
RAIRO-Theor. Inf. Appl. 43 (2009) 69–94 Available online at:

DOI: 10.1051/ita:2007061 www.rairo-ita.org

HYPER-MINIMIZING MINIMIZED DETERMINISTIC
FINITE STATE AUTOMATA ∗

Andrew Badr1, Viliam Geffert2 and Ian Shipman3

Abstract. We present the first (polynomial-time) algorithm for re-
ducing a given deterministic finite state automaton (DFA) into a hyper-
minimized DFA, which may have fewer states than the classically min-
imized DFA. The price we pay is that the language recognized by the
new machine can differ from the original on a finite number of inputs.
These hyper-minimized automata are optimal, in the sense that every
DFA with fewer states must disagree on infinitely many inputs. With
small modifications, the construction works also for finite state trans-
ducers producing outputs. Within a class of finitely differing languages,
the hyper-minimized automaton is not necessarily unique. There may
exist several non-isomorphic machines using the minimum number of
states, each accepting a separate language finitely-different from the
original one. We will show that there are large structural similarities
among all these smallest automata.

Mathematics Subject Classification. 68Q70.

1. Introduction

Automata theory is one of the classic parts of theoretical computer science, and
also a common first step in the study of this field. A deterministic one-way finite
state automaton (DFA) is the fundamental standard model for regular languages.
At first glance, all important problems for this simplest model were already solved
several decades ago.

Keywords and phrases. Finite state automata, regular languages.

∗ Supported by the Slovak Grant Agency for Science (VEGA) under contract “Combinatorial
Structures and Complexity of Algorithms”, and by the Science and Technology Assistance
Agency under contract APVT-20-004104.
1 3210 Acklen Ave., Nashville, TN 37212, USA; badr@uiuc.edu
2 Department of Computer Science, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia;
viliam.geffert@upjs.sk
3 Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago,
IL 60637, USA; ics@math.uchicago.edu

Article published by EDP Sciences c© EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007061
http://www.rairo-ita.org
http://www.edpsciences.org

70 A. BADR, V. GEFFERT AND I. SHIPMAN

The first classic result of this kind, solved more than 50 years ago [11,13], is the
algorithm for minimization of the number of states in a given deterministic finite
state automaton. It is known that the automaton produced by this algorithm
cannot be beaten by any other automaton: each automaton M ′ with fewer states
must disagree in acceptance for at least one input. Moreover, the smallest possible
machine is unique, up to isomorphism. All these results have become a part of
many textbooks. (See e.g. [8].)

But if we allow the language to change by some finite number of words, further
minimization is possible. We present here a simple polynomial-time algorithm that
reduces the given deterministic finite state automaton into a hyper-minimized au-
tomaton, which may have fewer states than the classically minimized automaton.
The new machine is almost-equivalent to the original machine: it may differ in
acceptance on a finite number of input strings1.

In addition, we shall show that our automaton is indeed a smallest one with
this property, even after allowing additional finite-differences from the original lan-
guage. That is, every DFA with fewer states than our hyper-minimized automaton
must disagree in acceptance not only for a single input, as in the classical case,
but for infinitely many inputs.

With minor updates, the algorithm works for finite state transducers as well.
We can construct hyper-minimized almost-equivalent automata that do not recog-
nize languages, but produce some outputs. An almost-equivalent transducer must
produce the correct sequence of output symbols after an initial “probation period”
of fixed length. The length of this fixed period does not depend on the length of
the input. Actually, this is exactly what people expect from automata in most real
life applications. Even very large and complex systems are quite often made up of
a large number of diverse small units, interrelated only by their inputs and out-
puts. As a typical example, a manufacturer installing a new unit into a production
line will always use a probation period for testing, during which nobody expects
an absolutely exact behavior. This gives an additional motivation for studying
almost-equivalent simulations on almost-equivalent machines.

The hyper-minimized automaton is not necessarily unique. We can find exam-
ples in which the given minimized n-state acceptor M can be replaced by several
different hyper-minimized machines, all of them using the same number of states,
below n, but each accepting a different variation of the original language L(M).
There is one important special case: the hyper-minimized automaton is always
unique for machines using a unary input alphabet.

Even in the general case, there are large structural similarities among all these
machines. The state set of any DFA can be divided into two parts: 1 preamble
states – reachable only by a finite number of inputs from the initial state and
2 kernel states – reachable by infinitely many inputs. (There are no unreachable

1The idea of using an almost-equivalent simulation to obtain an almost-equivalent machine
has already appeared, e.g., in [7], for an efficient simulation of two-way nondeterministic unary
automata on all but finitely many inputs.

HYPER-MINIMIZED AUTOMATA 71

states in a hyper-minimized automaton.) The preamble parts of any two almost-
equivalent hyper-minimized machines are isomorphic, except for the acceptance-
values of states. Their kernels are isomorphic in the standard way, preserving
also the acceptance-values. Finally, the isomorphism preserves the initial states if
they are in the preambles. (This might not be the case for machines with empty
preambles.) The machines can also differ in some of the transitions that go from
preamble states to kernel states.

We shall also provide a simple tool for testing hyper-minimality: an automa-
ton M is hyper-minimized if and only if, in M , 1 there does not exist an un-
reachable state, 2 there does not exist a pair of different but equivalent states,
and 3 there does not exist a pair of different but almost-equivalent states, such
that at least one of them is a preamble state. (Two states are almost-equivalent if
there exist at most finitely many input strings α such that, starting from these two
states and reading α in parallel, we can reach a state pair with different acceptance-
values.) Note that the first two conditions alone characterize minimized automata.
(All three conditions can be efficiently tested.)

Finally, there is no upper bound on the number of states we can save by hyper-
minimization. For each m ≤ n, there exists a regular language L such that the
unique minimized acceptor recognizing L uses exactly n states, but for which the
hyper-minimized acceptor recognizing a finitely-different language (also unique in
this case) uses exactly m states.

2. Elementary properties

We begin with presenting some basic notation on finite state automata. For a
more detailed exposition, the reader is referred, e.g., to [8,10]. We also introduce
some new elementary definitions and properties required later.

Definition 2.1. A deterministic finite state automaton is a quintuple M =
(Q, Σ, δ, qI, F), where Q denotes a finite set of states, Σ a finite set of input sym-
bols, δ : Q×Σ → Q a transition function, qI ∈ Q an initial state, and F ⊆ Q a set
of accepting (or final) states.

The function δ can be extended to δ : Q×Σ∗ → Q in the standard way, so that
δ(q, α1α2) = δ(δ(q, α1), α2), for each q ∈ Q and α1, α2 ∈ Σ∗.

An input string α ∈ Σ∗ is accepted, if δ(qI, α) ∈ F . The language consisting of
all accepted strings will be denoted by L(M).

Definition 2.2. Two states qA and qB are equivalent, which we will denote by
qA ≡ qB, if, for each α ∈ Σ∗, we have δ(qA, α) ∈ F if and only if δ(qB, α) ∈ F .

Two states qA and qB are almost-equivalent, denoted by qA ∼ qB, if there exists
a k ≥ 0 such that, for each α ∈ Σ∗ of length |α| ≥ k, we have δ(qA, α) ∈ F if and
only if δ(qB, α) ∈ F .

In other words, equivalent states qA, qB have no distinguishing input string α
such that the descendant states δ(qA, α) and δ(qB, α) have different acceptance-
values.

72 A. BADR, V. GEFFERT AND I. SHIPMAN

Similarly, for almost-equivalent states qA, qB, the acceptance-values of the de-
scendants δ(qA, α) and δ(qB, α) are the same for all but finitely many values of α.

The above definition can easily be extended to pairs of states belonging to
different machines, but using the same input alphabet.

Given two automata M1 = (Q1, Σ, δ1, qI,1, F1) and M2 = (Q2, Σ, δ2, qI,2, F2),
the states qA, qB ∈ Q1 ∪Q2 are equivalent, if they are equivalent in the automaton
M = (Q, Σ, δ, qI, F), where Q = Q1 ∪Q2, δ(q, a) = δ1(q, a) if q ∈ Q1, but δ(q, a) =
δ2(q, a) if q ∈ Q2, and F = F1 ∪ F2. (Here we assume, without loss of generality,
that Q1 ∩ Q2 = ∅.) The initial state qI can be chosen arbitrarily. The same
extension is used to define almost-equivalent states, as well.

Definition 2.3. (a) Two automata M1 = (Q1, Σ, δ1, qI,1, F1) and M2 = (Q2, Σ, δ2,
qI,2, F2) are said to be equivalent, denoted by M1 ≡ M2, if their initial states qI,1 and
qI,2 are equivalent, i.e., if qI,1 ≡ qI,2. Similarly, M1 and M2 are almost-equivalent,
denoted by M1 ∼ M2, if qI,1 ∼ qI,2.

(b) Two languages L1 and L2 are finitely-different, if their symmetric difference
is finite, which will be denoted by L1 ∼ L2.

In other words, equivalent machines agree in acceptance for all inputs, and
hence they accept the same language. That is, L(M1) = L(M2). Similarly, almost-
equivalent machines agree in acceptance for all but finitely many inputs, and hence
L(M1) ∼ L(M2).

Definition 2.4. The automaton M = (Q, Σ, δ, qI, F) is said to be minimized, if
no automaton M ′ = (Q′, Σ, δ′, q′I, F

′) with fewer states is equivalent to M .
The automaton M is hyper-minimized, if no automaton M ′ with fewer states is

almost-equivalent to M .

That is, a minimized M cannot be replaced by a machine M ′ using a smaller
number of states or else M and M ′ disagree in acceptance for at least one input
string α ∈ Σ∗. If M is hyper-minimized, then each M ′ with fewer states must
disagree in acceptance not only for a single input, but for infinitely many inputs
as well.

