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PALINDROMES IN INFINITE TERNARY WORDS
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Abstract. We study infinite words u over an alphabet A satisfying
the property P : P(n) + P(n + 1) = 1 + #A for any n ∈ N, where
P(n) denotes the number of palindromic factors of length n occurring
in the language of u. We study also infinite words satisfying a stronger
property PE : every palindrome of u has exactly one palindromic
extension in u. For binary words, the properties P and PE coincide
and these properties characterize Sturmian words, i.e., words with the
complexity C(n) = n + 1 for any n ∈ N. In this paper, we focus on
ternary infinite words with the language closed under reversal. For
such words u, we prove that if C(n) = 2n + 1 for any n ∈ N, then u
satisfies the property P and moreover u is rich in palindromes. Also
a sufficient condition for the property PE is given. We construct a word
demonstrating that P on a ternary alphabet does not imply PE .

Mathematics Subject Classification. 68R15.

1. Introduction

Sturmian words are the most intensively studied infinite words since their ap-
pearance in 1940. They were introduced by Morse and Hedlund [8] as aperiodic
words with the minimal possible complexity, i.e., with the complexity C(n) = n+1
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3 Institut de Mathématiques de Luminy, Campus de Luminy, Case 907, 13288 Marseille
Cedex 9, France.
4 Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13,
Praha 2 120 00, Czech Republic; starosta@iml.univ-mrs.fr

Article published by EDP Sciences c© EDP Sciences 2009

http://dx.doi.org/10.1051/ita/2009016
http://www.rairo-ita.org
http://www.edpsciences.org
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for any n ∈ N. (N stands for nonnegative integers.) The complexity is the function
C : N �→ N defined by

C(n) = number of factors of length n occurring in u.

The set of all factors occurring in u is called the language of u and denoted through-
out this paper by L(u). There exist many equivalent definitions of Sturmian words.
Already in [8], Sturmian words are characterized by their balance property. In the
center of our attention will be another characterization of Sturmian words, proved
in [6]. This characterization uses the palindromic complexity of u, which is the
function P : N �→ N defined by

P(n) = number of palindromic factors of length n occurring in u.

Droubay and Pirillo proved that an infinite word u is Sturmian if and only if its
palindromic complexity is

P(n) =
{

1 if n is even,
2 if n is odd.

Since the empty word is the only palindrome of length 0 and the letters of the
alphabet A are the only palindromes of length 1 in u, the previous property can
be rewritten in a compact form for binary infinite words as

P(n) + P(n + 1) = 3 for any n ∈ N.

Being inspired by Sturmian words, we generalize the previous property for infinite
words over any alphabet A as

P : P(n) + P(n + 1) = 1 + #A for any n ∈ N.

It is again readily seen that the property P is equivalent to the property

P(n) =
{

1 if n is even,
#A if n is odd.

Examples of infinite words over multiliteral alphabets satisfying the property P are
Arnoux-Rauzy words (also called strict episturmian words, see [7]) and nondegen-
erate words coding the r-interval exchange transformation with the permutation
π = (r, r − 1, r − 2, . . . , 2, 1) (see [2]).

When studying in details the proof of Droubay and Pirillo, we learn that a bi-
nary word u is Sturmian if and only if u satisfies the following condition

PE : any palindromic factor of u has a unique palindromic extension in u.

In other words, for any palindrome p ∈ L(u) there exists a unique letter a ∈ A
such that apa ∈ L(u). In fact, our two examples of words with the property
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P – namely Arnoux-Rauzy words (see [7]) and words coding interval exchange –
have even the property PE (see [2]).

Infinite words over a multiliteral alphabet satisfying the property P or PE may
be understood as one of the possible generalizations of Sturmian words. It is ev-
ident that PE implies P . The inverse implication holds over a binary alphabet,
but it need not hold in general. The validity of P or PE guarantees that the lan-
guage L(u) contains infinitely many distinct palindromic factors. Such a language
need not be closed under reversal. Nevertheless in the sequel, we concentrate on
the study of ternary words whose language is closed under reversal. It is read-
ily seen that such words are recurrent and their Rauzy graphs have a non-trivial
automorphism that will serve as a powerful tool in our consideration.

We will prove the following two theorems:

Theorem 1.1. An infinite ternary word whose language is closed under reversal
has the property P if its complexity satisfies C(n) = 2n + 1.

For the description of PE , an important role is played by the notion of a left
special factor: a factor w ∈ L(u) is called left special if there exist at least two
different letters a, b such that both aw ∈ L(u) and bw ∈ L(u). A left special factor
w is called maximal if for any letter c ∈ A, the factor wc is not left special.

