommit(x3, x1, x2), x4) satisfies the conditions given in
Lemma 3.4.

3.2. Deciding deduction

We propose an algorithm to decide φ �E M for both the Lee and the Okamoto
theories. Our algorithm, named Algorithm 1 and presented in Figure 1, is inspired
from the frame saturation algorithm introduced in [1]. The idea is to compute by
saturation all subterms of φ and M that are deducible from φ.

The next proposition shows correctness and completeness of the algorithm for
the subterms of a frame φ and a closed term M . It relies on the locality property
proved in the previous section. Moreover, the recipes computed by the algorithm
are local and minimal (in size).

Proposition 3.6. Let φ = νñσ be a frame such that σ = {M1/x1, . . . ,Mk/xk} is
in normal form, M be a term in normal form and T be the set computed by the
Algorithm 1. Then ∀M ′ ∈ StE(φ,M) we have φ �E M ′ iff there exists a local recipe
ζM ′ of M ′, of minimal size among local recipes of M ′, such that (M ′, ζM ′ ) ∈ T .

Proof. (→) Since M ′ is deducible, then by Lemma 3.4, there exists a local recipe
ζM ′ of M ′. We proceed by induction on the size of ζM ′ to prove that there exists
a minimal local recipe ζM ′ of M ′ s.t (M ′, ζM ′) ∈ T and |ζM ′ | ≤ |ζM ′ |. This will
show that ζM ′ is of minimal size among local recipes of M ′.
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Algorithm 1:
Input: φ = νñ.{M1/x1, . . . , Mk/xk},M
Output: true/false
S := StE(φ, M) ∪ Σ0 ∪ fn(φ)
T := {(Mi, xi) | i ∈ {1 . . . k}} ∪ {(n, n) | n ∈ Σ0 ∪ fn(φ)}1

T ′ := ∅
while T �= T ′ do

T ′ := T
for all (t1, ζ1) . . . , (tn, ζn) ∈ T ′ and for every function symbol f do

if f(t1, . . . , tn)
h−→ t and t ∈ S then2

if t /∈ {t | (t, ζt) ∈ T} then
(t, f(ζ1, . . . , ζn)) ∈ T

else
if (t ∈ {t | (t, ζt) ∈ T} and |f(ζ1, . . . , ζn| < |ζt|) then

replace (t, ζt) by (t, f(ζ1, . . . , ζn)) in T

if t = f(t1, . . . , tn) ∈ S then3

if t /∈ {t | (t, ζt) ∈ T} then
(t, f(ζ1, . . . , ζn)) ∈ T

else
if (t ∈ {t | (t, ζt) ∈ T} and |f(ζ1, . . . , ζn| < |ζt|) then

replace (t, ζt) by (t, f(ζ1, . . . , ζn)) in T

if (M, ζM ) ∈ T then
return true

else
return false

Figure 1. Algorithm of deduction.

Base case: If ζM ′ is a variable or a name, then by instruction 1 we have (M ′, ζM ′)∈
T (where ζM ′ is the variable chosen by the algorithm). Moreover ζM ′ is minimal
and local since StE(ζM ′ ) = {ζM ′}.
Inductive step: Let ζM ′ = f(ζ1, . . . , ζn). Since ζiσ↓ ∈ StE(φ,M ′) (because ζM ′

is local) and as consequence ζiσ↓ ∈ StE(φ,M) because M ′ ∈ StE(φ,M), then
by induction hypothesis we have ((ζiσ)↓, ζi) ∈ T for i = 1 . . . n, with ζi are the
recipes of (ζiσ)↓ computed by the algorithm, thus:

• If ζM ′σ↓ == f(ζ1σ↓, . . . , ζnσ↓), then by the instruction 3 of the Algorithm
1 we have (M ′, ζM ′) ∈ T (with ζM ′ = f(ζ1, . . . , ζn) or ζM ′ is some local
recipe such that |ζM ′ | < |f(ζ1, . . . , ζn)|). Moreover ζM ′ is local either
because it was already computed by the algorithm or because f(ζ1, . . . , ζn)
is local and ζi are the local recipes of ζiσ↓ for i = 1 . . . n.

• If f(ζ1σ↓, . . . , ζnσ↓) is not in normal form. Since ζ1σ↓, . . . , ζnσ↓ are in nor-
mal form then by Lemma 2.1 (or Lem. 2.2) we have f(ζ1σ↓, . . . ,
ζnσ↓) h−→ M ′. Then by the instruction 2 of the Algorithm 1 we have
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(M ′, ζM ′ ) ∈ T (with ζM ′ = f(ζ1, . . . , ζn) or ζM ′ is some local recipe such
that |ζM ′ | < |f(ζ1, . . . , ζn)|). Moreover ζM ′ is local either because it was
already computed by the algorithm or because f(ζ1, . . . , ζn) is local and
ζi are the local recipes of ζiσ↓ for i = 1 . . . n.

Now let us prove the minimality of ζM ′ . By induction hypothesis, we know that
|ζi| ≤ |ζi| thus |f(ζ1, . . . , ζn)| ≤ |f(ζ1, . . . , ζn)|. Since |ζM ′ | ≤ |f(ζ1, . . . , ζn)| we
deduce |ζM ′ | ≤ ζM ′ .
(←) If there exists a pair (M ′, ζM ′ ) ∈ T , then (by construction of T ) we have
ζM ′σ =E M ′ and fn(ζM ′)∩ ñ = ∅, thus by Proposition 1.2 we have φ �E M ′. �

Corollary 3.7. For every frame φ in normal form and for every closed term M
in normal form, φ �E M is decidable.

Proof. Trivial from Proposition 3.6 since M ∈ StE(φ,M). �

The complexity results for deduction and static equivalence are as usually given
as functions of the DAG-size of the terms, where our notion of DAG-size does not
correspond to the usual DAG-size of a term since our notion of subterms is an
extension of syntactic subterms. Here, we define the DAG-size of a term M ,
denoted |M |dag, to be the number of distinct subterms w.r.t StE. We are now
ready to show that deduction is decidable in polynomial time for both theories.

Proposition 3.8. Let φ = νñσ be a frame in normal form and M be a closed
term in normal form.

(1) φ �E M can be decided in time O((|φ|dag + |M |dag)ar(Σ)+2).
(2) If φ �E M , then there exits a local recipe ζM such that fn(ζM ) ∩ ñ = ∅,

ζMσ =E M and |ζM |dag ≤ |φ|dag + |M |dag.

Proof. Let T be the set computed by the Algorithm 1. The set T is obtained in
at most |φ|dag + |M |dag steps. At each step, we compute:

• Every closed term of the form f(M1, . . . ,Mk), where (Mi, ζi) are already
in the set T . For each such term, we check whether it is an instance of some
left-hand side of a rule. Thus we need at most O((|φ|dag + |M |dag)ar(Σ)+1)
computations.

• Every closed term of the form f(M1, . . . ,Mk) that is also in StE(φ,M),
where (Mi, ζi) are already in the set T . In other words, for every term of
the form f(M1, . . . ,Mk) in StE(φ,M) (at most |φ|dag + |M |dag terms), we
check whether each (Mi, ζi) is already in the set T . Thus we need at most
O((|φ|dag + |M |dag)2) computations.

Since 1 ≤ ar(Σ), each step requires at most O((|φ|dag + |M |dag)ar(Σ)+1) computa-
tions and since there are at most |φ|dag + |M |dag steps, then T may be computed
in time O((|φ|dag + |M |dag)ar(Σ)+2). It remains to check if there exits a pair
(M, ζ) ∈ T (at most |φ|dag + |M |dag comparisons), thus for deciding φ �E M we
need at most O((|φ|dag + |M |dag)ar(Σ)+2).

For the second part of Proposition 3.8 we know by locality lemma that if φ �E M
then there exists a local recipe ζM such that fn(ζM ) ∩ ñ = ∅, ζMσ =E M and
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for every ζ′′ ∈ StE(ζM ) we have ζ′′σ↓ ∈ StE(φ,M). The algorithm constructs a
shared DAG for all the recipes that increases of at most one at each step (obtained
either by the rule 2 or the rule 3). Thus, the maximal DAG-size of ζM is |φ|dag +
|M |dag, because the algorithm terminates at most in |φ|dag + |M |dag steps. �

4. Decidability of static equivalence

Our second main contribution is to prove the decidability of static equivalence
for both theories.