Before proceeding, we shall present some simple properties of equivalent states,
which can be found in many standard textbooks concerning the finite state au-
tomata. (See e.g. [8].) Then, these properties will be compared to the correspond-
ing ones for almost-equivalent states.

Where statements presented in Facts 2.5–2.7 and Lemmas 2.8–2.10 refer to qA

or qB, these are states either from the same DFA, or from two automata sharing
the same input alphabet.

Fact 2.5. “≡” is an equivalence relation, i.e., reflexive, symmetric, and transitive.

Fact 2.6. If qA ≡ qB, then for each α ∈ Σ∗, δ(qA, α) ≡ δ(qB, α).

Fact 2.7. qA ≡ qB if and only if
(a) for each a ∈ Σ, δ(qA, a) ≡ δ(qB, a), and
(b) qA ∈ F if and only if qB ∈ F .

HYPER-MINIMIZED AUTOMATA 73

The corresponding properties for almost-equivalent states look as follows:

Lemma 2.8. “∼” is an equivalence relation.

Proof. The argument is an easy consequence of Definition 2.2. For example, if
qA ∼ qB, then we have some k1 ≥ 0 such that, for each α ∈ Σ∗ of length |α| ≥ k1,
the acceptance-values of the states δ(qA, α) and δ(qB, α) are the same. Similarly,
if qB ∼ qC, we have some k2 ≥ 0 such that, for each α ∈ Σ∗ of length |α| ≥
k2, the acceptance-values of δ(qB, α) and δ(qC, α) are also the same. This gives
that δ(qA, α) ∈ F if and only if δ(qC, α) ∈ F , for each α ∈ Σ∗ of length |α| ≥
max{k1, k2}. Thus, qA ∼ qC, if qA ∼ qB and qB ∼ qC.

The arguments for symmetry and reflexivity are trivial. �

Lemma 2.9. If qA ∼ qB, then for each α ∈ Σ∗, δ(qA, α) ∼ δ(qB, α).

Proof. Suppose that, for some α̃ ∈ Σ∗, the state q′A = δ(qA, α̃) is not almost-
equivalent to q′B = δ(qB, α̃). Then there must exist infinitely many inputs α1, α2, . . .
such that, for each i = 1, 2, . . . , the acceptance-values of the descendants δ(q′A, αi)
and δ(q′B, αi) are different. That is, δ(q′A, αi) ∈ F if and only if δ(q′B, αi) �∈ F .
Now, by taking the sequence α̃α1, α̃α2, . . . , we get that δ(qA, α̃αi) ∈ F if and only
if δ(qB, α̃αi) �∈ F . Thus, we have obtained an infinite sequence of inputs giving
different acceptance-values for the descendants of qA and qB, and hence these two
states are not almost-equivalent.

Therefore, if δ(qA, α̃) �∼ δ(qB, α̃), for some α̃ ∈ Σ∗, then qA �∼ qB. �

Lemma 2.10. qA ∼ qB if and only if
(a) for each a ∈ Σ, δ(qA, a) ∼ δ(qB, a).

Proof. The argument for the “⇒” part is a special case of Lemma 2.9, using
|α| = 1.

For the converse implication, we use the fact that the number of symbols in
the input alphabet is finite, i.e., Σ = {a1, a2, . . . , am}. Now assume that, for each
symbol ai ∈ Σ, δ(qA, ai) ∼ δ(qB, ai). Therefore, we have some ki ≥ 0 such that, for
each α ∈ Σ∗ of length |α| ≥ ki, the acceptance-values of the states δ(δ(qA, ai), α)
and δ(δ(qB, ai), α) are the same.

This gives, for each α′ ∈ Σ∗ of length |α′| ≥ 1 + max{k1, k2, . . . , km}, that
δ(qA, α′) ∈ F if and only if δ(qB, α′) ∈ F , and hence qA ∼ qB. �

The reachability of states from the initial state plays an important role in con-
structing and understanding hyper-minimized automata:

Definition 2.11. Let M = (Q, Σ, δ, qI, F) be a finite state automaton.
A state q ∈ Q is unreachable, if there does not exist an input string α ∈ Σ∗

such that δ(qI, α) = q.
The state q ∈ Q is in the preamble if there exists at least one input string

α ∈ Σ∗ with δ(qI, α) = q, but the number of such strings is finite.
The state q ∈ Q is in the kernel if there exist infinitely many (all different)

input strings α ∈ Σ∗ with δ(qI, α) = q.

74 A. BADR, V. GEFFERT AND I. SHIPMAN

The respective sets of unreachable, preamble, and kernel states will be denoted
by U , P , and K.

The next two lemmas present some elementary properties that will be used for
an efficient identification of kernel and removable states.

Lemma 2.12. For each automaton M = (Q, Σ, δ, qI, F), a state q ∈ Q is in the
kernel if and only if it can be reached from the initial state by a path passing through
a state q′ such that there exists a cycle beginning and ending in q′.

Proof. Clearly, if q can be reached by a path passing through some q′, such that
there exists a cycle beginning and ending in q′, then q can be reached by infinitely
many inputs, obtained by iterating this cycle arbitrarily many times. Thus, q is
in the kernel.

Conversely, since a kernel state q can be reached from qI by infinitely many
inputs, we have q = δ(qI, α) also for some α ∈ Σ∗ of length |α| ≥ ‖Q‖. But then
some state q′ must be repeated in the course of reading α, which gives the cycle
containing the state q′. �

Lemma 2.13. Let M = (Q, Σ, δ, qI, F) be a DFA with no unreachable states.
Then, for each qA, qB ∈ Q, the statement “at least one of the states qA, qB is in
the preamble” is equivalent to the following:

(I) either qA is in the preamble and qA is not reachable from qB;
(II) or qB is in the preamble and qB is not reachable from qA.

Proof. The argument for the “⇐” part is trivial. Now assume that at least one of
the states qA, qB is in the preamble.

First, if qA is in the kernel, then qB is in the preamble. Moreover, qB is not
reachable from qA by any computation path, or else qB is also in the kernel, being
reachable from qI by infinitely many inputs via qA, which is a contradiction. Thus,
we have obtained (II).

Similarly, if qB is in the kernel, then qA is in the preamble. Moreover, qA is not
reachable from qB, or else qA is also in the kernel, a contradiction. This gives (I).

Finally, if neither of the states qA, qB is in the kernel, they are both in the
preamble. In addition, either qB is not reachable from qA or qA is not reachable
from qB. Supposing the contrary, we get a cycle containing both qA and qB, reach-
able from the initial state qI, since there are no unreachable states in M . But then
both qA and qB are in the kernel, which is a contradiction. Thus, we have derived
“(I) or (II)”. �

The following lemma will be useful for simplification of a hyper-minimization
algorithm.

Lemma 2.14. Let M = (Q, Σ, δ, qI, F) be a DFA with no unreachable states.
Then, for each pair of distinct almost-equivalent states qA ∼ qB,

• both qA and qB are in the preamble and, moreover, neither of them is
reachable from the other one by any computation path; or

HYPER-MINIMIZED AUTOMATA 75

• there exists a state qC in the kernel, such that qC is almost-equivalent to
qA and qB (including the possibility that qC = qA or qC = qB).

Proof. If at least one of the states qA, qB is in the kernel, we are done, this state
can be used as the state qC. So assume that both qA and qB are in the preamble.
If neither of them is reachable from the other one by any computation path, we
are done again.

Therefore, without loss of generality, assume now that both qA and qB are in
the preamble, but there exists a computation path connecting qA with qB. That
is, δ(qA, α̃) = qB, for some string α̃ ∈ Σ∗, α̃ �= ε.

Now, let q1 = qA, and let qk+1 = δ(qk, α̃), for each k ≥ 1. It is easy to
see that this gives a sequence of states q1, q2, q3, . . . such that qk+1 is reachable
from qk. Clearly, such sequence must contain a kernel state, since some state must
be repeated, i.e., we must get qi′ = qi′′ for some i′ < i′′. But then qi′ , . . . , qi′′ are
kernel states lying along a cycle.

Since q1 = qA, it is sufficient to show that q1 ∼ q2 ∼ q3 ∼ First, q1 =
qA ∼ qB = δ(qA, α̃) = δ(q1, α̃) = q2. Therefore, q1 ∼ q2. By Lemma 2.9, using
inductively qk ∼ qk+1, we then get that δ(qk, α̃) ∼ δ(qk+1, α̃), which gives qk+1 ∼
qk+2.

Thus, by taking qC = qi′ , we get a kernel state almost-equivalent to qA = q1. �

3. Hyper-minimized acceptors

3.1. Characterization

Here we present the fundamental properties of hyper-minimized automata.
The following theorem will play an important role in our considerations. It says

that descendants of two almost-equivalent states are not only almost-equivalent,
as shown in Lemma 2.9, but that they become fully equivalent, if they are obtained
by reading a sufficiently long input.

Theorem 3.1. Let M1 = (Q1, Σ, δ1, qI,1, F1) and M2 = (Q2, Σ, δ2, qI,2, F2) be two
automata using the same input alphabet. Let qA ∈ Q1 and qB ∈ Q2.

If qA ∼ qB, then, for each α ∈ Σ∗ of length |α| ≥ ‖Q1‖·‖Q2‖, we have δ1(qA, α) ≡
δ2(qB, α).

Proof. Let qA and qB be two states satisfying the assumptions of the theorem.
Suppose that, for some α̃ ∈ Σ∗ of length |α̃| ≥ ‖Q1‖·‖Q2‖, the state q′A = δ1(qA, α̃)
is not equivalent to q′B = δ2(qB, α̃). Then there must exist at least one β ∈ Σ∗

such that the acceptance-values of the descendants δ1(q′A, β) and δ2(q′B, β) are
different. Without loss of generality, assume that δ1(q′A, β) ∈ F1 but δ2(q′B, β) �∈ F2.
Therefore, δ1(qA, α̃β) ∈ F1 and, at the same time, δ2(qB, α̃β) �∈ F2.