Theorem 1.2. An infinite ternary word u whose language is closed under reversal
has the property PE if its complexity satisfies C(n) = 2n+1 and u has no maximal
left special factor.

It is interesting to mention two corollaries of the previous theorems. Vuillon [10]
showed that a binary infinite word is Sturmian if and only if each of its factors
has exactly two return words, i.e., Sturmian words are precisely binary words
satisfying the property

R : any factor of u has exactly #A return words.

In the paper [3], it is shown that a ternary infinite uniformly recurrent word u has
the property R if and only if its complexity satisfies C(n) = 2n + 1 and u has no
maximal left special factor. This gives rise to the following corollary.

Corollary 1.3. For ternary infinite words with the language closed under reversal,
R implies PE.

Theorem 1.1 says that for infinite words whose language is closed under reversal
and whose complexity satisfies C(n) = 2n + 1, the following equation holds

P(n) + P(n + 1) = 2 + C(n + 1) − C(n). (1.1)

Infinite words fulfilling the above equation are in a certain sense the richest in
palindromes, since according to [2], any infinite word whose language is closed
under reversal satisfies

P(n) + P(n + 1) ≤ 2 + C(n + 1) − C(n).
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In fact, the above relation is stated in [2] only for uniformly recurrent words,
however the proof requires only recurrent words.

In [4], it is shown that for infinite words with the language closed under reversal,
the words defined by the equation (1.1) are exactly the so-called rich words. Let
us recall that an infinite word is called rich if every its factor w contains |w| + 1
distinct palindromes. Consequently, we have the following corollary.

Corollary 1.4. Infinite ternary words with the language closed under reversal and
the complexity C(n) = 2n + 1 are rich.

In Section 2, we recall basic notions from combinatorics on words. Section 3
contains the proofs of Theorems 1.1 and 1.2. Section 4 provides two examples of
words: the first one shows that the properties P and PE are not equivalent and
the second one proves that the implications in Theorems 1.1 and 1.2 cannot be
reversed.

2. Preliminaries

By A we denote a finite set of symbols, usually called letters; the set A is
therefore called an alphabet. A finite string w = w0w1 . . . wn−1 of letters of A is
said to be a finite word, its length is denoted by |w| = n. Finite words over A
together with the operation of concatenation and the empty word ε as the neutral
element form a free monoid A∗. The map

w = w0w1 . . . wn−1 �→ w = wn−1wn−2 . . . w0

is a bijection on A∗, the word w is called the reversal or the mirror image of w.
A word w which coincides with its mirror image is a palindrome.

Under an infinite word u we understand an infinite string u = u0u1u2 . . . of
letters from A. A finite word w is a factor of a word v (finite or infinite) if there
exist words w(1) and w(2) such that v = w(1)ww(2). If w(1) = ε, then w is said to
be a prefix of v, if w(2) = ε, then w is a suffix of v. We say that a prefix, a suffix is
proper if it is not equal to the word itself. The language L(u) of an infinite word
u is the set of all its factors. The factors of u of length n form the set denoted by
Ln(u). Using this notation, we may write L(u) = ∪n∈NLn(u). We say that the
language L(u) is closed under reversal if L(u) contains with every factor w also
its reversal w.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the
infinite word uiui+1ui+2 . . . Such an index i is called an occurrence of w in u. If
each factor of u has at least two occurrences in u, the infinite word u is said to be
recurrent. It is easy to see that if the language of u is closed under reversal, then
u is recurrent.

The complexity of an infinite word u is a map C : N �→ N, defined by C(n) =
#Ln(u). To determine the increment of the complexity, one has to count the
possible extensions of factors of length n. A right extension of w ∈ L(u) is any
letter a ∈ A such that wa ∈ L(u). The set of all right extensions of a factor
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Figure 1. Incidence relation between an edge and vertices in a
Rauzy graph.

w will be denoted by Rext(w). Of course, any factor of u has at least one right
extension. A factor w is called right special if w has at least two right extensions.
Clearly, any suffix of a right special factor is right special as well. A right special
factor w which is not a suffix of any longer right special factor is called a maximal
right special factor. Similarly, one can define a left extension, a left special factor
and Lext(w). We will deal only with recurrent infinite words u. In this case, any
factor of u has at least one left extension. If a ∈ A and p is a palindrome and
apa ∈ L(u), then apa is said to be a palindromic extension of p. We say that w is
a bispecial factor if it is right and left special. The role of bispecial factors for the
computation of the complexity can be nicely illustrated on Rauzy graphs.