Theorem 4.1. The relations ≈ELee and ≈EOka
can be decided in polynomial time.

The rest of this section is devoted to the proof of the theorem. Our approach
is based on the result of [1] for convergent subterm theories. Intuitively, the idea
consists in associating to each frame a finite set of equalities (modulo renaming)
such that two frames are equivalent if and only if each frame satisfies the equalities
of the other’s set. Given a frame φ and a theory E, the construction of the set
of equalities that characterizes a frame is based on the recipes of elements of a
special set satE(φ) representing all deducible subterms of φ. In our approach, we
extend the set satE(φ) by an additional finite set of terms called critical terms,
denoted by IE(φ). We call them critical terms because they can contribute to the
distinction between two frames. Therefore, the set of equalities that characterizes
a frame is constructed on the local recipes of elements of satE(φ)∪IE(φ). Given a
frame φ, we simply write satLee(φ) and satOka(φ) (resp. ILee(φ) and IOka(φ)) for
the set satE(φ) (resp. IE(φ)) computed under ELee and EOka respectively. These
sets are defined in the next (sub)section. We prove the main steps of Theorem 4.1
in Section 4.2. Section 4.3 then contains the remaining proof of the two main
technical lemmas.

4.1. Computing a finite set of equalities

We define in this section the set of small equalities we will consider to check for
static equivalence.

Step 1: deducible subterms. We define the set satE(φ) to be the set of
deducible subterms of φ.

Definition 4.2. Let φ = νñ.{M1/x1, . . . ,Mn/xn} be a frame in normal form. Let
StE(φ) be the set of subterms of the terms Mi. The set satE(φ) is defined by

satE(φ) = {M | φ �E M and M ∈ StE(φ) ∪ Σ0 ∪ fn(φ)}.

Thanks to Proposition 3.8, the set satE(φ) can be computed in polynomial time
using Algorithm 1.

Step 2: adding critical terms. We define the set IE(φ) of critical terms for
each theory.
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Definition 4.3. Let φ = νñ{M1/x1, . . . ,Mn/xn} be a frame in normal form. The
set ILee(φ) is the minimal set such that, for any M1,M2,M3 ∈ satLee(φ), for any
M deducible from φ such that M ∈ StLee(penc(M1,M2,M3)), then M ∈ ILee(φ).

For the EOka theory, we do not need to add critical terms, that is, we consider
IOka(φ) = ∅.

Proposition 4.4. Let φ = νñσ be a frame in normal form.
(1) The set satE(φ) ∪ IE(φ) can be computed in polynomial time.
(2) For every M ∈ satE(φ)∪IE(φ), there exists a term ζM such that fn(ζM )∩

ñ = ∅, ζMσ =E M , and ζM has a polynomial DAG-size.

Proof. For ELee theory, the set satLee(φ) is computed in at most |φ|dag steps. At
each step we need at most (by Prop. 3.8) O((|φ|dag + |M |dag)ar(ΣLee)+2) with M ∈
StLee(φ). Since for each M ∈ StLee(φ) we have |M |dag ≤ |φ|dag, we conclude that
satLee(φ) is computed in time O(|φ|ar(ΣLee)+3

dag ). Moreover the DAG representation
of satLee(φ) can be obtained from the DAG representation of φ by simply adding
edges. Thus |satLee(φ)|dag ≤ |φ|dag. The set ILee(φ) is obtained as follows.

For each term of the form penc(M1,M2,M3) with Mi ∈ satLee(φ) (at most
|satLee(φ)|3dag ≤ |φ|3dag terms), and for each subterm M of a such term (at most
2|φ|3dag terms), we check whether it is deducible (by Prop. 3.8 we need at most
O((|φ|dag + |M |dag)ar(Σ)+2)). Thus we need at most O(|φ|6dag). Then we conclude
that the set satLee(φ) ∪ ILee(φ) can be computed in polynomial time.

For the second part of proposition, we know by Proposition 3.8, that for each
deducible term M there exists a term ζM such that fn(ζM )∩ ñ = ∅, ζMσ =ELee M
and |ζM |dag ≤ |φ|dag + |M |dag. Thus the maximal DAG-size of ζM when M in
satLee(φ) ∪ ILee(φ) is |φ|dag(cELee + 1).

For EOka theory, we can easily conclude since IOka is empty. �

In what follows, for each frame φ we assume fixed the set of local recipes
computed by Algorithm 1, denoted by L(φ), that correspond to the terms of
satE(φ) ∪ IE(φ).

Example 4.5. We consider the equational theory ELee.
Let φ = νs,m, n{penc(s, pk(k),m)/x1, k/x2, f0(m,n)/x3, n/x4} be a frame in nor-
mal form. By Definition 4.2 we have satLee(φ) = {M1,M2,M3,M4,M5,M6},
where M1 = penc(s, pk(k),m), M2 = k, M3 = f0(m,n), M4 = n, M5 = s and
M6 = pk(k). By Definition 4.3 we have ILee(φ) = satLee(φ)∪{penc(Mi,Mj,Mk) |
1 ≤ i, j, k ≤ 6}.

The local recipes for each term of the set satLee(φ) computed by the Algorithm 1
are: ζM1 = x1, ζM2 = x2, ζM3 = x3, ζM4 = x4, ζM5 = decrypt(x1, x2), ζM6 =
pk(x2). The local recipes for each term of the set ILee(φ) (after removing the
terms of satLee(φ)) are of the form penc(ζMi , ζMj , ζMk

) with 1 ≤ i, j, k ≤ 6 except
the recipe of the term penc(M5,M6,M3), it is of the form rencrypt(x1, x4).

Step 3: computing a finite set of equalities. We associate to each frame
a finite number of equalities EqE(φ).
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Definition 4.6. Let φ = νñσ be a frame in normal form. The set EqE(φ) is the
set of equalities

C1[ζM1 , . . . , ζMk
] = C2[ζM ′

1
, . . . , ζM ′

l
]

such that (C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])φ, |C1|, |C2| ≤ cE , Mi,M

′
j ∈

satE(φ) ∪ IE(φ), ζMiσ =E Mi, ζM ′
j
σ =E M ′

j and ζMi , ζM ′
j
∈ L(φ) ∪ dom(σ). If

φ′ is a frame such that (M =E N)φ′ for every (M = N) ∈ EqE(φ), we write
φ′ |= EqE(φ).

Given a frame φ, we simply writeEqLee(φ) (resp. EqOka(φ)) instead of EqELee(φ)
(resp. EqEOka

(φ)).

Example 4.7. We continue Example 4.5. By Definition 4.6, we obtain several
trivial and redundant equalities in EqLee(φ) except the following equality: ζM7 =
penc(ζM5 , ζM6 , ζM3), that is, rencrypt(x1, x4) = penc(decrypt(x1, x2), pk(x2), x3).
This equality allows to an intruder to decide if two frames are statically equivalent
or not. Intuitively, this equality corresponds to the ability of an intruder that
can check about the random coin used for probabilistic encryption of the message
referred by x1.

4.2. Proof of decidability for static equivalence

Our goal is to show that for checking for static equivalence of two frames, it
is actually sufficient to consider the set of equalities EqE(φ) introduced in the
previous section. That is, φ ≈E φ′ if and only if φ |= EqE(φ′) and φ′ |= EqE(φ).
This result relies on the two following (key) lemmas.

Lemma 4.8. Let φ = νñσ be a frame in normal form, ζM and ζN be local recipes of
some term T , i.e. ζMσ↓ = ζNσ↓ = T . For every frame φ′ such that φ′ |= EqE(φ),
we have (ζM =E ζN )φ′.

Lemma 4.9. Let φ = νñσ be a frame in normal form, M be a deducible term in
normal form and ζM a recipe of M . Then there exists a local recipe of M w.r.t
φ, denoted by ζ̂M , such that for every frame φ′ such that φ′ |= EqE(φ), we have
(ζM =E ζ̂M )φ′.

