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ON THE COMPUTATION OF COVERT CHANNEL
CAPACITY

EUGENE ASARIN! AND CATALIN DIMA?

Abstract. We address the problem of computing the capacity of a
covert channel, modeled as a nondeterministic transducer. We give
three possible statements of the notion of “covert channel capacity”
and relate the different definitions. We then provide several methods
allowing the computation of lower and upper bounds for the capacity
of a channel. We show that, in some cases, including the case of input-
deterministic channels, the capacity of the channel can be computed
exactly (e.g. in the form of “the largest root of some polynomial”).

Résumeé. Nous proposons I'utilisation des transducteurs nondétermi-
nistes pour la modélisation des canaux cachés. Trois définitions possi-
bles de la notion de “capacité du canal caché” sont proposées, et leurs
relations sont étudiées. Nous donnons ensuite plusieurs méthodes per-
mettant le calcul des bornes inférieures et supérieures pour la capacité
d’un canal caché. Nous montrons que, dans certains cas, qui inclu-
ent le cas des transducteurs déterministes en entrée, la capacité peut
étre calculée exactement (sous forme de “la racine la plus grande d’un
polyndéme”).

Mathematics Subject Classification. 94A17, 94A24, 68Q68.

1. INTRODUCTION

This paper is concerned with the computation of the capacity of covert channels,
a problem that has been addressed for a long time and is of great interest in
computer security or in the military domain (e.g. “The Orange Book” [5]).
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The first one to consider modeling covert channels as finite-state systems and to
associate the computation of their capacity to the computation of the entropy of a
finite-state system seems to have been [12]. The finite-state model in [12] assumes
that one knows the amount of time needed for sending a bit of information, but
does not argue on the complexity of the computation of this amount of time.

A different model, which seems to have been influenced by earlier work of Millen,
is given in [11]. There, the possibility to transmit bits of information is related
with the existence of sets of behaviors which do not satisfy (a variant of) the
noninterference property [8]. However [11] concentrates mainly on logical proper-
ties modeling noninterference, and not on the computation of the covert channel
capacity.

We investigate here a very basic setting of the problem of computing the capac-
ity of a covert channel: in our setting, a covert channel is a system which allows
unidirectional communication between two end users, High (the sender) and Low
(the receiver). The channel is not controlled by either High nor Low, and, as
such, incorporates some non-determinism, which abstracts from the channel ac-
tivity that the end users are unable to control. Also, the channel itself may not
identically transmit High’s inputs to Low, but rather translate them into outputs
for Low using some translation scheme that is also not controllable by High or
Low. On the other hand, High and Low have a full knowledge of the channel,
before High spying mission starts. Intuitively, the transmission of a bit succeeds if
Low is able to tell apart a partial observation from any other observations, hence
deducing that High has chosen a particular sequence of inputs. Also we assume
that everything is synchronous, i.e. High and Low share a clock and each action
from High is immediately followed by an observation by Low.

The attribute “covert” comes from the fact that High utilizes his communication
capacities to send some message to Low, by encoding it into some sequence of
inputs that is legally accepted as input by the channel. Hence, High and Low
would like to agree on a “dictionary” that allows High to send n bits of information,
as an input to the channel, such that Low, by observing the channel outputs, be
able to distinguish the message High has sent. The main question that we are
concerned with here is the asymptotics of the amount of time needed for sending
n bits of information, function of n.

No probabilistic situations are modeled, and no feedback from Low to High is
present. We do not model either any “game-like” situations, in which the system
state might be controlled, e.g. in order to limit the bitrate through the channel.

The present paper is a first attempt to study the problem of computing the
capacity of a covert channel, under the above simplifying assumptions, and, as
such, investigates several possible ways to attack the problem.

We first show that the capacity of a covert channel can be modeled as a gen-
eralized form of entropy of a synchronous transducer. We actually give three
variants of this definition, according to whether we work with w-languages, reg-
ular w-languages or with their finite prefixes. We then give some results relating
the “prefix” definition of the bitrate with the w-regular one, and show that the
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definition based on general w languages does not capture the intuition that the
reception delay is independent of the number of bits in the message.

We then employ several different methods for under- and over-evaluating the bi-
trate, all related with spectral radius/entropy computation. An under-evaluation
result based on Turan’s theorem is given, and another one based on the computa-
tion of joint spectral radii.

The idea behind computing lower bounds as joint spectral radii can be sum-
marized as follows: for each n € N, one constructs a set of matrices with “inde-
pendent row uncertainties” [3], which represent sets of input words of length n
that are translated into distinct output words. Then the joint spectral radius of
such a set of matrices is a lower bound for the channel capacity. We also give
an “almost monotonicity” result which shows that when passing from n to n - k,
the computed lower bound is closer to the channel capacity. We don’t have yet a
result showing that, in the limit, the joint spectral radius method “converges” to
the channel capacity.