But, by assumption, α̃ ∈ Σ∗ is sufficiently long so that it can be expressed in
the form α̃ = a1a2 . . . a�, for some symbols a1, a2, . . . , a� ∈ Σ, with � ≥ ‖Q1‖·‖Q2‖.
Now, consider the sequence of state pairs 〈q(0)

A , q
(0)
B 〉, 〈q(1)

A , q
(1)
B 〉, 〈q(2)

A , q
(2)
B 〉, . . . ,

〈q(�)
A , q

(�)
B 〉, where q

(i)
A =δ1(qA, a1 . . . ai) and q

(i)
B =δ2(qB, a1 . . . ai), for i=0, 1, 2, . . . , �.

76 A. BADR, V. GEFFERT AND I. SHIPMAN

As some special cases, we have 〈q(0)
A , q

(0)
B 〉 = 〈qA, qB〉 and 〈q(�)

A , q
(�)
B 〉 = 〈q′A, q′B〉.

Note that this sequence contains more pairs than ‖Q1‖ · ‖Q2‖, but each pair
〈q(i)

A , q
(i)
B 〉 is in Q1 ×Q2. Therefore, some pair must have been repeated, i.e.,

we have 〈q(i′)
A , q

(i′)
B 〉 = 〈q(i′′)

A , q
(i′′)
B 〉, for some i′ and i′′ satisfying 0 ≤ i′ < i′′ ≤ �.

This divides the string α̃ into α̃ = α1α2α3, where α1 = a1 . . . ai′ , α2 =
ai′+1 . . . ai′′ , and α3 = ai′′+1 . . . a�, not excluding the possibility that α1 = ε or
α3 = ε, but always with α2 �= ε, such that

• δ1(qA, α1) = q
(i′)
A , δ1(q

(i′)
A , α2) = q

(i′′)
A = q

(i′)
A , δ1(q

(i′)
A , α3) = q′A, and

δ1(q′A, β) ∈ F1,
• δ2(qB, α1) = q

(i′)
B , δ2(q

(i′)
B , α2) = q

(i′′)
B = q

(i′)
B , δ2(q

(i′)
B , α3) = q′B, and

δ2(q′B, β) �∈ F2.

By iterating the string α2 arbitrarily many times, we thus obtain an infinite
sequence of inputs, namely, α1α2α3β, α1α2α2α3β, α1α2α2α2α3β, . . . , such that
each of them gives different acceptance-values for the descendants of qA and qB,
and hence these two states are not almost-equivalent.

Therefore, if δ1(qA, α̃) �≡ δ2(qB, α̃), for some α̃ ∈ Σ∗ of length |α̃| ≥ ‖Q1‖·‖Q2‖,
then qA �∼ qB. �

By an easy modification, the above theorem can be updated for state pairs
belonging to the same automaton M .

Now we are ready to turn our attention to the properties of hyper-minimized
automata.

Theorem 3.2. Let M = (Q, Σ, δ, qI, F) be a finite state acceptor. If, in M ,

(a) there exists an unreachable state qA; or
(b) there exists a pair of different but equivalent states qA ≡ qB; or
(c) there exists a pair of different but almost-equivalent states qA ∼ qB, such

that at least one of them is in the preamble,

then M can be replaced by an almost-equivalent M ′ = (Q′, Σ, δ′, q′I, F
′) using fewer

states.

Proof. If the condition (a) or (b) is satisfied, it is well-known that M can be
replaced by a fully equivalent M ′ (hence, also almost-equivalent M ′) with fewer
states.

So assume that (c) holds true, but (a) does not hold, i.e., all states are reachable
from qI. By Lemma 2.13, we get that

(I) either qA is in the preamble and, moreover, qA is not reachable from qB;
(II) or qB is in the preamble and, moreover, qB is not reachable from qA.

Consider now the case (I), that is, assume that the state qA is in the preamble, and
that it is not reachable from qB by any computation path. (The state reduction and
argument for the case (II) are symmetrical, just swapping the roles of qA and qB.)

HYPER-MINIMIZED AUTOMATA 77

Then M ′ is obtained by “redirecting” all edges ending in qA from qA to qB. More
precisely, M ′ = (Q\{qA}, Σ, δ′, q′I, F \{qA}), where

δ′(q, a) =
{

δ(q, a), if δ(q, a) �= qA,
qB, if δ(q, a) = qA,

for each q ∈ Q\{qA} and a ∈ Σ. Similarly,

q′I =
{

qI, if qI �= qA,
qB, if qI = qA.

Clearly, M ′ uses a smaller number of states than does M . It only remains to show
that M and M ′ are almost-equivalent.

It is easy to see that there exists a constant k1 ≥ 0 such that, if qA = δ(qI, β),
for some β ∈ Σ∗, then |β| ≤ k1. (Recall that qA can be reached in M only by a
finite number of input strings, so k1 is simply the length of the longest one.)

Since qA ∼ qB in M , there also exists a constant k2 ≥ 0 such that, for each
β ∈ Σ∗ of length |β| ≥ k2, we have δ(qA, β) ∈ F if and only if δ(qB, β) ∈ F .

Consider now an input α ∈ Σ∗ of length |α| ≥ k1 +k2. If, in M , the path
examining α does not visit the state qA, the same transitions are used also in M ′.
Therefore, M and M ′ agree in acceptance for all inputs, provided that the exam-
ining paths do not visit qA in M .

Now assume that the path examining α does visit the state qA in M . This cannot
happen more than once along any path, or else we would have a cycle beginning
and ending in qA. But then we would have infinitely many inputs ending in qA,
which is a contradiction, since qA is in the preamble.

Recall that |α| ≥ k1+k2. Therefore, α can be decomposed into α = α1α2, such
that δ(qI, α1) = qA, which gives that |α1| ≤ k1, and hence also that |α2| ≥ k2.
Note also that α ∈ L(M) if and only if δ(qA, α2) ∈ F .

In M ′, we have δ′(q′I, α1) = qB (not excluding the possibility that q′I = qB and
α1 = ε), and hence α ∈ L(M ′) if and only if δ′(qB, α2) ∈ F \{qA}. Using the
definition of δ′ and the fact that, by (I), the state qA is not reachable from qB by
any computation path in M , we get that α ∈ L(M ′) if and only if δ(qB, α2) ∈ F .

But |α2| ≥ k2, and hence δ(qB, α2) ∈ F if and only if δ(qA, α2) ∈ F . Summing
up, α ∈ L(M) if and only if α ∈ L(M ′). Therefore, M and M ′ agree in acceptance
for all inputs α of length |α| ≥ k1+k2. �

It should be pointed out that the above state reduction, redirecting all edges
ending in qA from qA to qB, can also be used in the case (b). For a pair of equivalent
states qA ≡ qB, the above reduction is symmetrical; it does not matter whether we
redirect from qA to qB or vice versa.

However, in the case of almost-equivalent states qA ∼ qB, such that qA �≡ qB,
we can redirect only in accordance with the conditions presented by the items (I)
and (II) of Lemma 2.13 and Theorem 3.2; from qA to qB, if the item (I) is satisfied;
from qB to qA, if the item (II) is satisfied. The reduction is symmetrical only if
both qA and qB are in the preamble and, moreover, neither of them is reachable

78 A. BADR, V. GEFFERT AND I. SHIPMAN

from the other one by any path. When both these states are in the kernel, we
cannot use this reduction at all.

As an example, consider the states G ∼ H in the automaton presented by
Figure 2 below. Both these states are in the preamble. First, we can safely
redirect from G to H . The new machine will disagree only on finitely many
inputs, of length at most 4. However, if we redirected from H to G, the new
automaton would accept all inputs in the form bkaa, for each k ≥ 5, but these
words are rejected by the original machine. Now we are going to prove the converse
statement for Theorem 3.2.

Theorem 3.3. Let M = (Q, Σ, δ, qI, F) be a finite state acceptor. If M can be
replaced by an almost-equivalent M ′ = (Q′, Σ, δ′, q′I, F ′) using fewer states, then,
in M ,

(a) there exists an unreachable state qA; or
(b) there exists a pair of different but equivalent states qA ≡ qB; or
(c) there exists a pair of different but almost-equivalent states qA ∼ qB, such

that at least one of them is in the preamble.

Proof. If there is an unreachable state in M , we are done, the condition (a) has
been satisfied. Therefore, assume that all states are reachable from the initial
state qI in M .

Since the state set Q is finite, it can be expressed in the form Q = {q1, q2, . . . , qm},
with qI = q1. All these states are reachable, and hence we can find a sequence of
input strings w1, w2, . . . , wm such that, for each i, qi = δ(qI, wi). However, these
strings will be chosen a little bit more carefully:

• if qi is in the preamble, let wi be a shortest string satisfying qi = δ(qI, wi);
• if qi is in the kernel, let wi be a shortest string of length |wi| ≥ ‖Q‖2

satisfying qi = δ(qI, wi). (Such string must exist, since qi is reachable by
infinitely many different input strings.)

Using these inputs in the automaton M ′, we get a sequence of states r1, r2, . . . , rm ∈
Q′ such that, for each i, ri = δ′(q′I, wi).

Now we are going to utilize the fact that M and M ′ are almost-equivalent, and
hence qI ∼ q′I. Since qi = δ(qI, wi) and ri = δ′(q′I, wi), we have, by Lemma 2.9,
that qi ∼ ri, for each i = 1, 2, . . . , m.