Let u be an infinite word and n ∈ N. The Rauzy graph Γn of u is a directed graph
whose set of vertices is Ln(u) and set of edges is Ln+1(u). An edge e ∈ Ln+1(u)
starts at the vertex x and ends at the vertex y if x is a prefix and y is a suffix of e.
If the word u is recurrent, the graph Γn is strongly connected for every n ∈ N, i.e.,
there exists a directed path from every vertex x to every vertex y of the graph.

The outdegree (indegree) of a vertex x ∈ Ln(u) is the number of edges which
start (end) in x. Obviously the outdegree of x is equal to #Rext(x) and the
indegree of x is #Lext(x).

The sum of outdegrees over all vertices is equal to the number of edges in every
directed graph. Similarly, it holds for indegrees. In particular, for the Rauzy graph
we have ∑

x∈Ln(u)

#Rext(x) = C(n + 1) =
∑

x∈Ln(u)

#Lext(x).

The first difference of complexity ΔC(n) = C(n + 1) − C(n) is thus given by

ΔC(n) =
∑

x∈Ln(u)

(
#Rext(x) − 1

)
=

∑
x∈Ln(u)

(
#Lext(x) − 1

)
. (2.1)

Let us restrict our consideration to recurrent words, then a non-zero contribution
to ΔC(n) is given only by those factors x ∈ Ln(u), for which #Rext(x) ≥ 2 or
#Lext(x) ≥ 2, i.e., for right or left special factors. The relation (2.1) can be
rewritten as

ΔC(n) =
∑

x∈Ln(u), x right special

(
#Rext(x) − 1

)
=

∑
x∈Ln(u), x left special

(
#Lext(x) − 1

)
.

If the language of the infinite word u is closed under reversal, then the operation
that to every vertex x of the graph associates the vertex x and to every edge e
associates e maps the Rauzy graph Γn onto itself. In this case, we will draw the



692 L. BALKOVÁ, E. PELANTOVÁ AND Š. STAROSTA

Rauzy graph Γn axially symmetric in the plane: the positions of vertices x and x
are symmetrical with respect to an axis. Thus, x is a palindrome if and only if the
vertex x lies on the axis, and e is a palindrome of length n + 1 if and only if the
edge e crosses the axis.

3. Proof of Theorems 1.1 and 1.2

The proofs of Theorems 1.1 and 1.2 will be a consequence of the following
three lemmas that determine the number of palindromic extensions of palindromic
factors with respect to the number of their left extensions.

Lemma 3.1. Let u be an infinite word over an alphabet A whose language is closed
under reversal. If a palindrome p ∈ L(u) is not left special (and thus neither right
special), then p has a unique palindromic extension.

Proof. Since p ∈ L(u) is not left special, there exists a unique x ∈ A such that
xp ∈ L(u). By reversal closeness, L(u) contains also px. As p has a unique left
extension x, the factor px has x as its unique left extension, too. Thus xpx is the
unique palindromic extension of p. �

Lemma 3.2. Let u be an infinite word over a ternary alphabet A with the complex-
ity C(n) = 2n+1 for any n ∈ N and with the language L(u) closed under reversal.
If a palindrome p ∈ L(u) has #Lext(p) = 3, then p has a unique palindromic
extension.

Proof. As ΔC(n) = 2, it follows by (2.1) that the palindrome p is the only left
special factor of length n = |p|, and by reversal closeness, the only right special
factor of length n, too.

(1) First, assume that there exists a letter x such that Lext(px) = A. It
means that xpx is a factor of u, hence xpx is a palindromic extension of
p. If there exists another palindromic extension of p, i.e., ypy ∈ L(u) for
y �= x, then since y ∈ Lext(px), it follows that ypx and xpy belong to
L(u). Therefore x, y ∈ Lext(py), which implies

ΔC(n + 1) ≥ #Lext(px) − 1 + #Lext(py) − 1 ≥ 3,

a contradiction.
(2) Second, suppose that for every letter x, it holds that Lext(px) �= A. Let

us recall that if w is a left special factor of length n + 1, then its prefix
of length n is necessarily left special, too. As a consequence, together
with the fact that ΔC(n + 1) = 2, there exist two left special factors px
and py in Ln+1(u) for x �= y with #Lext(px) = #Lext(py) = 2. Denote
Lext(px) = {a, b} and Lext(py) = {A, B}. Since our alphabet is ternary,
we may assume WLOG that a = A. By reversal closeness, it follows that
xpa and ypa belong to the language, and therefore, the factor pa is left
special as well. WLOG a = x and b = y. Denote by c the third letter of
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Figure 2. Illustration of a Rauzy graph from the proof of Lemma 3.2.