In the special case of “input-deterministic” channels, which are stronger than
channels in which the input automaton is deterministic, we show that the covert
channel capacity equals the entropy of the output language. This result is based on
classical uniformization results for w-rational relations. Also an ad-hoc method for
computing the capacity in some particular cases is given, based on compositions
of transducers.

The paper is organized as follows: the next section introduces our model and
gives some basic properties. Section 3 relates the different notions of bitrate and
shows that the w-variant of bitrate has counter-intuitive properties. Section 4
gives a couple of underapproximation results of the bitrate, the first using Turan’s
Theorem and the second based on the computation of joint spectral radii. An
example of computing lower bounds with the JSR method is given in this section.
Section 5 gives some special cases in which the bitrate can be exactly computed
and represented as the entropy of a regular language. We end with a section with
conclusions and directions of future research.

2. COVERT CHANNELS DEFINED

We model covert channels as synchronous transducers [2]. Hence, High utilizes
the input of the transducer to send his messages, and Low is supposed to receive
the translations of those messages, as operated by the transducer, and decode
them. The receiver is supposed to have complete information about the structure
of the transducer, but does not have any supplementary information on the exact
state of the transducer, except the information that he can deduce by observing
the output history.

First, some notation: for a finite or infinite word w we denote w[1..n] the prefix
of length n of w — which is undefined when w has less than n letters. Recall that



40 E. ASARIN AND C. DIMA

the entropy of a language of finite words, L C ¥*, or an w-language L C ¥¥| is

1
H(L) = limsup — log, card(L[1..n]).

n—oo

Definition 2.1. A covert channel is a finite-state synchronous transducer T =
(Q7 Ea F7 5) qO)

We denote ¢ LILN r the transition in the channel 7 (from ¢ to r with input a
and output b ). Also §* C @ x ¥* x I'* x @) denotes the usual reflexive-transitive
closure of §. We also assume that all states are reachable in the transducers utilized
throughout this paper.

The covert channel 7 is supposed to accept finite or infinite words in X°°
and generate, symbol by symbol, their translation in I'*°. Formally, the finite
transduction mapping defined by 7 is the mapping T : @xX* — P(I'*) defined by

Tr(gw) = {w € I* | 3¢ € Q with ¢ L5 ¢ € 5},

and the infinite transduction mapping is the mapping T : Q x 3¢ — P(I¥)
defined by

T (q,w) = {w' €T¥ | V¥n e N,3¢ € Q with ¢ wltnl/wtnl,

q €6}
In the sequel we will abuse notation and employ 7 as the mapping 777, and also
T instead of T%.

The underlying input automaton of T is the automaton Iny = (Q, %, din, o),
with §;, = 6 oxExQ" The input language for T is the language of Inz, seen as
a finite automaton working on finite words and having all states accepting. This
language will be sometimes denoted as L;,(7) = L(In7). On the other hand, the
output language of T is Loy(T) = U {7 (w) | w € Lin(T)}. We may also define
similarly the input w-language and output w-language for 7T, denoted respectively
L5,(T), and Lg,(T).

The following definition is inspired from the nondeducibility on strategies of
[16] (see also [11]), and models Low’s observability of High activity:

Definition 2.2. Given a covert channel 7, a finite language W C X* is called
T-distinguishable if the following properties hold:

(1) All words in W are accepted by 7 as inputs and have the same length:
W C L;(T)[1..n] for some n € N.
(2) For any two words w,w’ € W, T (qo, w) N7 (qo,w’) = 0.

An infinite language W C ¢ is called 7-distinguishable if W C £¢ (7) and

Vw,w' € W, T%(qo, w) NT*(qo,w") = 0.
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Definition 2.3. The bitrate (or capacity) of 7 is:

B(T) = limsup e log, max { card(W) | W C £", W is T-distinguishable}.
n

n—oo

We say that a language W C ¥* realizes the bitrate of 7 if there exists a strictly
increasing sequence of integers (ky)nen satisfying the following properties:

(1) the language W{l..k,] is 7-distinguishable for all n € N; and
(2) B(T) =lim, 0o k% -log, card(W(1..ky]).

The idea is that, if a channel has a bitrate of «, then, using some 7 -distinguishable
language W C X" as a “dictionary”, High can transmit to Low one from ~ 27
messages, that is =~ an bits of information.

The above definition has also the following “omega” and “omega-regular” vari-
ants:

Definition 2.4. The w-bitrate (or w-capacity) of 7 is:
B(T) =sup {H(W) | W C X, W is T-distinguishable}.
The w-regular bitrate (or w-regular capacity) of 7 is:
B (T) =sup {H(W) | W C ¥, W is T-distinguishable and w-regular}.

An w-language W C X% realizes the w-bitrate (w-regular bitrate) of 7 if H(W) =
BY(T) (resp. H(W) =B (T)).

The first problem which is addressed in this paper is the following:

Problem 2.5. Given a covert channel 7, compute the (simple, w or w-regular)
bitrate of 7.