But, by assumption of the theorem, M ′ has fewer states than M , and hence
‖Q′‖ < ‖Q‖ = m. Therefore, the sequence r1, r2, . . . , rm ∈ Q′ must repeat some
states, i.e., we have ri′ = ri′′ for some i′ and i′′ satisfying 1 ≤ i′ < i′′ ≤ m.

This gives qi′ ∼ ri′ = ri′′ ∼ qi′′ , that is, qi′ ∼ qi′′ . Thus, if at least one of these
two states is in the preamble, we are done, the condition (c) has been satisfied.
Therefore, assume now that both qi′ and qi′′ are in the kernel.

First, recall that qi′ = δ(qI, wi′), ri′ = δ′(q′I, wi′), and qI ∼ q′I. In addition, since
qi′ is in the kernel, the string wi′ is of length |wi′ | ≥ ‖Q‖2 > ‖Q‖ · ‖Q′‖. But then,
by Theorem 3.1, we have that qi′ ≡ ri′ .

Second, by the same reasoning, using the fact that qi′′ is also in the kernel and
hence the string wi′′ is also of length |wi′′ | > ‖Q‖ · ‖Q′‖, we get that qi′′ ≡ ri′′ .

HYPER-MINIMIZED AUTOMATA 79

�

� � �

� � �

� �

�

� � �

� �

� � �

� �

�

�

�

�

� �

� �

�

�

� ��

� �

�

� �

�

�

�

�

� �

��

a a

a

a

aa

a b

b

b

a

a

a

a

a

b

b

b b
bb b

b b a

b

b

a

�
�

���

�
�

���

�
�

���

�
�

����
�

���

�
�

���

�
�

���

�
�

���
a

a

a

a

b

b

b

b
���

��	

� � �

�

�

A

B

C G

D N

R
E

F J M Q S

H K

I

L

P

�

Figure 1. An example of an automaton. By grouping the
states into classes of equivalent states and these, in turn, into
classes of almost-equivalent states, we get the following partition:
{{A}}, {{B}}, {{C}, {D}}, {{E}}, {{F}}, {{G}, {H}, {I}, {J}},
{{K, M}, {L}}, {{N, Q}, {P, S}}, {{R}}.

�

� � �

� �

� �

�

� � �

�

� �

� �

�

�

�

�

�

�

��

� �

�

�

�

�

�

�

� �

� �

a

a

a

a b

b

b

a

a

a

a a

b

b

b b
b a

b

b b

ba

a

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

a

a

a

b

b

b

���

�����	

� �

��

A

B

C G

D

RE

F J M Q

H

I

L

P

�

Figure 2. Minimized version equivalent to the original (unique),
obtained by removing equivalent states and redirecting edges
ending in these states. More precisely, we have redirected
K ⇒ M , N ⇒ Q, and S ⇒ P . Now the partition into
classes of almost-equivalent states is: {A}, {B}, {C, D}, {E∗},
{F ∗}, {G, H, I∗, J∗}, {M∗, L∗}, {Q∗, P ∗}, {R∗}. Kernel states are
marked by asterisk.

80 A. BADR, V. GEFFERT AND I. SHIPMAN

� � �

�

� �

� � �

�

� �

� ��

�

�

�

��

� �

�

�

�

� �

� �

a

a

a

a b

b b

a

a a

b b
b a

b

b b

ba

a

�
�

���

�
�

��� �
�

���

�
�

���
a

a
b

b

��	

� �

��

A

B

D

RE

F J M Q

I

L

P

�

�

Figure 3. One of possible hyper-minimized versions, accept-
ing a language finitely-different from the original, obtained by
the reductions C ⇒ D and G, H ⇒ I∗. This results in the
following differences: L′ \ L = {abbaa, baaa} and L \ L′ =
{abb, abbbaa, b, ba, babaa, bbb, bbbbaa}. Another possible solution
can be obtained, e.g, by changing δ(D, b) from I to J . Such ma-
chine will correctly reject abbaa, but makes a new mistake by
rejecting bbaa.

But then qi′ ≡ ri′ = ri′′ ≡ qi′′ , that is, qi′ ≡ qi′′ . Now we are done, the condition
(b) has been satisfied. �

By combining Theorems 3.2 and 3.3 we thus get:

Theorem 3.4 (characterization of hyper-minimized DFA’s). A finite state ac-
ceptor M = (Q, Σ, δ, qI, F) is hyper-minimized, i.e., it cannot be replaced by an
almost-equivalent M ′ using fewer states, if and only if, in M ,

(a) there does not exist an unreachable state qA; and
(b) there does not exist a pair of different but equivalent states qA ≡ qB; and
(c) there does not exist a pair of different but almost-equivalent states qA ∼

qB, such that at least one of them is in the preamble.

The above theorem should be compared with the classical characterization of min-
imized automata:

Fact 3.5. A finite state acceptor M = (Q, Σ, δ, qI, F) is minimized, i.e., it cannot
be replaced by an equivalent M ′ using fewer states, if and only if, in M ,

(a) there does not exist an unreachable state qA; and
(b) there does not exist a pair of different but equivalent states qA ≡ qB.

3.2. Structural similarities

It is well-known that, up to isomorphism, the minimized acceptor is unique for
each regular language. This can be formulated as follows.

HYPER-MINIMIZED AUTOMATA 81

� �� �� �

a a

b b

b ba a

��� ���

� �� �A A′B B′

��� ��	

Figure 4. An example of two hyper-minimized almost-
equivalent automata without any preambles yet not isomorphic.
The machines do not agree in acceptance of ε. The only pos-
sible mapping of states that preserves accepting states does not
preserve initial states.

Fact 3.6. If two minimized acceptors M = (Q, Σ, δ, qI, F) and M ′ = (Q′, Σ, δ′, q′I, F
′)

are equivalent, then they are isomorphic, i.e., there exists a function h : Q → Q′

with the following properties.
(a) The function is a bijection, i.e.,

∗ if qA �= qB, then h(qA) �= h(qB), for each qA, qB ∈ Q;
∗ for each q′ ∈ Q′, there exists a q ∈ Q such that h(q) = q′.

(b) The function preserves the machine’s behavior, i.e.,
∗ h(qI) = q′I,
∗ h(δ(q, a)) = δ′(h(q), a), for each q ∈ Q and a ∈ Σ,
∗ h(q) ∈ F ′ if and only if q ∈ F , for each q ∈ Q.

The converse of Fact 3.6 holds as well: two isomorphic machines are equivalent.
The corresponding properties for hyper-minimized machines are not so perfectly

beautiful. We can find examples in which the given minimized n-state automa-
ton M can be replaced by several different hyper-minimized machines, all of them
using the same number of states, below n, but each accepting a separate language
finitely-different from the original L(M). (See the example shown in Figs. 1–3.
Below Fig. 3, you will find a hint saying how to obtain another hyper-minimized
automaton accepting another finitely different language.) Nevertheless, such ma-
chines can differ only in 1 edges leaving the preamble for the kernel, 2 acceptance-
values for states in the preamble, or 3 initial states, if the preamble is empty, not
containing any state. (Such an example is shown in Fig. 4.)

Roughly speaking, the kernels of two almost-equivalent hyper-minimized ma-
chines are isomorphic in the standard way and their preambles are also isomorphic,
except for acceptance values.

The next theorem introduces such mapping.

Theorem 3.7 (morphism keeping almost-equivalence). For each two almost-
equivalent DFA’s M = (Q, Σ, δ, qI, F) and M ′ = (Q′, Σ, δ′, q′I, F ′), there exists a
function h : Q → Q′ with the following properties.

(a) If q ∈ P , then q ∼ h(q). If q ∈ K, then q ≡ h(q).
(b) If q ∈ K, then h(q) ∈ K ′.

(Here P, P ′ denote the respective sets of preamble states in M, M ′ and, similarly,
K, K ′ their respective sets of kernel states.)

82 A. BADR, V. GEFFERT AND I. SHIPMAN

Proof. The argument uses the mapping presented already in the proof of The-
orem 3.3. Let QR = {q1, q2, . . . , qm} be the set of all reachable states in M ,
with qI = q1. Now we can find a sequence of inputs w1, w2, . . . , wm satisfying
qi = δ(qI, wi), for each i = 1, 2, . . . , m. To avoid any ambiguity, these strings are
chosen as follows:

• If qi is in P , the preamble of M , let wi be the first string such that
qi = δ(qI, wi).

• If qi is in K, the kernel of M , let wi be the first string of length |wi| ≥
‖Q‖ · ‖Q′‖ satisfying qi = δ(qI, wi).

In “our” string ordering, a shorter string always precedes the longer one, and
strings of equal length go in lexicographic order. (For example, bb < aba < bba.)
Now we are ready to introduce the function h : Q → Q′. Let

• h(qi) = δ′(q′I, wi), for i = 1, 2, . . . , m;
• h(q) = q′I, for each unreachable state q ∈ Q.

It only remains to prove (a) and (b).
First, for each qi ∈ P , using Lemma 2.9, we get qi ∼ h(qi), since qi = δ(qI, wi),

h(qi) = δ′(q′I, wi), and qI ∼ q′I. Similarly, for each qi ∈ K, using the fact that then
|wi| ≥ ‖Q‖ · ‖Q′‖, we get that qi ≡ h(qi), by Theorem 3.1.

Finally, if qi ∈ K, then h(qi) = δ′(q′I, wi) is reachable from the initial state in M ′

by a string of length |wi|≥‖Q‖·‖Q′‖≥‖Q′‖. Therefore, the computation path read-
ing wi must repeat some states, which gives, by Lemma 2.12, that h(qi) ∈ K ′. �

If, moreover, the above two automata are classically minimized, then the func-
tion h becomes a classical isomorphism between their kernel parts.

Theorem 3.8 (kernel isomorphism). For each two minimized almost-equivalent
DFA’s M = (Q, Σ, δ, qI, F) and M ′ = (Q′, Σ, δ′, q′I, F

′), there exists a function
h : Q → Q′ satisfying, besides the conditions (a) and (b) of Theorem 3.7, also the
following conditions.