A. Since c ∈ Rext(p) and by recurrence of u, there exists a letter C such
that Cpc ∈ L(u). However, since pc is not left special, this C is unique.

– If C = a, then Lext(pa) = A – a contradiction.
– If C = b, then necessarily B = c and apa is the unique palindromic

extension of p, as claimed.
– If C = c, then B = b. The Rauzy graph Γn has a unique vertex of

indegree > 1 (see Fig. 2, where the straight lines denote edges and the zig
zag lines denote paths) – the bispecial factor p. Consequently, the vertex
p is the unique common vertex of three cycles. Since Rext(cp) = {c}, after
coming to the vertex p using the edge cp, we cannot leave p but using the
edge pc. Hence, we move eventually in a unique cycle and the word u is
thus eventually periodic – a contradiction with the complexity. �

Lemma 3.3. Let u be an infinite word over a ternary alphabet with the complexity
C(n) = 2n + 1 for any n ∈ N and with the language L(u) closed under reversal.
Let p ∈ L(u) be a palindrome with #Lext(p) = 2 and let P(|p|) + P(|p| + 1) = 4.
Then:

(1) if p has no palindromic extension, then p is a maximal left special factor
and there exists a palindrome q of the same length such that q has two
palindromic extensions;

(2) if p has two palindromic extensions, then there exists a palindrome q of the
same length such that q has no palindromic extension and q is a maximal
left special factor.

Proof. Denote Lext(p) = {a, b} and |p| = n. Since ΔC(n) = 2, there exists a factor
q �= p of the same length such that #Lext(q) = 2. Denote Lext(q) = {A, B}.

(1) Assume that p has no palindromic extension. Since Lext(p) = Rext(p) =
{a, b}, the only factors with length n+2 of the form �1p�2 where �1, �2 ∈ A
are apb and bpa. The factor p is thus a maximal left special factor. Let us
recall that any prefix of a left special factor is again left special. Since p
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Figure 3. Illustration of a Rauzy graph from the proof of Lemma 3.3.

cannot be extended to the right as a left special factor, every left special
factor of length n+1 has q as its prefix. This together with ΔC(n+1) = 2
implies that there exist two left special factors of length n + 1. They are
of the form qx and qy for x �= y with

Lext(qx) = {A, B} = Lext(qy). (3.1)

By reversal closeness of L(u), we obtain that Lext(qA) = {x, y} and
Lext(qB) = {x, y}. Since there are no other left special factors besides
qx and qy in Ln+1(u), necessarily q = q and {A, B} = {x, y}. Because
of (3.1), we deduce that both xqx and yqy belong to the language L(u),
i.e., the palindrome q has two palindromic extensions.

(2) Suppose that p has two palindromic extensions apa and bpb. In the Rauzy
graph Γn, the bispecial factor p has the indegree and outdegree 2, the
left special factor q has the indegree 2 and the right special factor q has
the outdegree 2. Moreover, the palindromes of length n are exactly the
vertices lying on the axis of symmetry and the palindromes of length n+1
are exactly the edges crossing the axis. These facts together with P(n) +
P(n + 1) = 4 imply that the Rauzy graph Γn can only look as depicted
in Figure 3. Note that q and q may coincide (and we shall see that this
is really the case). Let us first show, that necessarily apb ∈ L(u). If not,
then it is impossible in Γn to leave the cycles in which only the vertex
p has the indegree or the outdegree bigger that 1. It means that the
word u is eventually periodic – a contradiction with the complexity. Thus
apb, bpa ∈ L(u). Consequently both pa and pb are left special factors of
length n + 1 with Lext(pa) = {a, b} = Lext(pb). Since ΔC(n + 1) = 2,
no other left special factor of the same length exists. Thus q is maximal
left special and there exists a unique letter x and a unique letter y such
that Aqx and Bqy belong to the language L(u) and x �= y. It implies
that Lext(q) = {x, y}, i.e., the factor q is a left special factor of length n,
and therefore, q = q and {A, B} = {x, y}. Thus the Rauzy graph Γn

has two vertices with indegrees > 1 – the bispecial factors p and q, see
Figure 4. Since q is a maximal left special factor, we have two disjoint
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Figure 4. Illustration of a Rauzy graph from the proof of Lemma 3.3.