The term “compute” here can be understood as giving a representation for the
real number B(7) (or B¥(T), or BX(T), or their over- and under-approximations),
e.g. in the form of “the largest root of some polynomial”. A more precise explo-
ration of computability of these reals in terms of recursive analysis will be a subject
of future work.

A related problem is the following:

Problem 2.6. Given a covert channel 7, construct a (regular) realization W of
B(T), and/or of B,.(T), and/or of B¥(T).

Solving the second problem would help High and Low in their choice of the
largest dictionary: for any n € N, High can utilize words of W[1..n] for transmitting
~ an bits of information — where o = B(T) or a = B¥(7T) or oo = B¥(7).
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FIGURE 1. Channel 7.

aja,b b/b,c

d/a,d c/e,d
FIGURE 2. Channel 7.

2.1. EXAMPLES

The first example is from Figure 1. Here, both the input language ((a + b)a)*
and the input w-language ((a + b)a)¥ are 7-distinguishable, which means that

B(T:) = B*(T) = B2 (Ti) = H(Lin(T1)) = log, V3 = 1.

The second example is from Figure 2. Note that in this four-leaf clover, the ad-
jacent leaves induce “ambiguities” when translated. Intuitively, only the opposite
leaves can be used for coding. This would mean that the bitrate of this channel
is log, 2 = 1, and is realized by the complete automaton with one state and two
loops. This will be proved in a subsequent section.

3. BASIC PROPERTIES OF BITRATES

We start with a couple of results concerning distinguishability. The first straight-
forward property that can be used for a rough over/underapproximation of the
bitrate of a covert channel is the following;:

Proposition 3.1. For any covert channel T we have that B(T) < H(Lowt (7)) <
H(Lin(T)).

On the other side, for any L C X* having the property that L[l..n] is T -
distinguishable for all n € N (we also call such languages T -distinguishable), we
have that B(T) > H(L).

The upper bound above can be used directly. In order to use the lower bound,
one can guess some distinguishable set W and utilize it for information transmis-
sion through the covert channel. The remaining problem of checking whether a
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given (regular) language is distinguishable is addressed in the following proposi-
tion:

Proposition 3.2. The problem of checking whether a given reqular (w-regular)
language W is T -distinguishable in a given covert channel T is decidable.

Proof. The proof follows by a straightforward adaptation of the intersection con-
struction: we construct a synchronous composition between two copies of 7 and
two copies of the automaton which accepts W, denote it A. The synchronous com-
position works on ¥ x X, and accepts exactly the set of pairs of non-distinguishable
words (w,w’). Then W is distinguishable if and only if this synchronous compo-
sition has an empty language.

For the case when W is an w-regular language, assume that the covert channel
is 7T = (Q,%,1,07,q), and the regular language W is accepted by the Biichi
automaton A = (S,%,d4, s0, F). The synchronous composition utilizes 7-tuples
(g1, 92, 1, S2,11, 12, i3) consisting of two states of 7, two states of A and three bits
needed for bookkeeping: 7 is used to record passages through the set of final states
in the first copy of A, is records passages through the set of final states in the
second copy of A, while i3 is needed for signaling that a pair of non-distinguishable
and distinct words has been constructed so far. Note that the use of the indices
11 and 79 is reminiscent from the intersection construction for Biichi automata.

Formally, the synchronous composition is the Biichi automaton Sync(7,.A) =
(Q? x §% x {0,1}3,%2,0,5, F) where

e 55 = (qo,qo,so,so,0,0,0);
o F={(q1,q2,51,52,1,1,1) | q1,q2 € Q, 51,52 € S};

. L. ,b L
e 0 is Composed of tuples (Q1a‘I2;51752;11712713) i_’ (T15T27t17t2aj1;j2;j3)7
where

(1) qli/:rl,qg,i/irgeéq—, and s1 i»tl,SQLtg.

2 j1{1ifz‘11andz‘20, ori; =0and s, € F,
Oifi; =ia=1orip=0and s; ¢ F

3) jQ{lifigzlandile, or io =0 and s € F,
Oifi; =ia=1oriz=0and ss & F

. 1 ifa#b
(4) jz = { .
i3 otherwise.

It is easy to see that
L¥(Sync(T, A)) = { (w1, ws) | w1, ws € L¥(A), w1, ws are not 7-distinguishable }
A similar construction works for regular languages W C ¥*. g

The simple and the w-regular bitrates are related by the following result:

Proposition 3.3. For any covert channel T, BX(T) < B(T).
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Proof. Note first that by definition of the w-regular bitrate it is sufficient to prove
that H(R) < B(T) for any w-regular R that is 7-distinguishable.

Unfortunately, there are 7-distinguishable w-regular languages R C X¢ for
which the n-prefix languages R[1..n] might not all be 7-distinguishable. We will
then need to prove that there exists some fixed integer Ni such that each prefix
R[1..n] can be extended to a distinguishable R], C R[1..n+ Ng], i.e. R[1..n] < R,
such that card(R],) = card(R[1..n]).