The proof of these two lemmas is left for the next section. They allow us to
conclude that it is indeed sufficient to check for small equalities.

Proposition 4.10. Let φ and φ′ be two frames in normal form. We have φ ≈E φ′

if and only if φ |= EqE(φ′) and φ′ |= EqE(φ).

Proof. (→) By Definition of static equivalence if φ ≈E φ′ then φ |= EqE(φ′) and
φ′ |= EqE(φ).

(←) Assume that φ′ |= EqE(φ) and consider M , N such that there exists ñ, σ
such that φ = νñσ, (fn(M)∪fn(N))∩ñ = ∅ and (M =E N)φ. Then Mσ =E Nσ,
so (Mσ)↓ == (Nσ)↓. Let us show that (M =E N)φ′. Let T = (Mσ)↓. The
terms M and N can be viewed as recipes of T . By Lemma 4.9 there exists M̂, N̂
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such that (M̂ =E M)φ′ and (N̂ =E N)φ′. Then, by Lemma 4.8 we obtain that
(M̂ =E N̂)φ′, thus we conclude by transitivity.

Conversely, if (M =E N)φ′ and φ |= EqE(φ′), we can prove that (M =E N)φ.
We conclude φ ≈E φ′. �

Therefore, our algorithm consists in reducing the problem of decidability of
static equivalence to decide whether each frame satisfy the equality from other’s
set.

We are now ready to conclude the proof of Theorem 4.1.

Proof. Let E be ELee or EOka. The decision procedure of static equivalence pro-
ceeds in three steps. First, we construct satE(φ)∪IE(φ) and satE(φ′)∪IE(φ′). In
the second step, we construct the sets EqEE (φ) and EqEE (φ′). Finally, and accord-
ing to Proposition 4.10, we test if each frame satisfy the equality from other’s set.
Moreover, according to the Proposition 4.4, the construction of satE(φ) ∪ IE(φ)
and satE(φ′) ∪ IE(φ′) can be done in polynomial time and for each term M of
satE(φ) ∪ IE(φ) or satE(φ′) ∪ IE(φ′), the term ζM has a polynomial DAG-size.
Thus we can conclude that this procedure can be done in polynomial time (in the
DAG-size of inputs terms). �

4.3. Proofs of the two key lemmas

The end of this section is devoted to the proofs of the two key lemmas (Lems. 4.8
and 4.9). We first state and prove two preliminary results that will be used for
proving Lemma 4.8 under ELee.

Proposition 4.11. Let φ = νñσ be a frame in normal form, M ∈ T (ΣLee,X )
be a deducible term in normal form s.t M == f(M1, . . . ,Mk), f �= penc and
M /∈ satLee(φ). For every local recipe ζM of M , we have ζM = f(ζM1 , . . . , ζMk

)
such that ζMσ↓ == f(ζM1σ↓, . . . , ζMk

σ↓) (i.e. ζM is by composition).

Proof. Let ζM be a local recipe of deducible term M in normal form such that
M == f(M1, . . . ,Mk), f �= penc and M /∈ satLee(φ). We distinguish several cases
according to ζM . The case ζM is a variable is impossible because this would imply
M ∈ satLee(φ). Thus ζM = g(ζ1, . . . , ζk). Let Ni = ζiσ↓.

• If g(N1, . . . , Nk) is in normal form, then g = f , Ni = Mi and we conclude,
• If g(N1, . . . , Nk) is not in normal form, since N1, . . . , Nk are in normal

form then by Lemma 2.1 we have g(N1, . . . , Nk) h−→M . Let us show that
this implies M ∈ satLee(φ). Indeed, since it does not exist a rewrite rule
L → R such that head(R) = f (since we consider f �= penc), then M
can only be obtained from subterm rule. So, by locality lemma we have
M ∈ StLee(φ) and by Definition 4.2 we have M ∈ satLee(φ) since M is
deducible, contradiction. �

Proposition 4.12. Let φ = νñσ be a frame in normal form, M ∈ T (ΣLee,X )
of the form penc(N1, N2, N3) and ζM = rencrypt(ζM1 , ζM2) its local recipe s.t
ζMσ↓ = M and M /∈ satLee(φ). The terms (ζMi )i=1,2 are the local recipes of
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some terms Mi s.t ζMiσ↓ = Mi. Assume both N1, N2 are deducible and there
exists i ∈ {1, 2} such that Ni /∈ satLee(φ). Then there exits a deducible term
N ′

3 such that N3 = f0(N ′
3,M2) and penc(ζN1 , ζN2 , f0(ζN ′

3
, ζM2)) =ELee ζM , with

(ζNi)i=1,2, ζN ′
3

local recipes of Ni, N
′
3, such that ζNiσ↓ = Ni and ζN ′

3
σ↓ = N ′

3.

Proof. We proceed by induction on the size of ζM .
Base case: ζM is a variable, then ζMσ ∈ φ, contradiction.
Inductive step: We must have M1 = penc(N1, N2, N

′
3) with N3 = f0(N ′

3,M2)
thus N ′

3 ∈ StLee(N3). Since Ni /∈ satLee(φ) for some i ∈ {1, 2}, we must have
M1 /∈ satLee(φ). Indeed, assume M1 ∈ satLee(φ), Then since N1, N2 are deducible
subterms of M1, we would have N1, N2 ∈ StLee(φ) and by Definition 4.2 we would
have Ni ∈ satLee(φ) for every i ∈ {1, 2}, contradiction. So, we distinguish several
cases depending on ζM1 :

• ζM1 is a variable, this case is impossible because this impliesM1∈satLee(φ),
contradiction.

• ζM1 = f(ζ1, . . . , ζk) and f(ζ1σ↓, . . . , ζkσ↓) is in normal form (ζM1 is by
composition). Thus ζM1 = penc(ζ1, ζ2, ζ3) and ζ1, ζ2, ζ3 are local recipes
of N1, N2, N

′
3 respectively. ζN ′

i
σ↓ = N ′

i for i ∈ {1, 2, 3}. By equational
theory ELee we have N ′

i = Ni for i = 1, 2 and we have N ′
3 ∈ StLee(N3).

Thus we have rencrypt(ζM1 , ζM2) =ELee penc(ζ1, ζ2, f0(ζ3, ζM2)), and we
conclude.

• ζM1 = f(ζ1, . . . , ζk) and f(ζ1σ↓, . . . , ζkσ↓) is not in normal form. Since
ζ1σ↓, . . . , ζkσ↓ are in normal form then by Lemma 2.1 we have f(ζ1σ↓, . . . ,
ζkσ↓) h−→M1. If f �= rencrypt, then M1 can only obtained by applying the
rule (1), (2), (3), (5), (6) or (7), this case is impossible because by locality
this implies M1 ∈ StLee(φ) ∪ {ok}, and by Definition 4.2 M1 ∈ satLee(φ).
Else, in this case we have ζM1 = rencrypt(ζM ′

1
, ζM ′

2
) with ζM ′

i
are the local

recipes of some terms M ′
i s.t ζM ′

i
σ↓ = M ′

i .
By induction hypothesis there exists a deducible term N ′′

3 such that N ′
3 =

f0(N ′′
3 ,M

′
2) and ζM1 =ELee penc(ζN1 , ζN2 , f0(ζN ′′

3
, ζM ′

2
)), so we have

rencrypt(ζM1 , ζM2)=ELeepenc(ζN1 , ζN2 , f0(f0(ζN ′′
3
, ζM ′

2
), ζM2)) with ζN ′

3
=

f0(ζN ′′
3
, ζM ′

2
), thus we conclude. �

Proof of Lemma 4.8.
(*) Proof under ELee: Assume that φ′ |= EqLee(φ) and consider ζM , ζN local
recipes such that (ζM =ELee ζN )φ and (fn(ζM ) ∪ fn(ζN )) ∩ ñ = ∅. Let us show
that (ζM =ELee ζN )φ′. Let T = ζMσ↓.