possibilities: the first one is that xqx and yqy belong to the language,
the second one is that xqy and yqx belong to the language. But the first
possibility implies that in the Rauzy graph Γn, it is impossible to leave the
cycles containing only one bispecial factor q – a contradiction. Therefore
the second situation occurs and q has no palindromic extension. �

Proof of Theorem 1.1. We will proceed by induction on n. Obviously, P(0) = 1
and P(1) = 3. Assume that P(n)+P(n+1) = 4 for some n ≥ 0. Let p ∈ Ln(u) be
a palindrome with zero or two palindromic extensions. According to Lemma 3.3
there exists a palindrome q of the same length, which is a left special factor as
well. Since ΔC(n) = 2, all other factors including palindromes in Ln(u) have
a unique left extension. According to Lemma 3.1, these palindromes have a unique
palindromic extension. By Lemma 3.3, the palindromes p and q together have two
palindromic extensions. Therefore, the number of palindromic extensions of all
palindromes in Ln(u) together is equal to the number of these palindromes. Since
every palindrome of length n + 2 is a palindromic extension of a palindrome of
length n, we obtain P(n + 1) + P(n + 2) = 4. �

Proof of Theorem 1.2. Since C(n) = 2n+1, it follows by Theorem 1.1 that P(n)+
P(n + 1) = 4. Assume there exists a palindrome with zero or more than one
palindromic extension, then #Lext(p) = 2 by Lemmas 3.1 and 3.2. Consequently,
Lemma 3.3 implies that the language contains a maximal left special factor –
a contradiction. �

4. Counterexamples

In this last section, we will show that for ternary words, unlike binary words,
the properties P and PE are not equivalent and we will provide counterexamples
to reversed implications in Theorems 1.1 and 1.2.
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We have seen that for the computation of the first difference of complexity
ΔC(n), an important role is played by left and right special factors. See For-
mula (2.1). In the sequel, it will be helpful to use a formula for the second dif-
ference of complexity Δ2C(n), introduced by Cassaigne [5]. Let us explain that
for the computation of Δ2C(n), bispecial factors are crucial. Since every factor of
length n + 2 can be written as xwy, where x, y ∈ A and w ∈ L(u), it holds

C(n + 2) =
∑

w∈Ln(u)

#{xwy | xwy ∈ L(u)},

and similarly,

C(n + 1) =
∑

w∈Ln(u)

#Lext(w) =
∑

w∈Ln(u)

#Rext(w).

The second difference of complexity Δ2C(n) = ΔC(n + 1) − ΔC(n) = C(n + 2) −
2C(n + 1) + C(n) may be obtained as follows

Δ2C(n) =
∑

w∈Ln(u)

(
#{xwy | xwy ∈ L(u)} − #Lext(w) − #Rext(w) + 1

)
. (4.1)

Denote by b(w) the quantity

b(w) := #{xwy | xwy ∈ L(u)} − #Lext(w) − #Rext(w) + 1.

The number b(w) is called the bilateral order of the factor w. It is readily seen that
if w is not a bispecial factor, then b(w) = 0. Bispecial factors will be distinguished
according to their bilateral order in the following way

• if b(w) > 0, then we call w a strong bispecial factor;
• if b(w) < 0, then we call w a weak bispecial factor;
• if b(w) = 0 and w is bispecial, then we call it ordinary.

Evidently, for the value of Δ2C(n), only strong and weak bispecial factors are of
importance.

Remark 4.1. If p is a palindromic factor of a reversal closed language L(u), then
#{xpy | xpy ∈ L(u)} and the number of palindromic extensions of p in u have the
same parity. Moreover, #Lext(p) = #Rext(p). Therefore, the following simple
observation holds

p has a unique palindromic extension in u =⇒ b(p) is even.

4.1. P and PE are not equivalent

The construction of a ternary infinite word v with the desired properties is
inspired by Arnoux and Rauzy [1] and Rote [9]. Let v be the ternary infinite word
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defined by v = Ψ(u), where Ψ : {a, b}∗ → {0, 1, 2}∗ is the morphism given by

Ψ(a) = 12 and Ψ(b) = 100, (4.2)

and u is the fixed point of the morphism ϕ : {a, b}∗ → {a, b}∗ defined by

ϕ(a) = abbabba, ϕ(b) = aba. (4.3)

In the sequel, we will show that v satisfies P , but does not satisfy PE . We will
proceed in two steps. First, we will study several properties of the binary infinite
word u. Second, we will prove, using the properties of u, that v satisfies P , but
does not satisfy PE .