So take a Muller deterministic automaton A = (S, %, 0, sg, F), with F C 29,
accepting some 7 -distinguishable w-regular language. We construct first, from
A and 7, the transducer whose transduction mapping is 7 | £A) beit 7T x A=

(Q X 572;F759; (QO;SO),f/) with
F' = {G C29%S | n5(G) € F)
59:{((1’5)‘/_’((]/,8/)|QA/—’q/€5,Si>s/€9},

Denote then Q7 4 the set of states in @ x S that are accessible from (qo, So)
and co-accessible in T x A, that is, for which there exists a path leading to some
connected component in F’.

In T4, for each state (¢,s) € @ x S that is co-accessible we pick one of the
connected components in 7’ that can be reached from (g, s) and label it as F{g ).
Define wy, 5y as the label of the shortest path that starts in (¢, s) and reaches the
first time one of the states in F, ).

We will then need to extend each w,, ) into a word w(q s) such that all such
words have equal length. This can be easily done, since from each state of Fi,
there exists an infinite path that remains in Fg ).

With this assumption, define

Ny = |w(1q78)|’

where |w| denotes the length of the word w. Note that N; is independent of the
choice of (g, s), as all words w(lqys) have equal length.

Then, for each (q,s), choose (¢',s") € Fi, ) such that there exists a path from
(g,5) to (¢',s") whose input label is w(g ). Furthermore, take a circuit in (¢’, )
that visits all the states of Fi, ), and denote its label as qu,s)' Put

Ny = 1cm{|w2q7s)|}

and
No

2 _ / lwiy \
W) = (Wig.s) "0
Claim 3.4. In the above setting, given wy,ws € * for which (qo, 50) —= (g1, 51)

and (qo, 50) % (g2, s2), we must have that

1 2 1 2
T(QQ, wlw(Q1,7‘1)w((117$1)) N T(qo’ wa(Q27T2)w(Q2,S2)) =0.
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For, if the claim does not hold, we would get a contradiction with the fact
that R is 7-distinguishable: we would have the following sequences of extended
transitions:

/ wl i )/ZI w(z i )/ZN

(90, 50) = a1, 1) =" (g1, 81) = (g1, 51); (1)
/ w(l s )/z' w(2 s )/z”

(CJQ,SQ) B (QQ752) — (ql275/2) — (ql275/2) (2)

Note that the transductions in I'* of both input words are identical, the I'-word
z2'2".
Since the last extended transition in (1) is a circuit, it can be iterated forever,

and similarly for (2), which actually implies that
22(2")" € T(q(), wlw(lquh)(w?quﬁ))w) n T(qo’ w2w(1(hﬂ“2)(w(2<nﬂ"2))w)'

But wlw(lql,ﬁ)(w?qhﬁ))“’ has as its set of repeatedly visited states exactly Fig, -
Hence we would have two words in R which cannot be distinguished by 7, con-
tradiction.

Following the above claim, we can put the sum Np = N; + N» as the searched-
for bound. We might then construct the following extension of L(A)[1..n]:

R, = {ww(lq7s)w(2q7s) | (¢g,s) is the first state, in lexicographic order,

for which (qo, s0) — (g, ) in T x A}

It then follows that card(R,) = card(L(A)[1..n]), R, C X""Vr and R, is dis-
tinguishable. Therefore, for any automaton A accepting a 7 -distinguishable lan-
guage,

B(7T) > limsup 1 log, card R,, = lim sup 1 log, card (L£(A)[1..n]).
n

n—oo N n—o00

In conclusion, BY(7) < B(T). O
3.1. W-BITRATE IS TOO WEAK

In this subsection we prove that the w-bitrate, in spite of having a nicer mathe-
matical definition than the (simple) bitrate, cannot be really utilized as a measure
of the amount of bits that the sender may transmit through the covert channel.

Consider the covert channel in Figure 3, and the following w language (which
is not w-regular!)

L, ={za®"" | 2€ (0+1)"},
where Z5 is the value of z as an integer written in base 2.

It is easy to see that L, is 7 -distinguishable, since for each w-word w € L there

exists a unique integer z € N such that 7 (w) = al°82#*1p?q*. Hence,

B*(T) > H(L.) = 1.
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0/a a/b ala
1 a/b ; é b/a
N
1/a

FIGURE 3. A covert channel whose w-bitrate is 1.

Intuitively, to use B for receiving n bits of information, the receiver must wait
for up to 2™ units of time to distinguish which bits have been sent.

This is counter-intuitive, since we want any message of length n to be dis-
tinguished by Low from other messages of length n after a delay which is small
compared to n. As a consequence, in the sequel, we concentrate on the study of
the “finitary” bitrate.

On the other hand, note that, by Proposition 3.1,

B(T) < H(Eout(’f)) =0,
which is consistent with our intuition that the channel in Figure 3 cannot be used

to transmit one bit per time unit.

4. APPROXIMATION RESULTS

This section gives a couple of techniques that can be utilized for obtaining lower
bounds for the bitrate.