We show by induction on the max of the size of ζM and ζN .
– Base case: ζM , ζN are variables, then by Definition 4.6 we have (ζM = ζN ) ∈
EqLee(φ), and we conclude by φ′ |= EqLee(φ).
– Inductive step: We distinguish two cases:
Case 1: T ∈ satLee(φ):
• If neither ζM nor ζN is a variable, then we rewrite ζM = ζN in f(ζ1, . . . , ζk) =

g(ζ′1, . . . , ζ′n). By locality we have ζiσ↓, ζ′iσ↓ ∈ StLee(φ, T ) ⊆ StLee(φ) (since
T ∈ satLee(φ)), then by Definition 4.2 we have ζiσ↓, ζ′iσ↓ ∈ satLee(φ). Let ζi, ζ

′
i



290 M. BERRIMA ET AL.

be the local recipes of ζiσ↓, ζ′iσ↓ computed by Algorithm 1. By construction of
EqLee(φ), we have (f(ζ1, . . . , ζk) = g(ζ′1, . . . , ζ′n)) ∈ EqLee(φ), and we deduce
(f(ζ1, . . . , ζk) =ELee g(ζ′1, . . . , ζ′n))φ′ by φ′ |= EqLee(φ). Moreover, by induction
hypothesis (since |ζi| ≤ |ζi| and |ζ′i| ≤ |ζ′i|) we have (ζi =ELee ζi)φ

′ and (ζ′i =ELee

ζ′i)φ′, then we have (f(ζ1, . . . , ζk) =ELee f(ζ1, . . . , ζk))φ′ and (g(ζ′1, . . . , ζ′n) =ELee

g(ζ′1, . . . , ζ′n))φ′. Thus we conclude by transitivity.
• If ζM or ζN is a variable, let us say ζM = f(ζ1, . . . , ζk) and ζN = x. We

rewrite ζM = ζN in f(ζ1, . . . , ζk) = x. Let ζi be the local recipes of ζiσ↓ com-
puted by Algorithm 1. We have (f(ζ1, . . . , ζk) = x) ∈ EqLee(φ), and we deduce
(f(ζ1, . . . , ζk) =ELee x)φ′ by φ′ |= EqLee(φ). Moreover, by induction hypothe-
sis (since |ζi| ≤ |ζi|) we have (ζi =ELee ζi)φ′, then we have (f(ζ1, . . . , ζk) =ELee

f(ζ1, . . . , ζk))φ′. Thus we conclude by transitivity.
Case 2: T /∈ satLee(φ): This implies that neither ζM nor ζN are variables. we
distinguish several cases:
• If ζM and ζN are terms by composition: we rewrite ζM = ζN in g(ζ1, . . . , ζn) =

g(ζ′1, . . . , ζ
′
n). Since (ζM =ELee ζN )φ then we have g(ζ1σ ↓, . . . , ζnσ↓) == g(ζ′1

σ↓, . . . , ζ′nσ↓). So we have ζiσ↓ == ζ′iσ↓, thus (ζi =ELee ζ
′
i)φ. Then by induction

hypothesis we have (ζi =ELee ζ
′
i)φ

′. Since =ELee is closed by application of function
symbol, we conclude that (ζM =ELee ζN )φ′.
• If ζM and ζN are terms by decomposition: we rewrite ζM = ζN in f(ζ1, . . . ,

ζk) = g(ζ′1, . . . , ζ
′
l). If the rule (1), (2), (3), (5), (6) or (7) is applied, then

by locality we have T ∈ StLee(φ) ∪ {ok} and by Definition 4.2 we obtain T ∈
satLee(φ), contradiction. Thus the interesting case is when the rule (4) is ap-
plied. So we rewrite ζM = ζN in rencrypt(ζ1, ζ2) = rencrypt(ζ′1, ζ

′
2). Since

(ζM =ELee ζN )φ then we have ζMσ↓ == ζNσ↓ == T with T of the form
penc(T1, T2, f0(T3, T4)) where Ti are in normal form. By the equational theory
ELee we have ζ1σ↓ == penc(T1, T2, T3)(i.1) and ζ2σ↓ == T4(i.2). Moreover, we
have ζ′1σ↓ == penc(T1, T2, T3)(ii.1) and ζ′2σ↓ == T4(ii.2). By (i.1) and (ii.1) we
have (ζ1 =ELee ζ′1)φ and by (i.2) and (ii.2) we have (ζ2 =ELee ζ′2)φ. Then by
induction hypothesis we have (ζ1 =ELee ζ

′
1)φ′ and (ζ2 =ELee ζ

′
2)φ′. Since =ELee is

closed by application of function symbol , we conclude that (ζM =ELee ζN )φ′.
• If ζM is a term by decomposition and ζN is a term by composition (or the

converse): we rewrite ζM = ζN in f(ζ1, . . . , ζk) = g(ζ′1, . . . , ζ
′
l). Like in previous

case, if the rule (1), (2), (3), (5), (6) or (7) is applied, then by locality we have
T ∈ StLee(φ)∪{ok} and by Definition 4.2 we obtain T ∈ satLee(φ), contradiction.
Thus, the interesting case for the term by decomposition is when the rule (4) is
applied. So we rewrite ζM = ζN in rencrypt(ζ1, ζ2) = penc(ζ′1, ζ

′
2, ζ

′
3).

In what follows, let (ζiσ↓ = Mi)i=1,2 and (ζ′iσ↓ = Ni)i=1,2,3.
(i) Assume first that Ni ∈ satLee(φ) for i = 1, 2, 3. Since M2 is deducible

and M2 ∈ StLee(φ) (because M2 ∈ StLee(N3) and N3 ∈ satLee(φ)) then by
Definition 4.2 M2 ∈ satLee(φ). Moreover, since M1 ∈ StLee(penc(N1, N2, N3))
and it is deducible then by Definition 4.3 M1 ∈ ILee(φ). Let ζi, ζ

′
i be the local
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recipes ofMi, Ni computed by Algorithm 1. We have (rencrypt(ζ1, ζ2) = penc(ζ′1,
ζ′2, ζ′3)) ∈ EqLee(φ), and we deduce (rencrypt(ζ1, ζ2) =ELee penc(ζ′1, ζ′2, ζ′3))φ′

by φ′ |= EqLee(φ). Moreover, by induction hypothesis (since |ζi| ≤ |ζi| and |ζ′i| ≤
|ζ′i|) we have (ζi =ELee ζi)φ′ and (ζ′i =ELee ζ

′
i)φ′. Thus, since =ELee is closed by

application of function symbol, we have (rencrypt(ζ1, ζ2) =ELee rencrypt(ζ1, ζ2))φ′

and (penc(ζ′1, ζ
′
2, ζ

′
3) =ELee penc(ζ′1, ζ′2, ζ′3))φ

′. Thus we conclude by transitivity.
(ii) Else, we distinguish two cases:

• If N3 /∈ satLee(φ), since (ζM =ELee ζN )φ then by equational theory ELee

N3 is of the form f0(N4, N5), and as ζ′3 is local, so by Proposition 4.11
ζN3 can only be of the form f0(ζ′4, ζ

′
5) (i.e. it is by composition). So we

can rewrite ζM = ζN in rencrypt(ζ1, ζ2) = penc(ζ′1, ζ
′
2, f0(ζ

′
4, ζ

′
5)). Since

(ζM =ELee ζN )φ, then (ζ1 =ELee penc(ζ′1, ζ′2, ζ′4))φ and (ζ2 =ELee ζ′5)φ.
Then by induction hypothesis we have (ζ1 =ELee penc(ζ′1, ζ

′
2, ζ

′
4))φ

′ and
(ζ′2 =ELee ζ

′
5)φ

′, and we conclude.
• If Ni /∈ satLee(φ) for some i ∈ {1, 2}, then by Proposition 4.12, there

exists a deducible term N ′
3 s.t N3 = f0(N ′

3,M2), ζM =ELee penc(ζN1, ζN2 ,
f0(ζN ′

3
, ζ2)) with ζN ′

3
σ↓ = N ′

3 and ζNiσ↓ = Ni for i = 1, 2. So it is suf-
ficient to prove that (penc(ζN1 , ζN2 , f0(ζN ′

3
, ζ2)) =ELee penc(ζ′1, ζ

′
2, ζ

′
3))φ

′.
Since penc(ζN1σ↓, ζN2σ↓, (f0(ζN ′

3
, ζ2))σ↓) is in normal form (because by

Lemma 2.1 the reduction must be in head and moreover does not exists a
rewrite rule L → R s.t head(L) = penc), thus we can proceed like in the
first case where the two terms are by composition.