(c) Between the kernel parts, the function is a bijection.
∗ If q ∈ K, then h(q) ∈ K ′.
∗ For each qA, qB ∈ K, qA �= qB implies that h(qA) �= h(qB).
∗ For each q′ ∈ K ′, there exists a q ∈ K such that h(q) = q′.

(d) In the kernels, the function preserves the machine’s behavior, except for
the initial states.
∗ For each q ∈ K and a ∈ Σ, h(δ(q, a)) = δ′(h(q), a).
∗ For each q ∈ K, h(q) ∈ F ′ if and only if q ∈ F .

Proof. The function h can be obtained by the use of Theorem 3.7. We only have
to show that it satisfies the conditions (c) and (d).

First, in Theorem 3.7, we already proved that h(q) ∈ K ′ if q ∈ K. Now we
shall show that

(I) if qA �= qB, then h(qA) �= h(qB), for each qA, qB ∈ K.
Suppose that h(qA) = h(qB). Then, by (a) in Theorem 3.7, we get that qA ≡
h(qA) = h(qB) ≡ qB, that is, qA ≡ qB. By Fact 3.5, the automaton M , being

HYPER-MINIMIZED AUTOMATA 83

minimized, does not have a pair of different but equivalent states. Thus, qA = qB.
Therefore, qA �= qB implies h(qA) �= h(qB), for each qA, qB ∈ K.

As a straightforward consequence, by combining (I) with (b) in Theorem 3.7,
we easily get that ‖K‖ ≤ ‖K ′‖. However, all reasonings above were symmetrical:
by swapping the roles of M and M ′, we can obtain a dual function ĥ : Q′ → Q with
the analogous properties, which results in ‖K ′‖ ≤ ‖K‖. Therefore, ‖K‖ = ‖K ′‖.

By combining (b) in Theorem 3.7 with (I) and ‖K‖ = ‖K ′‖, we get that, for
each q′ ∈ K ′, there must exist a q ∈ K such that h(q) = q′. This completes the
argument for the item (c).

Recall that, by (a) in Theorem 3.7, q ≡ h(q), for each state q ∈ K. But then
δ(q, a) ≡ δ′(h(q), a), for each symbol a ∈ Σ, using Fact 2.7. Clearly, if q ∈ K, then
also δ(q, a) ∈ K, and hence δ(q, a) ≡ h(δ(q, a)), using (a) in Theorem 3.7 again.
Combining these facts together, we obtain that h(δ(q, a)) ≡ δ′(h(q), a).

But M ′ is minimized and hence, in M ′, there does not exist a pair of different
but equivalent states, by Fact 3.5. Therefore, h(δ(q, a)) = δ′(h(q), a).

Finally, for each q ∈ K, q ≡ h(q), by (a) in Theorem 3.7, and hence q ∈ F if and
only if h(q) ∈ F ′, by Fact 2.7. This completes the argument for the item (d). �

Finally, the highest degree of similarity can be found between two almost-
equivalent hyper-minimized machines. Besides isomorphic kernels, their preambles
are isomorphic as well, except for acceptance-values in preambles.

Theorem 3.9 (preamble isomorphism). For each two hyper-minimized almost-
equivalent DFA’s M = (Q, Σ, δ, qI, F) and M ′ = (Q′, Σ, δ′, q′I, F

′), there exists
a function h :Q → Q′ satisfying, besides the conditions (a)–(d) of Theorems 3.7
and 3.8, also the following conditions.

(e) Between the preamble parts, the function is a bijection.
∗ If q ∈ P , then h(q) ∈ P ′.
∗ For each qA, qB ∈ P , qA �= qB implies that h(qA) �= h(qB).
∗ For each q′ ∈ P ′, there exists a q ∈ P such that h(q) = q′.

(f) In the preambles, the function preserves the machine’s behavior, except
for acceptance and edges leaving the preamble.
∗ If qI ∈ P , then h(qI) = q′I.
∗ For each q ∈ P and a ∈ Σ satisfying δ(q, a) ∈ P , h(δ(q, a)) =

δ′(h(q), a).

Proof. The function h can again be obtained by the use of Theorem 3.7. By
Theorems 3.7 and 3.8, we already have an argument for (a)–(d), since hyper-
minimized automata are also minimized. It only remains to prove (e) and (f).

First, we need a little stronger statement than the corresponding claim in (e):
(I) if qA �= qB, then h(qA) �= h(qB), for each qA, qB ∈ Q.

Supposing that h(qA) = h(qB), we get, by (a) in Theorem 3.7, that qA ∼ h(qA) =
h(qB) ∼ qB, which gives qA ∼ qB. By Theorem 3.4, the hyper-minimized automa-
ton M does not have a pair of different but almost-equivalent states, such that
at least one of them is in the preamble. Thus, if at least one of the states qA,
qB is in the preamble, we have qA = qB. If both these states are in the kernel,

84 A. BADR, V. GEFFERT AND I. SHIPMAN

we get qA = qB by the use of (c) in Theorem 3.8. Therefore, if qA �= qB, then
h(qA) �= h(qB), for each qA, qB ∈ Q, and hence also for each qA, qB ∈ P .

Using (c) in Theorem 3.8, we can also conclude that if q �∈ K, then h(q) �∈ K ′.
Otherwise, for h(q) = q′ ∈ K ′, we get h(q) = q′ = h(q′′), for some q′′ ∈ K.
Since q �∈ K but q′′ ∈ K, we have q �= q′′ together with h(q) = h(q′′). But this
contradicts (I). Therefore, if q ∈ P , then h(q) ∈ P ′.

As a straightforward consequence of (I), we have ‖Q‖ ≤ ‖Q′‖. Since all rea-
sonings above were symmetrical, we get also ‖Q′‖ ≤ ‖Q‖, by swapping the roles
of M and M ′. Therefore, ‖Q‖ = ‖Q′‖. But then, using ‖K‖ = ‖K ′‖ shown in
Theorem 3.8, we have ‖P‖ = ‖P ′‖.

By combining ‖Q‖ = ‖Q′‖ with (I), we can easily see that, for each q′ ∈ Q′,
there must exist a q ∈ Q such that h(q) = q′. Moreover, if q′ ∈ P ′, then q ∈ P .
Otherwise we would have q ∈ K, which would imply, by (b) in Theorem 3.7, that
h(q) = q′ ∈ K ′, a contradiction. Therefore, for each q′ ∈ P ′, there must exist a
q ∈ P such that h(q) = q′. This completes the argument for the item (e).

Now, assume that qI ∈ P . By (a) in Theorem 3.7, qI ∼ h(qI). In addition,
qI ∼ q′I, since M and M ′ are almost-equivalent machines. Therefore, q′I ∼ h(qI).

Using (e), we also get that h(qI) ∈ P ′. But M ′ is hyper-minimized an hence,
in M ′, there does not exist a pair of different but almost-equivalent states, such that
at least one of them is in the preamble, by Theorem 3.4. Therefore, if q′I ∼ h(qI)
and h(qI) ∈ P ′, then q′I = h(qI).

Recall that, by (a) in Theorem 3.7, q ∼ h(q), for each state q ∈ P . But
then δ(q, a) ∼ δ′(h(q), a), for each symbol a ∈ Σ, by Lemma 2.10. Now assume
that δ(q, a) ∈ P . This gives δ(q, a) ∼ h(δ(q, a)), using (a) in Theorem 3.7 again.
Combining these facts together, we obtain that h(δ(q, a)) ∼ δ′(h(q), a).

Finally, using (e), we see that if δ(q, a) ∈ P , then h(δ(q, a)) ∈ P ′. But M ′ is
hyper-minimized and hence, if h(δ(q, a)) ∼ δ′(h(q), a) and h(δ(q, a)) ∈ P ′, then
h(δ(q, a)) = δ′(h(q), a). This holds for each q ∈ P and a ∈ Σ satisfying δ(q, a) ∈ P .
This completes the argument for the item (f). �
Remark 3.10. The converse of Theorem 3.9 does not hold in general. With
empty preambles, two hyper-minimized automata can recognize infinitely different
languages and, at the same time, they can have a function h : Q → Q′ satisfying
the conditions (a)–(f) of Theorems 3.7–3.9. (Consequently, the same applies to
Ths. 3.7 and 3.8.)

Moreover, there exist hyper-minimized automata with nonempty isomorphic
preambles and, at the same time, nonempty isomorphic kernels, for some func-
tion h satisfying the conditions (b)–(f), such that they differ in acceptance on
infinitely many inputs.
Proof. First, consider the following two unary languages: L1 = {bk : k is even}
and L2 = {bk : k is odd}. Clearly, these two languages are infinitely different. The
unique minimized automata for L1 and L2 use the same cycle counting modulo
two, the only difference is in their initial states. By Corollary 3.11, shown below,
these two machines are already hyper-minimized. The only mapping preserving
acceptance satisfies also the conditions (a)–(f). Since there are no states in the
preambles, several conditions are satisfied automatically.

HYPER-MINIMIZED AUTOMATA 85

Now consider the following two binary languages: L′
1 = {abk : k is even} and

L′
2 = {abk : k is odd}. Let M1 and M2 be the respective unique minimized

automata for L′
1 and L′

2. Each of these machines uses one state in the preamble,
namely, the initial state, and three states in the kernel: two states in a loop
counting b’s modulo 2, and a single-state loop discarding inputs containing two or
more a’s or beginning with b.

These machines are already hyper-minimized. (Hint: using abi or bi, for i ≥ 0,
we get two infinite distinguishing sequences of inputs, suitable for each pair of
states in M1 and M2. We leave the details to the reader.)