4.1. UNDERAPPROXIMATING THE BITRATE USING TURAN’S THEOREM

In the sequel, the covert channel 7 is fixed, and we denote L} = L£;,,(7T) N X"
Consider the following undirected graph G,, = (L%, E%), where

By = {{w,w'} L7 | T(w) N T(w') = 0},

and denote | = card(L%) and e = card(E%).
Remark 4.1. Note that a 7-distinguishable set W C L% forms a clique in G,,.

We will therefore use Turdn’s theorem [15] to underapproximate 5(7) using the
quantities [ and e.

Theorem 4.2 Turan. Assume that there is no clique of size larger than r in a
graph G = (V, E). Then

card(E) < (1~ ;) . #
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This means that, if W is a 7-distinguishable language of the largest size in X",
then

l2
card(W) > Py

(3)
We would like to use the inequality (3) to give an underapproximation of B(7).
To this end we need to evaluate, function of n, the asymptotics of [ and e function
of n.
Clearly, [ grows exponentially at the rate
The asymptotics of e, function of n, can be derived from the entropy of a
finite automaton which encodes pairs of words from ¥* whose translation can be

“ambiguous”. Denote d;, the input transition relation for 7, that is, ¢ — 7 €

ifqﬂreéforsomebef‘.

The automaton for the computation of e is Pairsy = (29%9 % x %, 6, (g0, q0))
with all states final and

gnH(Lin(T))

6={R2%2(R)|RCQxQR,6(R)#0}

where the notation 62(R) stands for the application 62 : 29%% — 29X@ defined as:

(52(R) = {(7‘1,7“2) eEQxQ | El(q1,q2) € Ri,dx € T with ¢ ﬂ) T1,q2 ﬂ 7“2}}.

Note that for each reachable state R C Q x @ in Pairs(7) each pair (¢,¢') € R
encodes the existence of a pair of non-distinguishable words w,w’ € ¥* (with
lw] = [w').

Remark 4.3. If we denote P, = L(Pairsy) N (X x X)", then the number of edges
of Gy is e = 3 (I? — card(P,)).

As a consequence, the asymptotics of e function of n can be computed by
computing the entropy of the input automaton Ins and of the reachable part of
Pairs(7).

Proposition 4.4. Suppose that

log, 1 1 d(P,
lim sup 982" _ 4 and lim sup w = /.
n—oo n n—oo n

Then an underapproximation for the bitrate of T is

B(T)>2a—p.
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Proof. By straightforward calculations, and utilizing inequality (3) and the previ-
ous remark:

. 1 2 ) 1 12
B(T) 2 lmsup Zlog, o0 = limsup Zlog, “rg 5
> lim sup —22— — lim sup Loga card(l)
n—oo n n—00 n

We may apply this proposition for the covert channel in Figure 2 as follows: first,
note that
log, [
lim sup —22- — H(Lin(T)) = 2.
n

n—00

On the other hand, the entropy of Pairs(72) is log, 12, as Pairs(73) contains a single
state with 12 loops. Therefore, B(73) > 2 — log, 3.

4.2. UNDERAPPROXIMATING BITRATES WITH JOINT SPECTRAL RADII

In this section we suggest an alternative approach for searching underapprox-
imations of the bitrates, in the case when the underlying input automaton for
the given channel is deterministic. This approach involves the computation of the
joint spectral radius of a particular set of matrices. Recall [3] that, for a given set
of matrices M, the joint spectral radius p(M) is the following quantity:

p(M) = lim sup max {||A; - AR R EN AL Ay € M},

k—oo

where || - || is some matrix norm.

Sets of matrices which will be utilized in our approximation process are sets M
bearing the property that, for each index i, there exists a set of rows R; C R%,
such that M consists of all the matrices whose ¢-th row belongs to R;:

MZ{(’U{,...,UT];)Tl’Uz‘GRi}. (4)
Following [3] we say that such sets of matrices have independent row uncertainties
and refer them to as IRU sets.

In [3], a nice result on the joint spectral radius of IRU sets of matrices has been
obtained:

Theorem 4.5 [3]. If the IRU set M is composed of nonnegative matrices, then
p(M) = max{p(A)|A € Mj}.

Moreover, p(M) can be computed using a polynomial algorithm based on convex
optimization techniques.
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We may utilize this result for computing an underapproximation of the bitrate
of a covert channel as follows: consider a channel 7 = (Q, X, T, 0, qp) with @ =

{1,2,...,n} and suppose that the input automaton for 7 is deterministic', that

b
is, it i 2% 5.0 % ' € 6 then j = j'.

For an automaton A, we denote ¢ — 4 ¢’ if there exists a run p in A which
starts in ¢, ends in ¢/ and is labeled with w. Also, given a set of words W C %F and
a state ¢ € Q, we say that W is T -distinguishable in q if T (q,w) N7 (q,w’) = 0.