Step 1. Let us show that the binary word u being the fixed point of the morphism
ϕ given in (4.3) has the language L(u) closed under reversal and let us provide
the list of all weak and strong bispecial factors of u.

Let us start with an important observation.

Observation 4.2. Every factor v of u containing at least one letter a can be
decomposed as v = v(0)v(1) . . . v(m), m ≥ 1, so that v(i) ∈ {aba, abbabba} for
i ∈ {1, . . . , m − 1}, v(0) is a proper suffix of abbabba and v(m) is a proper pre-
fix of abbabba. Obviously, for every such decomposition, there exists ṽ ∈ {a, b}∗
satisfying

v = v(0)ϕ(ṽ)v(m). (4.4)
And ṽ is a factor of u.

An essential role for the description of bispecial factors and palindromes in u
is played by the map T : {a, b}∗ → {a, b}∗ defined by

T (w) = baϕ(w)ab for every w ∈ {a, b}∗. (4.5)

Let us summarize the properties of T in the following lemma.

Lemma 4.3. Let T be the map defined in (4.5). Then, for every w ∈ {a, b}∗ and
for all c, d ∈ {a, b}, it holds

a) if w is a palindrome, then T (w) is a palindrome;
b) cwd is a factor of u if and only if cT (w)d is a factor of u, in particular,

if w is a factor of u, then T (w) is a factor of u.

Proof.
a) Since ϕ(a) = aba and ϕ(b) = abbabba are palindromes, it implies that

ϕ(w) is a palindrome, thus T (w) = baϕ(w)ab is a palindrome, too.
b) (⇒): If awb is a factor of u, then ϕ(awb) is in L(u). As aT (w)b is a factor

of ϕ(awb) = abaϕ(w)abbabba, it follows that aT (w)b is also a factor of u.
The proofs for the other cases awa, bwa, bwb are similar. (⇐): Let aT (w)b
be a factor of u. It is readily seen that the unique decomposition of the
form (4.4) of aT (w)b is aT (w)b = ϕ(aw)abb. Since abb is a prefix of ϕ(b),
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but not of ϕ(a), it follows that awb ∈ L(u). The proofs for the other cases
aT (w)a, bT (w)a, bT (w)b are analogous. �

Remark 4.4. Lemma 4.3 has several useful consequences.
(1) According to Lemma 4.3, the languageL(u) contains infinitely many palin-

dromes. Together with the primitivity of the substitution ϕ, thus the uni-
form recurrence of u, it implies that the language L(u) is closed under
reversal.

(2) For any factor w ∈ L(u), its bilateral order b(w) satisfies b(w) = b(T (w))
by Item b) of Lemma 4.3.

(3) If w is a palindrome in L(u), then T (w) is a palindrome with the same
number of palindromic extensions by Lemma 4.3.

Since the word u is built from the factors abbabba and aba, it is clear that the
words

aaa, bbb, abab, baba, aabbaa, babbab

are not in L(u). Observing then the prefix of u

u = abbabbaabaabaabbabbaabaaba . . . ,

it follows that the only left special factors of length ≤4 are: ε, a, b, ab, ba, abb, baa,
abba, baab; among them, only ε and baab are strong bispecial factors and only abba
is a weak bispecial factor.

Lemma 4.5. For every bispecial factor v ∈ L(u) of length at least 5, there exists
a factor w ∈ L(u) such that v = T (w). Moreover, b(w) = b(T (w)).

Proof. Every prefix of a left special factor is left special, too. Since abba and baab
are the only left special factors of length 4 and abba is a weak bispecial factor, thus
cannot be extended to the right staying left special, we learn that every bispecial
(thus left special) factor v of length ≥ 5 has to start in baab. Since the language
L(u) is closed under reversal, the bispecial (thus right special) factor v has to end
in baab. Then, it is clear from the form of the substitution ϕ that v = baϕ(w)ab
is the unique decomposition of the form (4.4) of v. Thus, by Observation 4.2, w is
a factor of u such that v = T (w). The last statement is a consequence of Item b)
of Lemma 4.3. �

As a consequence of Lemma 4.5, we obtain the set of all strong bispecial factors

{V (n) | n ∈ N}, where V (0) = ε and V (n) = T (V (n−1)) for n ≥ 1, (4.6)

and the set of all weak bispecial factors

{U (n) | n ∈ N, n ≥ 1}, where U (1) = abba and U (n) = T (U (n−1)) for n ≥ 2.
(4.7)

It is easy to see that b(V (0)) = b(ε) = 1 and b(U (1)) = b(abba) = −1. Item b) of
Lemma 4.3 implies that b(V (n)) = 1 and b(U (n)) = −1 for all n. Moreover, by
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Item a) of Lemma 4.3, these words are palindromes.