(**) Proof under EOka: Assume that φ′ |= EqOka(φ) and consider ζM , ζN local
recipes such that (ζM =EOka

ζN )φ and (fn(ζM )∪fn(ζN ))∩ ñ = ∅. Let T = ζMσ↓.
We show by induction on the max of the size of ζM and ζN that (ζM =EOka

ζN )φ′.
– Base case: ζM , ζN are variables, then by Definition 4.6 we have (ζM = ζN ) ∈
EqOka(φ), and we conclude by φ′ |= EqOka(φ).
– Inductive step: We distinguish two cases:
Case 1: T ∈ satOka(φ):
• If neither ζM nor ζN is a variable, then we rewrite ζM = ζN in f(ζ1, . . . , ζk) =

g(ζ′1, . . . , ζ
′
n). By locality we have ζiσ↓, ζ′iσ↓ ∈ StOka(φ, T ) ⊆ StOka(φ) (since

T ∈ satOka(φ)), then by Definition 4.2 we have ζiσ↓, ζ′iσ↓ ∈ satOka(φ). Let
ζi, ζ

′
i be the local recipes of ζiσ↓, ζ′iσ↓ computed by Algorithm 1. We have

(f(ζ1, . . . , ζk) = g(ζ′1, . . . , ζ′n)) ∈ EqOka(φ), and we deduce (f(ζ1, . . . , ζk) =EOka

g(ζ′1, . . . , ζ′n))φ′ by φ′ |= EqOka(φ). Moreover, by induction hypothesis (since
|ζi| ≤ |ζi| and |ζ′i| ≤ |ζ′i|) we have (ζi =EOka

ζi)φ′ and (ζ′i =EOka
ζ′i)φ′, then

we have (f(ζ1, . . . , ζk) =EOka
f(ζ1, . . . , ζk))φ′ and (g(ζ′1, . . . , ζ′n) =EOka

g(ζ′1, . . . ,
ζ′n))φ′. Thus we conclude by transitivity.
• If ζM or ζN is a variable, let us say ζM = f(ζ1, . . . , ζk) and ζN = x. We

rewrite ζM = ζN in f(ζ1, . . . , ζk) = x. Let ζi be the local recipes of ζiσ↓ that
belong to EqOka(φ). Thus we have (f(ζ1, . . . , ζk) = x) ∈ EqOka(φ), and we deduce
(f(ζ1, . . . , ζk) =EOka

x)φ′ by φ′ |= EqOka(φ). Moreover, by induction hypothesis
(since |ζi| ≤ |ζi|) we have (ζi =EOka

ζi)φ′, then we have (f(ζ1, . . . , ζk) =EOka

f(ζ1, . . . , ζk))φ′. Thus we conclude by transitivity.
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Case 2: T /∈ satOka(φ): This implies that neither ζM nor ζN are variables.
We distinguish several cases.
• If ζM and ζN are terms by composition: We rewrite ζM = ζN in g(ζ1, . . . , ζn) =

g(ζ′1, . . . , ζ
′
n). Since (ζM =EOka

ζN )φ then we have g(ζ1σ↓, . . . , ζnσ↓) ==
g(ζ′1σ↓, . . . , ζ′nσ↓). So we have ζiσ↓ == ζ′iσ↓, thus (ζi =EOka

ζ′i)φ. Then by
induction hypothesis we have (ζi =EOka

ζ′i)φ
′. Since =EOka

is closed by applica-
tion of function symbol, we conclude that (ζM =EOka

ζN )φ′.
• If ζM is a term by decomposition and ζN is a term by composition (or the

converse): we rewrite ζM = ζN in f(ζ1, . . . , ζk) = g(ζ′1, . . . , ζ′l). If the rule (1),
(2) or (3) is applied, then by locality we have T ∈ StOka(φ) and by Definition 4.2
we obtain T ∈ satOka(φ), contradiction. Thus the interesting case for the term
by decomposition is when the rule (4) is applied. So we rewrite ζM = ζN in
f1(ζ1, ζ2, ζ3, ζ4) = f1(ζ′1, ζ

′
2, ζ

′
3, ζ

′
4), with ζM is a term by decomposition and ζN is

a term by composition. Let Mi = ζiσ↓ and Ni = ζ′iσ↓.
Since (ζM =EOka

ζN )φ, then we have M2 = f1(N1, N2, N3,M1), M3 = N3, and
M4 = N4. Moreover, by equational theory EOka we have (tdcommit(ζ1, ζ2, ζ3)
σ)↓ = tdcommit(N1, N2, N3) and ζ4σ↓ = ζ′4σ↓, so we have (tdcommit(ζ1, ζ2,
ζ3) =EOka

tdcommit(ζ′1, ζ
′
2, ζ

′
3))φ and (ζ4 =EOka

ζ′4)φ. Applying induction hy-
pothesis (since tdcommit(ζ1, ζ2, ζ3) and ζ4 (resp. tdcommit(ζ′1, ζ

′
2, ζ

′
3) and ζ′4) are

smaller than ζM (resp. ζN )), we obtain (tdcommit(ζ1, ζ2, ζ3) =EOka
tdcommit(ζ′1,

ζ′2, ζ
′
3))φ

′ and (ζ4 =EOka
ζ′4)φ

′, thus we conclude that (ζM =EOka
ζN )φ′.

• If ζM and ζN are terms by decomposition: we rewrite ζM = ζN in f(ζ1, . . . ,
ζk) = g(ζ′1, . . . , ζ

′
l). If the rule (1), (2) or (3) is applied, then by locality we have

T ∈ StOka(φ) and by Definition 4.2 we obtain T ∈ satOka(φ), contradiction. Thus
the interesting case is when the rule (4) is applied. So we rewrite ζM = ζN in
f1(ζ1, ζ2, ζ3, ζ4) = f1(ζ′1, ζ

′
2, ζ

′
3, ζ

′
4). Let Mi = ζiσ↓ and Ni = ζ′iσ↓.

Since (ζM =EOka
ζN )φ, then we have ζMσ↓ == ζNσ↓ == T with T of the

form f1(T1, T2, T3, T4), where Ti are in normal form. By equational theory EOka

we have (tdcommit(ζ1, ζ2, ζ3)σ)↓ == tdcommit(T1, T2, T3) (i.1) and ζ4σ↓ == T4

(i.2). Moreover, we have (tdcommit(ζ′1, ζ
′
2, ζ

′
3)σ)↓ == tdcommit(T1, T2, T3) (ii.1)

and ζ′4σ↓ == T4 (ii.2). By (i.1) and (ii.1) we have (tdcommit(ζ1, ζ2, ζ3) =EOka

tdcommit(ζ′1, ζ
′
2, ζ

′
3))φ, and by (i.2) and (ii.2) we have (ζ4 =EOka

ζ′4)φ. Applying
induction hypothesis (since tdcommit(ζ1, ζ2, ζ3) and ζ4 (resp. tdcommit(ζ′1, ζ′2, ζ′3)
and ζ′4) are subterms of ζM (resp. ζN )), we obtain (tdcommit(ζ1, ζ2, ζ3) =EOka

tdcommit(ζ′1, ζ
′
2, ζ

′
3))φ

′ and (ζ4 =EOka
ζ′4)φ

′, thus we conclude that (ζM =EOka

ζN )φ′. �

Proposition 4.13. Let φ = νñσ be a frame in normal form, ζM = decrypt(ζ′1, ζ2)
and ζN = decrypt(rencrypt(ζ′1, ζ

′
2), ζ2) with ζ2, ζ

′
1 and ζ′2 are the local recipes of

ζ2σ↓, ζ′1σ↓ and ζ′2σ↓ respectively. If we have (ζM =ELee ζN )φ, then for every frame
φ′ such that φ′ |= EqLee(φ), we have (ζM =ELee ζN )φ′.