It is also quite easy to find a mapping h satisfying the conditions (b)–(f). There-
fore, the preamble as well as the kernel parts of M1 and M2 are isomorphic, but
the languages differ on infinitely many strings. �

As already pointed out earlier, a hyper-minimized machine M is also minimized,
for the language L(M). (Compare Th. 3.4 with Fact 3.5.) The converse statement
does not hold in general, since a minimized M can potentially be replaced by a new
machine with even fewer states, accepting a language finitely-different from L(M).
(For examples, see Figs. 1–3, or Th. 3.13.)

In many cases, the following simple statement can be used to guarantee that
the given machine is not only minimized, but also hyper-minimized.

Corollary 3.11. Let M = (Q, Σ, δ, qI, F) be a minimized DFA with a cycle begin-
ning and ending in its initial state. Then M is already hyper-minimized.
Proof. Since, in M , there exists a cycle beginning and ending in the initial state,
there are no states in the preamble. Therefore, M satisfies the conditions (a)–(c)
of Theorem 3.4. �

3.3. Unary automata

Now we shall focus our attention on unary regular languages, i.e., on automata
with a single letter input alphabet. Unary (tally) languages play an important role
in theoretical computer science, as languages with a very low information content.
Many of their properties are quite different from the general or binary case. (See,
e.g., [2,4–7,12].)

To simplify the notation, we fix Σ = {1} and present a single-step transition
δ(qA, 1) = qB in the form qA

1−→ qB.
It is obvious that the transition function of a unary automaton is determined by

two quantities, the length of the initial segment and the length of the subsequent
loop. Thus, unless there are some unreachable states, such automaton consists of

• an initial preamble ps
1−→ ps−1

1−→ ps−2 . . . p1
1−→ q0, reading the first

s symbols, where ps is the initial state, and q0 the first state of the
subsequent loop;

• a kernel loop q0
1−→ q1

1−→ q2 . . . q�−1
1−→ q0, counting modulo �,

for some s ≥ 0 and � ≥ 1. If already the initial state is a part of the kernel
loop, the length of the initial preamble is zero. Recall that two machines of the
same preamble and kernel loop lengths can still differ in the distribution of their
accepting states.

86 A. BADR, V. GEFFERT AND I. SHIPMAN

Though, in general, there may exist several different hyper-minimized almost-
equivalent machines, the hyper-minimized acceptor is always unique in the unary
case, up to isomorphism.

Theorem 3.12. Let M = (Q, {1}, δ, qI, F) and M ′ = (Q′, {1}, δ′, q′I, F ′) be two
almost-equivalent hyper-minimized finite state automata using a unary input al-
phabet. Then these two automata are equivalent and minimized (and hence iso-
morphic).

Proof. First, since M is hyper-minimized, it is also minimized. Second, it is easy
to see that the length of its initial preamble is zero. Otherwise, we would be able to
remove the preamble states ps, ps−1, . . . , p1 and use the loop state q(−s) mod � as a
new initial state. Clearly, the new machine would use fewer states and would agree
with M in acceptance on all inputs of length above s−1. But this contradicts the
fact that M is hyper-minimized. Therefore, M consists of a single cycle of length �
containing all states, beginning and ending in qI.

By the same argument, M ′ is also minimized and consists of a single cycle of
length �′, beginning and ending in q′I. It is also easy to see that �′ = � or else one
of the machines M , M ′ would not be hyper-minimized.

It only remains to show that these two automata are fully equivalent. Suppose,
for contradiction, that there exists a k ≥ 0 such that the input 1k is accepted by M
but rejected by M ′. Now, by taking the sequence 1k+1·�, 1k+2·�, 1k+3·�, . . . , we get
infinitely many inputs accepted by M but rejected by M ′. But this contradicts
the assumption that M and M ′ are almost-equivalent. Therefore, they must be
equivalent.

The existence of an isomorphic mapping h : Q → Q′ follows from Fact 3.6. �

3.4. Descriptional complexity

Clearly, if a minimized automaton uses some n states, then its hyper-minimized
almost-equivalent counterpart(s) will use some m ≤ n states. A natural question
arising here is whether there exists some upper bound on the number of states
we can save by allowing a potentially different acceptance for a finite number of
inputs. The answer is negative. We can actually show the complete state hierarchy
for this relation, using even unary witness languages.

Theorem 3.13. Let m ≤ n be two positive integers. Then there exists a (unary)
regular language L such that the unique minimized acceptor recognizing L uses
exactly n states, but the unique hyper-minimized acceptor recognizing a language
finitely-different from L uses exactly m states.

Proof. Assume first that m < n. Let s = n−m. Now, consider an automaton M
consisting of

• an initial preamble ps
1−→ ps−1

1−→ ps−2 . . . p1
1−→ q0, reading the first

s symbols, where ps is the initial state, and q0 the first state of the
subsequent loop;

• a kernel loop q0
1−→ q1

1−→ q2 . . . qm−1
1−→ q0, counting modulo m;

• finally, the only accepting state is qm−1.

HYPER-MINIMIZED AUTOMATA 87

It can be easily seen that M accepts the language L = {1(s+m−1)+ k·m : k ≥ 0},
using exactly s+m = n states. This number cannot be reduced, since the shortest
string in L is of length s+m−1 = n−1. (It should be clear that each automaton
with fewer states must accept an input shorter than n−1. The only exception is
an automaton accepting the empty set.) Therefore, M is minimized.

Now, remove the preamble states ps, ps−1, . . . , p1 and make the new initial state
from the state q(−s) mod m. This gives a new automaton M ′ using exactly m states
and accepting the language L′ = {1k : k mod m = (s+m−1) mod m}. Clearly, L′ is
only finitely different from L and hence M ′ is almost-equivalent to M . Second,
there are neither unreachable states nor pairs of equivalent states in M ′, since
M ′ consists of a single cycle in which only a single state is accepting. Therefore,
M ′ is the unique minimized acceptor for L′. Finally, there is a cycle beginning
and ending in the initial state of M ′ which gives, by Corollary 3.11, that M ′ is
also hyper-minimized. That is, no additional finite-difference from L saves a single
state. This completes the argument for m < n.

If m = n, we can use the language L′′ = {1k : k mod n = 0}. It is obvious that
the unique minimized automaton accepting L′′ consists of a single cycle counting
modulo n, where the only accepting state is the initial state. This automaton is
also hyper-minimized, by Corollary 3.11, and hence M coincides with M ′ here. �

4. Algorithm for hyper-minimization of DFA’s

Now we are ready to present an algorithm that constructs, for each given finite
state acceptor M , a hyper-minimized acceptor almost-equivalent to the original.
More precisely, the algorithm will give one of possible solutions, since the hyper-
minimized machine is not necessarily unique. Let M = (Q, Σ, δ, qI, F) be a DFA.
Then:

(a) The given automaton M is made minimized, that is, if there exist unreach-
able states or pairs of equivalent states, they are removed. This can be done in
the standard way [8], known for decades [9,11,13].

(b) For future use, in Step (c), reachability in the transition graph is analyzed.
Let Q = {q1, q2, . . . , qn}, with qI = q1. We first build a Boolean n × n matrix E,
with ei,j = 1 if and only if δ(qi, α) = qj , for some string α ∈ Σ∗, α �= ε. That is,
ei,j = 1 if and only if qj is reachable from qi, ruling out trivial paths of length zero.
For more details about computing reachability in graphs or Boolean transitive
closure, the reader is referred to [1,3].

(c) Distinguish preamble states from kernel states. (Having executed Step (a),
we have no unreachable states.) Therefore, we compute a Boolean vector K, in
which ki = 1 if and only if qi is in the kernel. By Lemma 2.12, this only requires
to determine, for each qi ∈ Q, whether there exists a qj ∈ Q such that e1,j = 1,
ej,j = 1, and ej,i = 1.

(d) Now we need to determine which states are almost-equivalent. By Lem-
ma 2.8, we do not have to keep this kind of information about each pair of states.
Instead, we shall keep a partition of the state set into Q = Q1 ∪Q2 ∪ . . .∪Qr, for

88 A. BADR, V. GEFFERT AND I. SHIPMAN

some r ≥ 1, such that each two states belonging to the same subset Qi are already
known to be almost-equivalent. The list Q1, Q2, . . . , Qr can be implemented, e.g.,
as an integer vector P , in which pi = j reflects the fact that qi ∈ Qj. (In a more
sophisticated and more efficient implementation, one can utilize a data structure
used to solve the so called Union-Find Problem [1].) Initially, we take Q = {q1} ∪
{q2} ∪ . . . ∪ {qn}.

After that, we look for a state pair qi1 , qi2 not known to be almost-equivalent,
but for which all respective direct descendants are almost-equivalent. That is, the
algorithm searches for some qi1 ∈ Qi1 and qi2 ∈ Qi2 , with i1 �= i2, such that, for
each a ∈ Σ, both δ(qi1 , a) and δ(qi2 , a) are contained in the same set Qja . If such
pair is found, the sets Qi1 and Qi2 are replaced in the list Q1, Q2, . . . , Qr by a
single new set Qi1 ∪Qi2 . This process is repeated until the moment when no new
state pair can be found for set merging. Clearly, this is never repeated more that
n−1 times.

Using Lemma 2.10, one can easily show that, in the course of computation,
any two states belonging to the same set Qi in the list Q1, Q2, . . . , Qr are indeed
almost-equivalent. That is, the algorithm does not produce a “wrong” partition
of the states.