Step 2. We may now study the ternary word v = Ψ(u) defined in (4.2). In the
sequel, it will be shown that

(1) the language L(v) is closed under reversal;
(2) the complexity of v is C(n) = 2n + 1 for all n ∈ N;
(3) the language L(v) contains infinitely many distinct palindromes that do

not have a unique palindromic extension.
When proved, the statements (1) and (2) imply that the property P holds (by
Thm. 1.1) and the statement (3) has as a consequence that the property PE
does not hold.

Proof of Step 2. Let us start with an observation similar to Observation 4.2.

Observation 4.6. Every factor v of v containing at least one letter 1 can be
decomposed as v = v(0)v(1) . . . v(m), m ≥ 1, so that v(i) ∈ {12, 100} for i ∈
{1, . . . , m − 1}, v(0) is a proper suffix either of 12 or of 100 and v(m) is a proper
prefix of 100. Obviously, for every such decomposition, there exists ṽ ∈ {a, b}∗
such that

v = v(0)Ψ(ṽ)v(m). (4.8)
And ṽ is a factor of u.

The crucial tool for the proof of (1) − (3) is the map H : {a, b}∗ → {0, 1, 2}∗
defined by

H(w) = Ψ(w)1 for every w ∈ {a, b}∗. (4.9)
Its properties are stated in the following lemma.

Lemma 4.7. Let H be the map defined in (4.9). Then it holds for every w ∈
{a, b}∗

a) if w is a factor of u, then H(w) is a factor of v;
b) if w is a palindrome, then H(w) is a palindrome;
c) if w is a factor of u, then b(w) = b(H(w)).

Proof.
a) There exists a letter x ∈ {a, b} such that wx ∈ L(u). Then Ψ(wx) is

a factor of v = Ψ(u) and Ψ(wx) contains H(w) = Ψ(w)1.
b) It suffices to notice that 1−1Ψ(a)1 = Ψ(a) and 1−1Ψ(b)1 = Ψ(b), where

1−1Ψ(a)1 is the word obtained when the prefix 1 is cut from Ψ(a)1.
c) The statement will be proved if we show that the relation between the

extensions of w and H(w) is as follows

awa ∈ L(u) ⇔ 2H(w)2 ∈ L(v)

awb ∈ L(u) ⇔ 2H(w)0 ∈ L(v)

bwa ∈ L(u) ⇔ 0H(w)2 ∈ L(v)
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bwb ∈ L(u) ⇔ 0H(w)0 ∈ L(v)

(⇒): If awb ∈ L(u), then Ψ(awb) = 12Ψ(w)100 is a factor of v and Ψ(awb)
contains 2H(w)0. The proofs for the other cases awa, bwa, bwb are similar.
(⇐): It is easy to see that 2H(w)0 = 2Ψ(w)10 is the unique decomposition
of 2H(w)0 of the form (4.8). Moreover, since 2 is a suffix of Ψ(a), but not
of Ψ(b), and 10 is a prefix of Ψ(b), but not of Ψ(a), it follows that awb is
a factor of u. The proofs for the other cases 2H(w)2, 0H(w)2, 0H(w)0 are
analogous. �

Proof of (1), (2), (3).
(1) According to its construction, the word v is uniformly recurrent. Using

Items a) and b) of Lemma 4.7, it is clear that L(v) contains infinitely
many distinct palindromes. Relating these two facts, L(v) is closed under
reversal.

(2) In order to describe all strong and weak bispecial factors, the following
lemma is helpful. However, it is useful to notice first that the only left
special factors of length ≤2 are: ε, 0, 1, 10, 12. Among them, the only
strong bispecial factor is 1 and the only weak bispecial factor is 0.

Lemma 4.8. Let v be a bispecial factor of v of length ≥ 3. There exists
a factor w of u such that v = H(w). Moreover, b(w) = b(H(w)).

Proof. Since every prefix of a bispecial factor is left special, v has to start
in 1. Since the language L(v) is closed under reversal and v is right special,
v has to end in 1. Then, observing the morphism Ψ, v = Ψ(w)1 is the
unique decomposition of v the form (4.8). Thus, by Observation 4.6, w is
a factor of u satisfying v = H(w). The last statement follows by Item c)
of Lemma 4.7. �

By Lemma 4.8 and since 0 is the only weak and 1 the only strong
bispecial factor of length ≤2, we obtain the set of all strong bispecial
factors of v (recall that V (n) and U (n) are defined in (4.6) and in (4.7),
respectively)

{V̂ (n) | n ∈ N}, where V̂ (n) = H(V (n)),

and the set of all weak bispecial factors of v

{Û (n) | n ∈ N}, where Û (0) = 0 and Û (n) = H(U (n)) for n ≥ 1.