Suppose that, for each state i € @, we have a fixed set W; C ¥* which
is 7T-distinguishable in . We will then build a matrix of sets of words, M =
M(Wq,...,W,), with

My ={weW;|i5j€bn} (5)
and, for each such matrix, associate the integer matrix V = V(M) with
V(M) = card(Mij;). (6)
Note first that the following set of matrices is IRU:
My = {V(M(W1,...,W,)) | W; C ¥, W; is T-distinguishable in 4,1 < i < n}.

Proposition 4.6. For any k € N, k > 1, the following lower bound for the bitrate
holds:
1
k
This bound is almost monotonous in k in the following sense: for any k,l € N,
k,l>1,

logy p(My) < B(T).

1
kl
Proof. Let us establish first that, for any sequence of matrices My, ..., M,, € My,
the set U;;l( M -...-My,);; is T-distinguishable at i. This follows by induction
on m: for m = 1 the property is satisfied by hypothesis on the construction of M.

1
7 log: p(My) < —=logy p(Mp). (7)

n
For the induction step, take two words w,w’ € U 1(M1 oo Mpga)iy, and
‘7:
consider their decomposition w = wy - we, w' = w} - wh with |wy| = |w}| = km and
lwa| = |wy| = k.

Consider further the two states j,j' € @ with i ~% j,i — j/ € 8in. Note
that, by the assumption that Ins is deterministic, these two states are uniquely
determined.

If j # 4, then, by induction, we must have that wy and w] are 7-distinguishable
at ¢, which clearly implies that w and w’ are 7-distinguishable at 7.

LThis requirement is weaker than input-determinism.
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If j = j', then, also by induction, we must have that wy = w}. But then
wa, why both belong to some set W) which is 7-distinguishable at j by construc-
tion, and therefore:

T (i, wiwz) N T (i, wywy) = T (i, w1) - T (j,w2) N T (i, wy) - T (j, ws)

@7

which proves the induction step.
Recall that each state in 7 is reachable, hence there exists a word wy (leading
from qo to i) of length ng < card(Q) for which the following word

n
wo - Uj=1(M1 LR Mm)z]

is 7-distinguishable (at qo). Therefore,

Z(V(Ml) . "V(Mm))ij < max { card(W) | W C ykmtno g T-distinguishable},

Jj=1

which implies that
—ogy V(ML) . V(M)
k‘m g2 1 e m )|l oco
1
< T log, max { card(W) | W C £F7Fm0 1 is T-distinguishable }
m

for any M, ..., My, € My. (Here ||| is the co-norm on matrices.)
For m — oo, this gives

1
~log, p(My) < B(T).

To prove the “monotonicity” inequality, note that, by our induction proof, we also
have that (M1 o Mm)ij is some 7 -distinguishable set at ¢ consisting of words

of length ki, and therefore there exists some matrix M’ € My, such that
U - M), < | M,
j=1 j=1

which straightforwardly implies the inequality (7). |

As an application, consider the channel from Figure 4. Intuitively, the loops in
states 2 and 3 induce “ambiguities”, hence they should not be both used forever.
It is easy to observe that the w-regular language of the input Biichi automaton
in which states 1 and 3 are final is 7-distinguishable. Then, by Proposition 3.3,
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b/b = Daja
\Kz/c
w

b/c Qa/a

1+ 13
FIGURE 4. An example with a bitrate of log, JrT

the bitrate of 7 equals the entropy of this Biichi automaton, which is the same

1++v13
as the entropy of Ing, that is, log, 1V ~ 1.203. Note also that 7 is input-

deterministic, hence the results from Section 5.2 below can be applied here.

Let us apply Proposition 4.6 with £ = 1,2,3 and compute lower bounds for
the bitrate of this covert channel. First, for every state we compute the k-step
input/output function from {a,b}* to {a,b,c}* x Q. Next, using this function we
find 7-distinguishable subsets W; of {a,b}"* at every state i (w.l.o.g. we consider
only maximal W;). For every W; we find the corresponding i-th row of the matrix
V, using identities (5) and (6). The results are presented in Tables 1-3.

The row sets generate then IRU sets of matrices M. For k = 1, using Table 1,
we get that the set M contains only 2 elements:

0 1 0 0 0 1
1 1 0 |; 1 1 0
1 0 1 1 0 1
The set My contains 8 elements:
2 1 0 2 1 0 2 1 0 2 1 0
1 2 0 |; 1 2 0 |; 1 1 1 ]; 11 1 ];
1 1 1 1 0 2 1 1 1 1 0 2
2 0 1 2 01 2 0 1 2 0 1
1 2 0 |; 1 2 0 |; 1 1 1 ]; 1 1 1
1 1 1 1 0 2 1 1 1 1 0 2

Finally, for £ = 3 the matrix set M3 contains 4 - 3 - 3 = 36 matrices.
We conclude this example with the lower bounds %10g2 p(My) of the bitrate

presented in Table 4. The computations were done using the JAMA package,
available from http://math.nist.gov/javanumerics/jama/.
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TABLE 1. Computing W; and row sets for k = 1. Underlined
translations cannot be in the same W;.