Moreover, the algorithm does not terminate “prematurely”, with some states
qA ∼ qB still belonging to some different sets in the list Q1, Q2, . . . , Qr. This follows
from Theorem 3.1: if qA ∼ qB, then, for each α ∈ Σ∗ of length |α| ≥ n2, we have
δ(qA, α) ≡ δ(qB, α), and hence also δ(qA, α) = δ(qB, α), since equivalent states have
already been removed in Step (a). Therefore, if we consider the two trees of all
possible descendants of qA and qB in parallel, these two trees must contain some
q′A ∼ q′B also belonging to different sets in Q1, Q2, . . . , Qr, but for which all their
direct descendants are “already known” to be almost-equivalent. Therefore, the
algorithm cannot stop at this moment, if nothing else, the pair q′A, q′B is detected
for set merging.

(e) Finally, we can take out the useless states. Roughly speaking, all transitions
ending in a useless state qA are “redirected” from qA to a substitute state qB. The
state qA itself is removed. The detailed construction has been presented in the
proof of Theorem 3.2. As already shown in this proof, the modified machine
accepts a finite variation of the original language, if the following conditions are
satisfied: qA ∼ qB, qA is in the preamble, and qA is not reachable from qB. (See
also item (I) in this proof, remarks below this proof, as well as Lem. 2.13.)

Using these ideas, we can process the list Q1, Q2, . . . , Qr (now dividing Q into
classes of almost-equivalent states) in the following way.

• If, for some i, the set Qi consists of kernel states only, or if it contains a
single state, no states can be saved in Qi. Recall that the kernel states are
distinguished by the use of the Boolean vector K, computed in Step (c).

• If the set Qi contains both preamble and kernel states, pick an arbitrary
kernel state qB ∈ Qi and redirect, for each preamble state qA ∈ Qi, all
edges ending in qA from qA to qB. The state qA is removed. Clearly, qA is
not reachable from qB or else qA would also be in the kernel.

HYPER-MINIMIZED AUTOMATA 89

• Finally, if all states in Qi are in the preamble, then pick an arbitrary
state qB ∈ Qi and redirect, for each state qA ∈ Qi\{qB}, all edges ending
in qA from qA to qB. The state qA is removed. By Lemma 2.14, qA is not
reachable from qB or else there would exist a kernel state qC ∈ Qi, which
is a contradiction.

It should be pointed out that, by Theorem 3.4, the automaton produced by the
above algorithm cannot be beaten by any other automaton, even after allowing
any additional finite variations of the original language. It is also relatively easy
to derive that the above algorithm runs in O(n3 ·m) time, where n = ‖Q‖ and
m = ‖Σ‖. This gives an O(n3) algorithm for automata with binary inputs.

5. Hyper-minimized transducers

With minor modifications, most of the results presented in the sections above
can be updated for finite state transducers, i.e., for automata that do not recognize
languages, but produce some outputs.

Equivalent transducers can be defined in the standard way, i.e., they must
produce the same output for each given input. Almost equivalent transducers
must produce the same sequence of output symbols after an initial “probation
period” taking only a fixed amount of time. The length of probation period is
independent from the length of input. This can be formalized as follows.

Definition 5.1. A deterministic finite state transducer is a 6 -tuple M = (Q, Σ, Δ,
δ, π, qI), where Q denotes a finite set of states, Σ a finite set of input symbols,
Δ a finite set of output symbols, δ : Q × Σ → Q is a transition function, π :
Q × Σ → Δ an output function, and qI ∈ Q is an initial state.

In one move, M reads an input symbol a ∈ Σ, changes its state from q to
q′ = δ(q, a), as usual, but produces also one symbol to the output, namely, b =
π(q, a) ∈ Δ.

The transition function δ is again extended to δ : Q × Σ∗ → Q in the standard
way, so that δ(q, α1α2) = δ(δ(q, α1), α2). Similarly, the output function π is ex-
tended to π : Q × Σ∗ → Δ∗, so that, for each q ∈ Q and α1, α2 ∈ Σ∗, we have
π(q, α1α2) = π(q, α1) · π(δ(q, α1), α2).

Therefore, the machine M computes the function fM(α) = π(qI, α).

Definition 5.2. In a deterministic transducer, two states qA and qB are equivalent,
denoted by qA ≡ qB, if, for each α ∈ Σ∗, we have π(qA, α) = π(qB, α).

We say that two strings α = a1 . . . an and β = b1 . . . bn are k-equal, for some
k ≥ 1, which will be denoted by α ≈k β, if ak . . . an = bk . . . bn. By definition, we
take ak . . . an = ε for n < k, and hence all strings shorter than k are k-equal, if
they are of equal length.

Two states qA and qB are almost-equivalent, denoted by qA ∼ qB, if there exists
a k ≥ 1 such that, for each α ∈ Σ∗, we have π(qA, α) ≈k π(qB, α).

The above definition is extended to pairs of states belonging to different ma-
chines, but using the same input and output alphabets, in the same way as in the

90 A. BADR, V. GEFFERT AND I. SHIPMAN

case of finite state acceptors. That is, having given M1 = (Q1, Σ, Δ, δ1, π1, qI,1) and
M2 = (Q2, Σ, Δ, δ2, π2, qI,2), the states in Q = Q1 ∪ Q2 are (almost-) equivalent,
if they are (almost-) equivalent in the automaton M = (Q, Σ, Δ, δ, π, qI,1), where
δ(q, a) = δ1(q, a) if q ∈ Q1, but δ(q, a) = δ2(q, a) if q ∈ Q2, and π(q, a) = π1(q, a)
if q ∈ Q1, but π(q, a) = π2(q, a) if q ∈ Q2.

Definition 5.3. Two deterministic finite state transducers M1 and M2 are equiv-
alent, denoted by M1 ≡ M2, if qI,1 ≡ qI,2. Similarly, M1 and M2 are almost-
equivalent, denoted by M1 ∼ M2, if qI,1 ∼ qI,2.

In other words, equivalent machines produce equal outputs, and hence fM1 = fM2 .
On the other hand, almost-equivalent machines agree in outputs after an initial
“probation period”, that is, there exists a k ≥ 1 such that, for each α ∈ Σ∗,
fM1(α) ≈k fM2(α), which can be denoted by fM1 ∼ fM2 .

Minimal and hyper-minimized transducers can be defined in the standard way:

Definition 5.4. The finite state transducer M is said to be minimized, if no trans-
ducer M ′ with fewer states is equivalent to M . Similarly, M is hyper-minimized,
if no M ′ with fewer states is almost-equivalent to M .

Clearly, β1 = β2 if and only if β1 ≈1 β2, and hence equivalent transducers are
also almost-equivalent. For the same reason, a hyper-minimized transducer M is
also minimized, for the function fM .

It should be obvious that many properties of finite state acceptors can be trans-
lated literally into a language of transducers, like, e.g., Facts 2.5, 2.6, Lemma 2.8,
Definition 2.11, and Lemmas 2.12–2.14. Some of them require only a slightly dif-
ferent formulation or a slightly modified argument. The next two statements are
counterparts of Fact 2.7 and Lemma 2.9, respectively.

Fact 5.5. qA ≡ qB if and only if
(a) for each a ∈ Σ, δ(qA, a) ≡ δ(qB, a), and
(b) for each a ∈ Σ, π(qA, a) = π(qB, a).

Lemma 5.6. If qA ∼ qB, then for each α ∈ Σ∗, δ(qA, α) ∼ δ(qB, α).

Proof. Suppose that, for some α̃ ∈ Σ∗, the state q′A = δ(qA, α̃) is not almost-equiv-
alent to q′B = δ(qB, α̃). Using Definition 5.2, we get that, for each k ≥ 1, there
exists an αk ∈ Σ∗ such that π(q′A, αk) �≈k π(q′B, αk). Therefore, we have an infinite
sequence of inputs α1, α2, . . . such that, for each k = 1, 2, . . . , the output strings
π(q′A, αk) and π(q′B, αk) differ in at least one symbol produced after the (k−1)-th
computation step.

Now, by taking α̃α1, α̃α2, . . . , we get an infinite sequence such that, for each k =
1, 2, . . . , the outputs π(qA, α̃αk) and π(qB, α̃αk) also differ in a symbol produced
after the (k−1)-th computation step. Therefore, for each k ≥ 1, we have an input
α̃αk ∈ Σ∗ with π(qA, α̃αk) �≈k π(qB, α̃αk), which gives qA �∼ qB.

Summing up, if δ(qA, α̃) �∼ δ(qB, α̃), for some α̃ ∈ Σ∗, then qA �∼ qB. �
In the same spirit, we can rework the proofs of Lemma 2.10 and Theorem 3.1.

With this tools in our hands, we can easily obtain the following counterpart of
Theorem 3.4.

HYPER-MINIMIZED AUTOMATA 91

Theorem 5.7. A finite state transducer M is hyper-minimized if and only if,
in M ,

(a) there does not exist an unreachable state qA; and
(b) there does not exist a pair of different but equivalent states qA ≡ qB; and
(c) there does not exist a pair of different but almost-equivalent states qA ∼ qB,

such that at least one of them is in the preamble.

Without (c), this gives a characterization of minimized transducers, a counterpart
of Fact 3.5.The argument combines the ideas presented in proofs of Theorems 3.2
and 3.3 with obvious differences. Here we take into account sequences of symbols
produced to the output rather than the sequences of acceptance-values, but still
using the same computation paths. (Cf. proofs of Lems. 5.6 and 2.9.)

We content ourselves with pointing out how transitions ending in a state qA are
redirected to another state qB. The new transducer is M ′ = (Q\{qA}, Σ, Δ, δ′, π′, q′I),
where

δ′(q, a) =
{

δ(q, a), if δ(q, a) �= qA,
qB, if δ(q, a) = qA,

π′(q, a) = π(q, a),

q′I =
{

qI, if qI �= qA,
qB, if qI = qA,

for each q ∈ Q\{qA} and a ∈ Σ. (Compare with the construction presented in the
proof of Th. 3.2.)