Proof. We proceed by induction on the sum of the sizes of ζM and ζN .
– Base case: If |ζM | ≤ cELee and |ζN | ≤ cELee , then we have (ζM = ζN ) ∈
EqLee(φ). Thus we conclude form φ′ |= EqLee(φ).



DECIDING KNOWLEDGE IN SECURITY PROTOCOLS 293

– Inductive step: We distinguish several cases according to ζ′1:

• If ζ′1 is a variable or ζ′1σ↓ is obtained by a subterm rule, then by locality
lemma we have ζ′1σ↓ ∈ StLee(φ). From Definition 4.2 we derive that ζ′1σ↓ ∈
satLee(φ) and consequently ζ2σ↓ ∈ satLee(φ) (because from the equality
(ζM =ELee ζN )φ we have ζ2σ↓ ∈ StLee(ζ′1σ↓)). Moreover since ζ′2 is uncon-
strained in (ζM =ELee ζN )φ, then we can replace ζ′2 by a fresh name a and
we get (decrypt(rencrypt(ζ′1, a), ζ2) =ELee decrypt(ζ′1, ζ2))φ, that belongs
to EqLee(φ). From φ′ |= EqLee(φ), we have (decrypt(rencrypt(ζ′1, a), ζ2)
=ELee decrypt(ζ′1, ζ2))φ

′, and we conclude by replacing a by ζ′2.
• If ζ′1 = penc(ζ′′1 , ζ

′′
2 , ζ

′′
3 ) with ζ′′i are the local recipes of ζ′′i σ↓. Then from

the equality (ζM =ELee ζN )φ we must have (pk(ζ̂2) =ELee ζ̂′′2)φ. By
Lemma 4.8, we get (pk(ζ̂2) =ELee ζ̂′′2)φ′ (since pk(ζ̂2) is local because
pk(ζ̂2σ↓) is irreducible). Then we conclude that (ζM =ELee ζN )φ′.

• If ζ′1 = rencrypt(ζ′′1 , ζ
′′
2 ). Then by ELee theory we have (decrypt

(rencrypt(ζ′′1 , ζ′′2 )) =ELee decrypt(ζ′′1 , ζ2))φ. By induction hypothesis we
get (decrypt(rencrypt(ζ′′1 , ζ

′′
2 ), ζ2) =ELee decrypt(ζ′′1 , ζ2))φ

′. Thus by ELee

theory we derive that (ζM =ELee ζN )φ′. �

Proof of Lemma 4.9.

(1) Proof under ELee: We proceed by induction on the size of ζM .

– Base case: If ζM is a variable, then we can choose ζ̂M = ζM , thus we have
(ζM =ELee ζ̂M )φ′.

– Inductive step: Let ζM = f(ζ1, . . . , ζn). By the induction hypothesis, there
exists ζ̂i local recipes of ζiσ↓ such that (ζi =ELee ζ̂i)φ′. Since =ELee is closed by ap-
plication of function symbol, then (f(ζ̂1, . . . , ζ̂n) =ELee ζM )φ′(0). We distinguish
two cases:
Case 1: ζM is by composition. Then f(ζ̂1, . . . , ζ̂n) is a local recipe of M (see the
proof of the locality lemma). Thus we can choose f(ζ̂1, . . . , ζ̂n) as a local recipe of
M .
Case 2: ζM = f(ζ̂1, . . . , ζ̂n) is by decomposition. We distinguish several cases
according to the applied rule:
• If the rule 4 is applied, then f = rencrypt. We have rencrypt(ζ̂1, ζ̂2) is local

(see the proof of the locality lemma). Then we can choose rencrypt(ζ̂1, ζ̂2) as a
local recipe of M since (rencrypt(ζ̂1, ζ̂2) =ELee rencrypt(ζ1, ζ2))φ′.
• If the rule 1 is applied, then f = getpk and n = 1. Since ζM is by decompo-

sition, i.e. getpk(ζ̂1)
h−→ M , then head(ζ̂1σ↓) = host. If ζ̂1 is a variable or ζ̂1σ↓ is

obtained by applying a subterm rule, then by the locality lemma, ζ̂1σ↓ ∈ StLee(φ)
and we conclude that getpk(ζ̂1) is local. Then we choose getpk(ζ̂1) as a local
recipe of M . The rule 4 cannot be applied to get ζ̂1σ↓ because head(ζ̂1σ↓) �=
host. If ζ̂1 is by composition, then ζ̂1 = host(ζ̂′1). By the ELee theory we get
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getpk(host(ζ̂′1)) =ELee ζ̂
′
1 (1). Then from equations (0) and (1) we can choose

ζ̂′1 as a local recipe of M .
• If the rule 2 is applied, then f = checksign and n = 2. Since ζM is

by decomposition, i.e. checksign(ζ̂1, ζ̂2)
h−→ M , then head(ζ̂1σ↓) = sign and

ζ̂2σ↓ ∈ StLee(ζ̂1σ↓). If ζ̂1 is a variable or ζ̂1σ↓ is obtained by applying a sub-
term rule, then by the locality lemma, ζ̂1σ↓ ∈ StLee(φ) and we conclude that
ζ̂2σ↓ ∈ StLee(φ). Thus getpk(ζ̂1, ζ̂2) is local. Then we choose getpk(ζ̂1, ζ̂2) as a
local recipe of M . The rule 4 cannot be applied to get ζ̂1σ↓ because head(ζ̂1σ↓) �=
sign. If ζ̂1 is by composition, then ζ̂1 = sign(ζ̂′1, ζ̂′2). Moreover, since rule 2 is
applied, we must have (pk(ζ̂′2) =ELee ζ̂2)φ. By Lemma 4.8, we get (pk(ζ̂′2) =ELee

ζ̂2)φ′ (since pk(ζ̂′2) is local because pk(ζ̂′2σ↓) is irreducible). Thus we deduce
(checksign(sign(ζ̂′1, ζ̂′2), ζ̂2) =ELee ζ̂

′
1)φ′ (2). Then from equations (0) and (2)

we can choose ζ̂′1 as a local recipe of M .
• If the rule 3 is applied, then f = decrypt and n = 2. Since ζM is by decompo-

sition, i.e. decrypt(ζ̂1, ζ̂2)
h−→M , then head(ζ̂1σ↓) = penc and ζ̂2σ↓ ∈ StLee(ζ̂1σ↓).

If ζ̂1 is a variable or ζ̂1σ↓ is obtained by applying a subterm rule, then by the lo-
cality lemma, we have ζ̂1σ↓ ∈ StLee(φ) and we conclude that ζ̂2σ↓ ∈ StLee(φ).
Thus decrypt(ζ̂1, ζ̂2) is local. Then we choose decrypt(ζ̂1, ζ̂2) as a local recipe
of M . If rule 4 is applied, thus we have ζ̂1 = rencrypt(ζ̂′1, ζ̂′2). By Propo-
sition 4.13 we get (decrypt(rencrypt(ζ̂′1, ζ̂′2), ζ̂2) =ELee decrypt(ζ̂′1, ζ̂2))φ′ (3).
Applying induction hypothesis on decrypt(ζ̂′1, ζ̂2), we get that there exists a lo-
cal recipe ζ̂M such that (decrypt(ζ̂′1, ζ̂2) =ELee ζ̂M )φ′ (4). Then we conclude
from equations (0), (3) and (4) that we can choose ζ̂M as a local recipe of M .
If ζ̂1 is by composition, then we have ζ̂1 = penc(ζ̂′1, ζ̂′2, ζ̂′3). Moreover, since
rule 3 is applied, we must have (ζ̂′2 =ELee pk(ζ̂2))φ. By Lemma 4.8, we get
(ζ̂′2 =ELee pk(ζ̂2))φ′ (since pk(ζ̂2) is local because pk(ζ̂2σ↓) is irreducible). Thus
we get (decrypt(penc(ζ̂′1, ζ̂′2, ζ̂′3), ζ̂2) =ELee ζ̂

′
1)φ

′ (5). Then form equations (0)
and (5) we can choose ζ̂′1 as a local recipe of M .
• If the rule 5 or 6 is applied, then f = checkdvp, n = 4 and M = ok. Since ζM

is by decomposition, i.e. checkdvp(ζ̂1σ↓, . . . , ζ̂4σ↓) h−→M , then head(ζ̂1σ↓) = dvp

and ζ̂iσ↓ ∈ StLee(ζ̂1σ↓) for i = 2 . . . 4. If ζ̂1 is a variable or ζ̂1σ↓ is obtained
by applying a subterm rule, then by the locality lemma, ζ̂1σ↓ ∈ StLee(φ) and
we derive that ζ̂iσ↓ ∈ StLee(φ) for i = 2 . . . 4. Thus by Definition 4.2 we have
ζ̂iσ↓ ∈ satLee(φ) for i = 1 . . . 4. Let ζi be the local recipes of ζ̂iσ↓ for i =
1 . . . 4 used for the construction of the set EqLee(φ). By Definition 4.6 we have
(checkdvp(ζ1, ζ2, ζ3, ζ4) = ok) ∈ EqLee(φ). Moreover, by Lemma 4.8, (ζ̂i =ELee

ζi)φ
′, thus (checkdvp(ζ̂1, ζ̂2, ζ̂3, ζ̂4) =ELee checkdvp(ζ1, ζ2, ζ3, ζ4) =ELee ok)φ′(6).