I/0O function

) Translation J W; Variants for row i in M
a—c 2 {a} 010
b—c 3 {b} 001
2 a—a 2 {a,b} 110
b—b 1
3 a—a 3 {a,b} 101
b—c 1

TABLE 2. Computing W; and row sets for k& = 2. Underlined
translations cannot be in the same W;.

I/O function

) Translation  j W; Variants for row 7 in Mo

1 aa — ca 2 {aa,ab,bb} 210
ab — cb 1 {ba,ab,bb} 201
ba — ca 3
bb — cc 1

2 aa — aa 2 {aa,ab,ba} 120
ab — ab 1 {aa,ab,bb} 111
ba — bc 2
bb — bc 1

3 aa — aq 3 {aa,ab,ba} 111
ab — ac 1 {aa,ab,bb} 102
ba — cc 2
bb — cc 3

TABLE 3. Sets W, and row sets for k = 3.

1 W; Variants for row i in M3
1 {(aaa or baa), aab, (aba or abb), bab, (bba or bbb)} 203, 212, 221, 230

2 {aaa, aad, (aba or abb), (baa or bba), bab, bbb} 330, 321, 312

3 {aaa, aad, (aba or abb), (baa or bba), bab, bbb} 303, 321, 312

5. EXACT COMPUTATION OF THE BITRATE IN SPECIAL CASES

Here we give an ad-hoc method for the exact computation of the bitrate in a
special case. Then, for input-deterministic channels, we give a method based on
uniformization results for w-rational relations. Recall that a synchronous trans-
ducer (and hence a covert channel) is called input-deterministic if the underlying
input automaton is deterministic and no two transitions between the same pair of
states are labeled with the same input symbol.
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TABLE 4. Lower bounds obtained with the JSR method; the ex-

act bitrate is log, 1+T\/ﬁ ~ 1.203.
k p(My,) Bitrate bound 7 log, p(Mj)
1 1.618 0.694
2 3 0.792
3 5.541 0.823
4 11 0.865
) 21.511 0.885
6 43 0.904

5.1. SHRINKING THE INPUT LANGUAGE

Proposition 5.1. Given a covert channel T and an input-deterministic trans-
ducer D whose input language is X*, suppose that

Vwy, wy € Lin(T), if T(w1) NT (we) =0 then T(D(w1)) N T (D(wz)) = 0.

Then

B(T) < H(D(Lin(T)))-
As a corollary, if D(X™) is T -distinguishable for an infinite sequence of integers
n, then

B(T) = H(D(Lin(T)))-
Proof. Note first that the hypothesis implies that D is injective on any language

L C ¥™ which is 7-distinguishable (n € N). Therefore, for any such L, D(L) is
T -distinguishable and

card(L) = card(D(L)) < card (D(Lin(T) NE")).

This implies directly that B(T) < H(D(Lin(T))), and then the corollary follows
straightforwardly from Proposition 3.1. 0

As an application, consider the covert channel in Figure 5a, and the input-
deterministic transducer at (b). The transducer satisfies the conditions in Propo-
sition 5.1, and proves that

B(Ty) = H((a+ c+e)") =log, 3.

On the other hand, the deterministic transducer in Figure 5¢ does not satisfy the
conditions in Proposition 5.1, since D'(¢q,a) = D'(q,c) but T(q,a) N T(q,c) = 0.
This confirms the intuition that, in Figure 5, a two-leaf clover whose leaves are
the opposite loops labeled with z and y, in spite of being 7-distinguished, has a
strictly smaller entropy that what could be used as bitrate.
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y/d,e, f
(a)

FIGURE 5. At (a), a covert channel of bitrate log, 3, and an
input-deterministic transducer (b) that proves this, using Propo-
sition 5.1. At (c¢), a deterministic transducer not satisfying the
hypothesis in Proposition 5.1.

(0)

FIGURE 6. A second example of an application of Proposition 5.1.

As another application, consider the channel in Figure 6 at (a) with the de-
terministic transducer at (b), which fulfills the hypothesis in Proposition 5.1.
The image D(L(T)) is accepted by the automaton at (c), hence the (w-regular
or simple) bitrate of the channel at (a) is 1.

Unfortunately Proposition 5.1 cannot be applied in every situation. Consider
the five-leaves clover in Figure 7. In this situation, there is no morphism D which
satisfies the hypotheses in Proposition 5.1.
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\
e/e,aa ﬁc/c,d

d/d,e

afa,b b/b,c

FIGURE 7. A covert channel whose bitrate cannot be computed
using Proposition 5.1.

5.2. THE CASE OF INPUT-DETERMINISTIC COVERT CHANNELS

In this section we show that the two problems related with the computation of
the bitrate are decidable for the case of input-deterministic covert channels.

Our results are based on two facts. The first one is a uniformization property
for rational relations from [4] (here #(f) denotes the graph of f):

Proposition 5.2 [4]. For any synchronous w-rational relation R C XY x ¢
there exists a synchronous w-rational partial function f : XY — 3§ such that
dom(f) =dom(R) and #(f) C R.