Since the factors U (1) = abba and V (1) = baab consist of the same “hand”
of letters, it follows by the definition of V (n) and U (n) that |V (n)|a =
|U (n)|a and |V (n)|b = |U (n)|b, where |w|a denotes the number of letters
a occurring in a word w. Therefore, we deduce that |V̂ (n)| = |Û (n)| and
by Lemma 4.8, it holds b(V̂ (n)) + b(Û (n)) = b(V (n)) + b(U (n)) = 0. By
Formula (4.1), we have Δ2C(n) ≡ 0, and since C(0) = 1 and C(1) = 3, it
follows that C(n) = 2n + 1 for every n ∈ N.
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(3) The strong bispecial factors V̂ (n) are palindromes by Item b) of Lemma 4.7.
Since b(V̂ (1)) = b(1) = 1, we deduce using Item c) of Lemma 4.7 that
b(V̂ (n)) = 1 for all n ∈ N. Applying Remark 4.1, the palindromes V̂ (n)

do not have a unique palindromic extension. Using similar arguments, the
palindromes Û (n) do not have a unique palindromic extension either. �

4.2. Implications in Theorems 1.1 and 1.2 are irreversible

In order to show that the implications in Theorems 1.1 and 1.2 are irreversible,
we will construct an infinite ternary word U whose language L(U) is closed under
reversal and such that on one hand, U has the property PE , consequently U has
the property P , too, on the other hand, the complexity C(n) of U does not satisfy
C(n) = 2n + 1 for all n ∈ N.

Denote by U the infinite ternary word being the fixed point of the morphism
Φ : {A, B, C}∗ → {A, B, C}∗ defined by

Φ(A) = ABA, Φ(B) = CAC, Φ(C) = ACA. (4.10)

We will not provide a detailed proof of the announced properties, but only a help-
ful hint for the reader. Observing the substitution Φ, it is obvious that the image
of a palindrome is again a palindrome. Therefore, L(U) contains infinitely many
palindromes. Together with the uniform recurrence of U, it implies that the lan-
guage L(U) is closed under reversal. In addition, every palindrome p is a central
factor of Φ2(p), i.e., there exists w ∈ {A, B, C}∗ such that Φ2(p) = wpw. In par-
ticular, (Φ2n(A)) is a sequence of palindromes with A as a central factor, (Φ2n(B))
is a sequence of palindromes with B as a central factor, (Φ2n(C)) is a sequence
of palindromes with C as a central factor, and (Φ2n(AA)) is a sequence of palin-
dromes of even length. It is easy to see that every palindrome is a central factor
of one of the above families, thus the property PE holds.

Concerning the complexity, we have

L3(U) = {AAB, BAA, AAC, CAA, ABA, ACA, CAC, BAC, CAB},

hence C(1) = 3, C(2) = 5, C(3) = 9. Thus, it does not hold C(3) = 2 · 3 + 1.

Remark 4.9. In fact, ΔC(n) �= 2 for infinitely many n ∈ N. In order to show
this statement, let us define two infinite sequences (W (n)

1 )n∈N and (W (n)
2 )n∈N as

follows.
Set W

(0)
1 = AΦ(ACA) and define

W
(2n+1)
1 = Φ(W (2n)

1 )A and W
(2n+2)
1 = AΦ(W (2n+1)

1 ), n ∈ N.

Similarly, set W
(0)
2 = Φ(ACA)A and define

W
(2n+1)
2 = AΦ(W (2n)

1 ) and W
(2n+2)
2 = Φ(W (2n+1)

1 )A, n ∈ N.
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It is not difficult to prove that (W (n)
1 )n∈N and (W (n)

2 )n∈N satisfy for all n ∈ N:

(1) |W (n)
1 | = |W (n)

2 |;
(2) W

(n)
1 and W

(n)
2 are bispecial factors with bilateral orders −1;

(3) U contains no other factors with non-zero bilateral order of length kn :=
|W (n)

1 | = |W (n)
2 |.

It implies then that Δ2C(kn) = ΔC(kn + 1) − ΔC(kn) = −2, thus for any n ∈ N

either ΔC(kn + 1) �= 2 or ΔC(kn) �= 2.
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