Then from equations (0) and (6) we can choose ok as a local recipe of M . The
rule 4 cannot be applied to get ζ̂1σ↓ because head(ζ̂1σ↓) �= dvp.

If ζ̂1 is by composition, so (checkdvp(dvp(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), ζ̂2, ζ̂3, ζ̂4) = ok)φ
with (ζ̂′1 =ELee ζ̂2)φ, (ζ̂′2 =ELee ζ̂3)φ and (ζ̂′4 =ELee ζ̂4)φ. By Lemma 4.8 we
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have (ζ̂′1 =ELee ζ̂2)φ′, (ζ̂′2 =ELee ζ̂3)φ′ and (ζ̂′4 =ELee ζ̂4)φ′, thus we deduce
(checkdvp(dvp(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), ζ̂2, ζ̂3, ζ̂4) = ok)φ′ (6’). Then from equations (0)
and (6’) we can choose ok as a local recipe of M .
• If the rule 7 is applied, then f = checkdvp, n = 4 and M = ok. Since ζM is

by decomposition, i.e. checkdvp(ζ̂1σ↓, . . . , ζ̂4σ↓) h−→ M , then head(ζ̂1σ↓) = dvp,
head(ζ̂4σ↓) = pk and ζ̂iσ↓ ∈ StLee(ζ̂1σ↓) for i = 2 . . . 3. If ζ̂1 is a variable or ζ̂1σ↓
is obtained by applying a subterm rule, then by the locality lemma, we have ζ̂1σ↓ ∈
StLee(φ) and we derive that ζ̂iσ↓ ∈ StLee(φ) for i = 2 . . . 3. Thus by Definition 4.2
we have ζ̂iσ↓ ∈ satLee(φ) for i = 1 . . . 3. Let ζi be the local recipes of ζ̂iσ↓ for i =
1 . . . 4 used for the construction of the set EqLee(φ). Whatever ζ4σ↓ ∈ satLee(φ)
or not, we have by Definition 4.6, (checkdvp(ζ1, ζ2, ζ3, ζ4) = ok) ∈ EqLee(φ),
because if ζ̂4σ↓ /∈ satLee(φ), we know by Proposition 4.11, that ζ̂4 can be only of
the from pk(ζ̂′4) and since by the ELee theory we have ζ̂′4σ↓ ∈ StLee(ζ̂1σ↓), we
deduce by Definition 4.2 that ζ̂′4σ↓ ∈ satLee(φ) and as consequence we deduce
that (checkdvp(ζ1, ζ2, ζ3, pk(ζ′4)) = ok) ∈ EqLee(φ)) with ζ′4 is the local recipe
of ζ̂′4σ↓. Moreover, we deduce from Lemma 4.8 that (ζ̂i =ELee ζi)φ′. Thus
(checkdvp(ζ̂1, ζ̂2, ζ̂3, ζ̂4) =ELee checkdvp(ζ1, ζ2, ζ3, ζ4) =ELee ok)φ′ (7). Then from
equations (0) and (7) we can choose ok as a local recipe of M = ok. The rule 4
cannot be applied to get ζ̂1σ↓ because head(ζ̂1σ↓) �= dvp.

If ζ̂1 is by composition, so (checkdvp(dvp(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), ζ̂2, ζ̂3, ζ̂4) = ok)φ with
(ζ̂′1 =ELee ζ̂2)φ, (ζ̂′2 =ELee ζ̂3)φ and (pk(ζ̂′4) =ELee ζ̂4)φ. By Lemma 4.8 we have
(ζ̂′1 =ELee ζ̂2)φ

′, (ζ̂′2 =ELee ζ̂3)φ
′ and (pk(ζ̂′4) =ELee ζ̂4)φ

′ (because pk(ζ̂′4) is lo-
cal since pk(ζ̂′4σ↓) is irreducible), thus we deduce that (checkdvp(dvp(ζ̂′1, ζ̂′2, ζ̂′3,
ζ̂′4), ζ̂2, ζ̂3, ζ̂4) = ok)φ′ (7’). Then from equations (0) and (7’) we can choose ok as
a local recipe of M .

(2) Proof under EOka: We proceed by induction on the size of ζM .

– Base case: If ζM is a variable, then we can choose ζ̂M = ζM , thus we have
(ζM =EOka

ζ̂M )φ′.

– Inductive step: Let ζM = f(ζ1, . . . , ζn). By the induction hypothesis, there
exists ζ̂i local recipes of ζiσ↓ such that (ζi =ELee ζ̂i)φ′. Since =EOka

is closed by
application of function symbol, then (f(ζ̂1, . . . , ζ̂n) =EOka

ζM )φ′(0). We distin-
guish two cases:
Case 1: ζM = f(ζ1, . . . , ζn) is by composition. Then f(ζ̂1, . . . , ζ̂n) is a local recipe
of M (see the proof of the locality lemma). Thus we can choose f(ζ̂1, . . . , ζ̂n) as a
local recipe of M .
Case 2: ζM = f(ζ1, . . . , ζn) is by decomposition. We distinguish several cases
according to the the applied rule:
• If the rule 1 is applied, then f = open and n = 2. Since ζM is by decom-

position, i.e. open(ζ̂1, ζ̂2)
h−→ M , then head(ζ̂1σ↓) = tdcommmit and ζ̂2σ↓ ∈

StOka(ζ̂1σ↓). If ζ̂1 is a variable or ζ̂1σ↓ is obtained by applying a subterm rule,
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then by the locality lemma, ζ̂1σ↓ ∈ StLee(φ) and we deduce that ζ̂2σ↓ ∈ StLee(φ).
Thus open(ζ̂1, ζ̂2) is local. Then we can choose open(ζ̂1, ζ̂2) as a local recipe of
M . The rule 4 cannot be applied to get ζ̂1σ↓ because head(ζ̂1σ↓) �= tdcommit. If
ζ̂1 is by composition, then ζ̂1 = tdcommit(ζ̂′1, ζ̂′2, ζ̂′3). Moreover, since rule 1 is
applied, we must have (ζ̂′2 =EOka

ζ̂2)φ. By Lemma 4.8, we get (ζ̂′2 =ELee ζ̂2)φ′.
Thus (open(tdcommit(ζ̂′1, ζ̂′2, ζ̂′3), ζ̂2) =EOka

ζ̂′1)φ′ (1). Then form equations (0)
and (1) we can choose ζ̂′1 as a local recipe of M .
• If the rule 3 is applied, then f = open and n = 2. Since ζM is by decom-

position, i.e. open(ζ̂1, ζ̂2)
h−→ M , then head(ζ̂2σ↓) = f1 and ζ̂1σ↓ ∈ StOka(ζ̂2σ↓).