The second useful property is the following:

Lemma 5.3. For any synchronous w-rational partial function f: 3§ — XY, if f
is injective, then H(dom(f)) = H(range(f)).

Proof. Clearly, for each n € N, card (dom(f)[1..n]) > card (range(f)[1..n]). For
the reverse inequality, take U = (Q, X1, 22,9, qo, F') some transducer with Biichi
acceptance condition, which realizes f, i.e., Ty = f. We may also assume that
U is input-deterministic, due to the fact that f is a synchronous w-regular partial
function.

Remark 5.4. It is well-known that the entropy of a Biichi automaton equals
the largest entropy of one of its subautomata containing a single SCC (strongly-
connected component) which has a nonempty intersection with F. This remark
can be seen as a corollary of a similar fact about spectral radii of matrices.

So take U’ = (Q', X1, X2,8, ¢}, F') a sub-transducer of Y with Q' C @ forming
a SCC, ¢ = 5|Q><21><22><Q” ¢ € Q and F' = FNQ' # 0, and such that the input

automaton Ings has the same entropy as L, (U).

Clearly H(dom(f)) > H(LY,,(U')); also H(LY,(U")) = H(dom(f)) by construc-
tion. It is also easy to see that H (L%, (U")) < H(range(f)) < H(dom(f)). We will
prove that for any n € N,

card(Ly, (U")[1..n]) < card(LY,,(U")[1..n + 3 - card(Q")]). (8)

This would then imply that H(Ls, (U')) < H(LY,,(U")) which would conclude our
proof.
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To this end, take two w-words wy,ws € L%, (U’') and some n € N such that
wi[l..n] # wea[l..n], and also U'(q}, w1[l..n]) = U'(q), w2[1..n]). Denote further
@1 = 0}, (gh, w1[l..n]) and g2 = §7,,(q), w2[1..n]) (recall that U is synchronous and
input-deterministic, and so is U').

We will actually prove the following claim:

Claim 5.5. (*) There exist w},w} € E?'Card@/) with
Tor (g, wil..njw)) # Ty (qp, we[l..njwb).

Note that this claim implies the inequality (8), which would end our proof.
Assume then, for the sake of contradiction, that the desired property (*) does
not hold. Choose ws, wy,ws € 37 and ¢’ € F’ such that

6£n(q1; ’U}g) = {42, 5%@2; ’U}4) = q/7 5;n(q/a ’U}5) =dq1-

Note that this is always possible, by the assumption that Q' is strongly connected,
and that F’ # (). Note also that the three words can be chosen such that wawsws <
3 card(Q’).

The assumption that the property (*) does not hold implies that

To (qh, wi[1..nwzwaws) = Ty (qh, we[l..n]Jwiwsws).
But then it is easy to see that we also have, for any m € N,
Ty (qh, wi[1..n](wzwaws)™) = Ty (g6, we[l..n]) (wawsws)™),
which implies that
T (g, w1 [1..n] (wawaws)*) = Ty (gh, wa[1..n)(wawsws)).

Note also that w; [1..n](wswaws) € L££, (U'), due to the fact that:
& (q{),wl [1..n] (w3w4w5)mw3w4) =q € F' forany m € N

and the same holds for wa[l..n|(wiwsws)®.
But these two facts are in contradiction with f being injective. O

Now we are ready to characterize the bitrate of input-deterministic channels.

Proposition 5.6. For input-deterministic channels T the w-reqular bitrate equals
the “simple” bitrate, and both are equal with the entropy of the output language of
T. Moreover one can effectively construct a regular realization of the bitrate.

Proof. We may apply Proposition 5.2 to the synchronous w-rational relation 7' ¢
'Y x 3¢ — recall that T is the relation defined by 7 — to get a synchronous w-
rational partial function f : I'¥ — X% with §(f) C T 1 As a consequence of this
latter fact, range(f) is a 7-distinguishable w-regular language.
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By virtue of Lemma 5.3, H(dom(f)) = H(range(f)). This result, combined
with the fact that H(£2,,(T)) = H(Low(T)) = H(range(T7)) = H(dom(f)),
and with the fact that range(f) is a 7-distinguishable w-regular language, implies
that B2 (T) > H(Louw(T)).

Combining these with Proposition 3.1, which says that B(7) < H(Low(T)),
and with Proposition 3.3, by which B¥(7) < B(7), we get the desired result. O

As an application, the channel in Figure 1 is an input-deterministic channel,
therefore its bitrate equals the entropy of its output language, which is 1.

6. CONCLUSIONS

We have presented some results related to the computation of the capacity of
a covert channel, modeled as a generalized form of entropy of a transducer. The
results show that some underapproximations are possible using Turan’s theorem
or by computing some joint spectral radii, and in some special cases the exact
computation can be done.

The main conjecture is that the covert channel capacity is computable in gen-
eral, even for nondeterministic channels, by constructing a regular presentation of
a realization of the bitrate.
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Perrin for pointing to us the uniformization result of Ch. Choffrut and S. Grigorieff
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