The new modified machine agrees in the sequence of output symbols after an
initial period taking only a fixed amount of time, if the following conditions are
satisfied: qA ∼ qB, qA is in the preamble, and qA is not reachable from qB. By
Lemma 2.13, this can be used if the condition (c) of Theorem 5.7 does not hold,
i.e., if there does exist a pair of different but almost-equivalent states qA ∼ qB,
such that at least one of them is in the preamble.

As in the case of finite state acceptors, the minimized transducers are unique, up
to isomorphism. It is not too complicated to find examples in which the given min-
imized n-state transducer M can be replaced by several different hyper-minimized
machines, all of them using the same number of states, below n, but each com-
puting a different function fM′ ∼ fM .

Theorem 5.8. Let M = (Q, Σ, Δ, δ, π, qI) and M ′ = (Q′, Σ, Δ, δ′, π′, q′I) be two
almost-equivalent hyper-minimized finite state transducers. Then there exists a
function h : Q → Q′ with the following properties.

• If q ∈ P , then q ∼ h(q). If q ∈ K, then q ≡ h(q).
• Between the preamble parts, the function is a bijection: 1 if q ∈ P , then

h(q) ∈ P ′, 2 for each qA, qB ∈ P , qA �= qB implies that h(qA) �= h(qB),
and 3 for each q′ ∈ P ′, there exists a q ∈ P such that h(q) = q′.

• Between the kernel parts, the function is a bijection: 1 if q ∈ K, then
h(q) ∈ K ′, 2 for each qA, qB ∈ K, qA �= qB implies that h(qA) �= h(qB),
and 3 for each q′ ∈ K ′, there exists a q ∈ K such that h(q) = q′.

92 A. BADR, V. GEFFERT AND I. SHIPMAN

• In the kernels, the function preserves the machine’s behavior, except for
the initial states: h(δ(q, a)) = δ′(h(q), a) and π(q, a) = π′(h(q), a), for
each q ∈ K and a ∈ Σ.

• In the preambles, the function preserves the machine’s behavior, except
for produced outputs and edges leaving the preamble: 1 h(qI) = q′I, pro-
vided that qI ∈ P , and 2 h(δ(q, a)) = δ′(h(q), a), for each q ∈ P and
a ∈ Σ satisfying δ(q, a) ∈ P .

A little bit surprisingly, the algorithm for hyper-minimization of transducers is al-
most identical with the algorithm presented in Section 4. More precisely, Steps (b)–
(e), converting a minimized automaton into an almost-equivalent hyper-minimized
machine, are exactly the same. The existence of an output function π is simply
ignored here, the set of final states F is not utilized.

The only difference is in Step (a), performing the classical minimization. First,
unreachable states are removed in the standard way.

But, in order to remove equivalent states, a slightly different initialization is re-
quired. Recall that the standard minimizing algorithm [8], Section 4.4.3 partitions
the states into blocks, so that all states in the same block are equivalent, and no
pair of states from different blocks are equivalent. Initially, the partition consists
of two blocks only, the first one contains all accepting states, the second one all
remaining states. For finite state transducers, we use Fact 5.5 instead of Fact 2.7.
Therefore, the initial partition may consist of more than two blocks. Initially, qA

and qB are in the same block if and only if, for each a ∈ Σ, π(qA, a) = π(qB, a).
From this point forward, all subsequent iterations of the algorithm refining this
initial partition proceed in the standard way, using only the transition function δ.
The output function π or the set of final states F are no longer required.

6. Concluding remarks

We have devised a polynomial-time hyper-minimization algorithm that reduces
a given deterministic finite state automaton into a hyper-minimized automaton,
which may have fewer states than the classically minimized DFA. The language
it accepts is only finitely different from the original. For each m ≤ n, we can
find an example of a minimized n-state automaton for which its hyper-minimized
almost-equivalent variant uses exactly m states. In Theorem 3.4, we gave a char-
acterization of hyper-minimized automata that may serve as a simple tool for
testing hyper-minimality. (With small modifications, all constructions work for
finite state transducers as well.)

The hyper-minimized automaton is not necessarily unique: in general, there
may exist several different hyper-minimized machines, all of them using the same
number of states, but each accepting a separate language finitely-different from
the original one. In particular, acceptance values in the preamble may differ,
transitions from the preamble to the kernel can change in restricted ways, and
if the preamble is empty, the starting states might differ. However, there are

HYPER-MINIMIZED AUTOMATA 93

always large structural similarities among all these machines. In the unary case,
the hyper-minimized automaton is always unique.

The properties of hyper-minimized automata led us to the finite-difference rela-
tion between two languages, introduced by Definition 2.3b, which is an equivalence
relation. For example, if L1 ∼ L2 and L2 ∼ L3, then L1 ∼ L3. Note also that
the set of regular languages is closed under finite difference: if L1 is regular and
L1 ∼ L2, then L2 is regular. By this relation, the family of regular languages
is partitioned into equivalence classes. As shown by Theorem 3.8, the common
property of all languages within the same class is that the kernel parts of their
minimized DFAs are isomorphic. From this point of view, the hyper-minimization
algorithm finds, for each given automaton, an automaton that has the fewest states
but accepts a language within the same class. Because of non-uniqueness, each
class can have more than one such smallest member.

These smallest members constitute another language family, having at least one
representative in each equivalence class under the finite difference relation. We can
call it the family of canonical regular languages. A regular language L is canonical
if the unique minimized automaton accepting L is already hyper-minimized. In
other words, L is one of the smallest members within its equivalence class under
the finite difference relation: each L′ that can be accepted by a machine with fewer
states must be infinitely different from L.

The standard complexity measure of a regular language L, used in the litera-
ture, is its state complexity, denoted by s(L) and defined as the number of states
of a minimized deterministic finite automaton for L. Taking into account the re-
sults presented above, it makes sense to consider also s∗(L), an asymptotic state
complexity, defined as the number of states of a hyper-minimized automaton for a
language finitely-different from L. In a way, this measure factors out a finite ini-
tial subset and concentrates on how complex is the core of the regular language L.
(For example, s∗(L)=1 for each finite or co-finite language L.)

We shall conclude this paper by presenting some open problems of theoretical
and practical interest:

• What are the closure properties of canonical regular languages? We only
know that this family forms a proper subset in the class of all regular
languages and that it is closed under complement.

• Similarly, we know next to nothing about the asymptotic state com-
plexity. For example, having given L1 and L2, what can be told about
s∗(L1∪L2)?

• Nothing is known about hyper-minimized machines for other models, like
nondeterministic, alternating, or two-way automata.

• Find a more efficient hyper-minimization algorithm. The algorithm de-
scribed in Section 4 takes O(n3·m) time, where n is the number of states
and m the size of the input alphabet. This is relatively far from the
O(n · log n) of standard minimization [9], and we strongly believe that
this can be improved.

• Since there may exist several different hyper-minimized machines, it might
be useful to design an algorithm that picks from among them the best

94 A. BADR, V. GEFFERT AND I. SHIPMAN

one according to some second-order criterion, e.g., minimizing also the
number of changed strings, or minimizing the size of the longest string
with changed acceptance.

• In many practical applications, we may know a priori that a string shorter
than some fixed value k will never be tested for membership. Devise an
algorithm that constructs, for each given automaton M and each given
k ≥ 0, an automaton M ′ that does not differ in acceptance on inputs of
length |α| ≥ k, minimizing the number of states in M ′. Clearly, the size
of M ′ monotonically decreases in k, varying within the limits given by
the sizes of minimized and hyper-minimized automata.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algo-
rithms. Addison-Wesley (1976).

[2] A. Bertoni, C. Mereghetti and G. Pighizzini, An optimal lower bound for nonregular lan-
guages. Inform. Process. Lett. 50 (1994) 289–292. (Corrigendum: Inform. Process. Lett. 52
(1994) 339).

[3] G. Brassard and P. Bratley, Fundamentals of Algorithmics. Prentice Hall (1996).
[4] M. Chrobak, Finite automata and unary languages. Theoret. Comput. Sci. 47 (1986) 149–

158. (Corrigendum: Theoret. Comput. Sci. 302 (2003) 497–498).
[5] V. Geffert, (Non)determinism and the size of one-way finite automata, in Proc. Descr.

Compl. Formal Syst. IFIP & Univ. Milano (2005) 23–37.
[6] V. Geffert, Magic numbers in the state hierarchy of finite automata, in Proc. Math. Found.

Comput. Sci., Springer-Verlag. Lect. Notes Comput. Sci. 4162 (2006) 412–423.
[7] V. Geffert, C. Mereghetti and G. Pighizzini, Converting two-way nondeterministic unary

automata into simpler automata. Theoret. Comput. Sci. 295 (2003) 189–203.
[8] J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory, Languages and

Computation. Addison-Wesley (2001).
[9] J.E. Hopcroft, An n log n algorithm for minimizing the states in a finite automaton, in The

Theory of Machines and Computations, edited by Z. Kohave, pp. 189–196. Academic Press
(1971).

[10] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley (1979).

[11] D.A. Huffman, The synthesis of sequential switching circuits. J. Franklin Inst. 257 (1954)
161–190 and 275–303.

[12] C. Mereghetti and G. Pighizzini, Optimal simulations between unary automata. SIAM J.
Comput. 30 (2001) 1976–1992.

[13] E.F. Moore, Gedanken experiments on sequential machines, in Automata Studies, edited by
C.E. Shannon and J. McCarthy, pp. 129–153. Princeton University Press (1956).

Communicated by J. Hromkovic.
Received July 12, 2007. Accepted November 21, 2007.

	Introduction
	Elementary properties
	Hyper-minimized acceptors
	Characterization
	Structural similarities
	Unary automata
	Descriptional complexity

	Algorithm for hyper-minimization of DFA's
	Hyper-minimized transducers
	Concluding remarks
	References