If ζ̂2 is a variable or ζ̂2σ↓ is obtained by applying a subterm rule, then by the
locality lemma, ζ̂2σ↓ ∈ StLee(φ) and we and we derive that ζ̂1σ↓ ∈ StLee(φ).
Thus open(ζ̂1, ζ̂2) is local. Then we can choose open(ζ̂1, ζ̂2) as a local recipe of
M . The rule 2 cannot be applied to get ζ̂2σ↓ because head(ζ̂2σ↓) �= f1. If
ζ̂2 is by composition with head(ζ̂2) = f1 or by decomposition by applying the
rule (4), then in the both cases we have ζ̂2 of the form f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), and
(open(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4)) =EOka

ζ̂′4)φ (*). We wish to show that

(open(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4)) =EOka
ζ̂′4)φ

′. (2)

We distinguish two cases:
• If ζ̂1 is a variable or ζ̂1σ↓ is obtained by applying a subterm rule, then

by the locality lemma, ζ̂1σ↓ ∈ StOka(φ) and we derive that ζ̂′iσ↓ ∈
StOka(φ) for i = 1, 2, 3. By Definition 4.2 we get ζ̂1σ↓ ∈ satOka(φ)
and ζ̂′iσ↓ ∈ satOka(φ) for i = 1, 2, 3. Since ζ̂′4 is unconstrained in the
equation (*), then we can replace ζ̂′4 by a fresh name a and we get
(open(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, a)) =EOka

a)φ, that belongs to EqOka(φ). Then
from φ′ |= EqOka(φ) we get (open(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, a)) =EOka

a)φ′ and
we derive that (open(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4)) =EOka

ζ̂′4)φ′ (2).
• If ζ̂1 is by composition with head(ζ̂2) = tdcommit or by decomposi-

tion by applying the rule (2), then in the both cases we have ζ̂1 of the
form tdcommit(ζ̂′′1, ζ̂′′2, ζ̂′′3), with (ζ̂′′1 =EOka

ζ̂′1)φ for i = 1, 2, 3. By
Lemma 4.8 we get (ζ̂′′1 =EOka

ζ̂′1)φ
′ for i = 1, 2, 3 and we derive that

(open(tdcommit(ζ̂′′1, ζ̂′′2, ζ̂′′3), f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4)) =EOka
ζ̂′4)φ′ (2).

Then from equations (0) and (2) we can choose ζ̂′4 as a local recipe of M .
• If the applied rule is the rule (4), then n = 4 and f = f1. Since ζM is by decom-

position, i.e. f1(ζ̂1σ↓, ζ̂2σ↓, ζ̂3σ↓, ζ̂4σ↓) h−→M , then head(ζ̂2σ↓) = f1, ζ1σ↓, ζ3σ↓ ∈
StOka(ζ2σ↓) and ζ̂4σ↓ ∈ StOka(M). If ζ̂2 is a variable or ζ̂2σ↓ is obtained by ap-
plying a subterm rule, then by the locality lemma, ζ̂2σ↓ ∈ StOka(φ), and we derive
that ζ̂iσ↓ ∈ StOka(φ,M) for i = 1 . . . 4. Thus f1(ζ̂1, ζ̂2, ζ̂3, ζ̂4) is local. Then we can
choose f1(ζ̂1, ζ̂2, ζ̂3, ζ̂4) as a local recipe of M . The rule (2) cannot be applied to get
ζ̂2σ↓ because head(ζ̂2σ↓) �= f1. If ζ̂2 is by composition with head(ζ̂2) = f1 or by
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decomposition by applying the rule (4), then in both cases we have ζ̂2 of the form
f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), thus (f1(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), ζ̂3, ζ̂4) =EOka

f1(ζ̂′1, ζ̂′2, ζ̂′3,
ζ̂4))φ with (ζ̂1 =EOka

ζ̂′4)φ and (ζ̂3 =EOka
ζ̂′3)φ. By Lemma 4.8 we have (ζ̂1 =EOka

ζ̂′4)φ
′ and (ζ̂3 =EOka

ζ̂′3)φ
′, thus we deduce (f1(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), ζ̂3, ζ̂4) =

EOka
f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂4))φ′(3).

Let ζT = f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂4). By induction hypothesis there exists a local recipe
ζ̂T of (ζ̂Tσ)↓ such that (ζT =EOka

ζ̂T )φ′(4). Then we conclude from equations (0),
(3) and (4) that (ζM =EOka

ζ̂T )φ′. Thus we can choose ζ̂T as a local recipe of M .
• If the applied rule is the rule (2), then n = 3 and f = tdcommit. Since ζM is by

decomposition, then head(ζ̂2σ↓) = f1 and ζ1σ↓, ζ3σ↓ ∈ StOka(ζ2σ↓). If ζ̂2 is a vari-
able or ζ̂2σ↓ is obtained by applying a subterm rule, then by the locality lemma,
ζ̂2σ↓ ∈ StOka(φ), and we derive that ζ̂iσ↓ ∈ StOka(φ) ⊆ StOka(φ,M) for i =
1 . . . 3, thus tdcommit(ζ̂1, ζ̂2, ζ̂3) is local. Then we choose tdcommit(ζ̂1, ζ̂2, ζ̂3) as a
local recipe ofM . The rule (2) cannot be applied to get ζ̂2σ↓ because head(ζ̂2σ↓) �=
f1. If ζ̂2 is by composition with head(ζ̂2) = f1 or by decomposition by apply-
ing the rule (4), then in both cases we have ζ̂2 of the form f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4),
thus (tdcommit(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), ζ̂3) =EOka

tdcommit(ζ̂′1, ζ̂′2, ζ̂′3))φ with
(ζ̂1 =EOka

ζ̂′4)φ and (ζ̂3 =EOka
ζ̂′3)φ. By Lemma 4.8 we have (ζ̂1 =EOka

ζ̂′4)φ′

and (ζ̂3 =EOka
ζ̂′3)φ′, thus we deduce (tdcommit(ζ̂1, f1(ζ̂′1, ζ̂′2, ζ̂′3, ζ̂′4), ζ̂3) =EOka

tdcommit(ζ̂′1, ζ̂′2, ζ̂′3))φ
′(5).

Let ζT = tdcommit(ζ̂′1, ζ̂′2, ζ̂′3). By induction hypothesis there exists a local
recipe ζ̂T of (ζ̂Tσ)↓ such that (ζT =EOka

ζ̂T )φ′(6). Then we conclude from equa-
tions (0), (5) and (6) that (ζM = ζ̂T )φ′. Thus we can choose ζ̂T as a local recipe
of M . �

5. Conclusion

In this paper, we have proved that deduction and static equivalence are both
decidable in polynomial time for two important equational theories: Lee et al. and
Okamoto theories. Decidability of deduction relies on the existence of a locality
property with respect to an appropriate notion of subterms that we have defined for
each theory. Decidability of static equivalence relies on result of [1] for convergent
subterms theories and a special set of critical terms that we have introduced. For
Okamoto theory we have also applied a modular approach by using the combining
algorithm of [4], which allowed us to prove the decidability of deduction and static
equivalence for a smaller theory.

It would also be interesting to implement our procedure, possibly by integrating
our approach in existing tools such as YAPA [5] or KISS [9]. Indeed, none of the
existing tools can currently handle the Lee theory, in particular due to the re-
encryption primitives and to designated verifier proofs.

A further work is to generalize the construction of critical terms in order to
cope with a wider class of equational theories. Indeed, it can be noticed that
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similar techniques are used in proofs both for the Lee et al. and the Okamoto the-
ories. It seems natural to try to abstract these two proofs by identifying a more
general argument, that would allow to cover more equational theories. Moreover,
as emphasized in introduction, our work is dedicated to the passive case, where
an attacker can simply eavesdrop the communication in order to get some infor-
mation. An important (and involved) development of our work is to design a
decision procedure in the active case, where the adversary can fully interact with
the protocol.

Acknowledgements. We are very grateful to Stéphanie Delaune for pointing us out the
interest of e-voting theories and her very helpful suggestions in the proof of decidability
for deduction.

References

[1] M. Abadi and V. Cortier, Deciding knowledge in security protocols under equational theories.
Theoret. Comput. Sci. 367 (2006) 2–32.

[2] M. Abadi and C. Fournet, Mobile values, new names, and secure communication. SIGPLAN
Not. 36 (2001) 104–115.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P.H.
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