
RAIRO-Theor. Inf. Appl. 42 (2007) 237–252 Available online at:

DOI: 10.1051/ita:2007032 www.rairo-ita.org

PARALLEL APPROXIMATION TO HIGH MULTIPLICITY
SCHEDULING PROBLEMS VIA SMOOTH

MULTI-VALUED QUADRATIC PROGRAMMING ∗, ∗∗

Maria Serna
1

and Fatos Xhafa

Abstract. We consider the parallel approximability of two problems
arising from high multiplicity scheduling, namely the unweighted model
with variable processing requirements and the weighted model with iden-
tical processing requirements. These two problems are known to be
modelled by a class of quadratic programs that are efficiently solv-
able in polynomial time. On the parallel setting, both problems are
P-complete and hence cannot be efficiently solved in parallel unless
P =NC. To deal with the parallel approximablity of these problems, we
show first a parallel additive approximation procedure to a subclass of
multi-valued quadratic programming, called smooth multi-valued QP,
which is defined by imposing certain restrictions on the coefficients of
the instance. We use this procedure to obtain parallel approximation to
dense instances of the two problems by observing that dense instances
of these problems are instances of smooth multi-valued QP. The dense
instances of the problems considered here are defined similarly as for
other combinatorial problems in the literature. For such instances we
can find in parallel a near optimal schedule. The definition of smooth
multi-valued QP as well as the procedure for approximating it in par-
allel are of interest independently of the application to the scheduling
problems considered in this paper.

Mathematics Subject Classification. 68W10, 68W25, 90B35,
90C20.

Keywords and phrases. Parallel approximation, quadratic programming, multiplicity sched-
uling problem.

∗ Preliminary version presented at Vector and Parallel Processing Meeting (VECPAR’00),
Porto, Portugal, June 2000.
∗∗ Research partially supported by ASCE Project TIN2005-09198-C02-02 and Project FP6-
2004-IST-FETPI (AEOLUS).
1 Department of LSI, Universitat Politècnica de Catalunya, Campus Nord, Ed. Omega,

C/Jordi Girona Salgado, 1-3, 08034-Barcelona, Spain; fatos@lsi.upc.edu

Article published by EDP Sciences c© EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007032
http://www.rairo-ita.org
http://www.edpsciences.org

238 M. SERNA AND F. XHAFA

1. Introduction

In high multiplicity scheduling problems, jobs are partitioned into groups (or
types) and in each group all the jobs are identical. The number of jobs of a certain
type is called the multiplicity of that type. The goal is to find a schedule that min-
imizes a specified parameter such as completion time, lateness, tardiness, etc. (see
e.g., [8] for definitions and known results on different subclasses of the problem.)
multiplicity scheduling problems, in their general form, are NP-hard. In fact, the
problem remains NP-hard even for the simple case where there is only one job
of each type and there are two identical machines released at time zero, having
processing capacity n (see, e.g. [5]). However, several subclasses of interest are
obtained by restricting to the model where all job types have the same processing
requirements. Among others, there are the unweighted model with variable pro-
cessing requirements and the weighted model with identical processing requirements.
In [6] are given polynomial time algorithms for these problems by modelling them
as convex separable QP. (Even strongly polynomial time1 algorithms are known [8]
for the case of a single machine.)

In the parallel setting, both problems are P-complete since the general list sched-
uling problem, which is known to be P-complete (see [7]), can be reduced to both
problems. The algorithm of [6] cannot be efficiently parallelized2, unless P=NC,
since convex-separable quadratic programs are shown to be even non-approximable
in parallel [17].

To the best of our knowledge the parallel approximability of the two problems
has not been previously considered. We address the parallel approximability for
“dense” instances3 of the two problems. The definition of a dense instance for these
problems is done similarly as for other combinatorial optimization problems in the
literature [3,4,9–11]. Such instances have minimum completion time Ω(N2), where
N denotes the total number of jobs and satisfy some restrictions on the weights,
the released times, as well as on the processing times of the jobs. When restricting
to dense instances, we are able to efficiently find in parallel a near optimal schedule,
that is, a schedule of jobs into machines whose completion time is at most (1 + ε)
times the minimum schedule.

We define a subclass of multi-valued quadratic programming, called smooth
multi-valued QP, by imposing certain restrictions on the coefficients of the in-
stance. Next we show a parallel additive approximation procedure for smooth
multi-valued QP, and then we use this procedure to obtain parallel approxi-
mation to dense instances of the two problems mentioned above by observing
that dense instances of these problems are instances of smooth multi-valued QP.
Our definition of smooth multi-valued QP as well as the proposed procedure for

1 A strongly polynomial time algorithm runs in polynomial time whenever the arithmetic
operations can be done in polynomial time.

2 The parallel complexity class NC consists of those problems that can be solved very fast in
parallel.

3 It is not known whether these two problems remain P-complete when restricting to dense
instances.

PARALLEL APPROXIMATIONS TO HIGH MULTIPLICITY SCHEDULING 239

approximating it in parallel are of interest independently of the application to the
scheduling problems considered in this paper.

Smooth quadratic programming (Smooth QP) in 0/1 variables was first defined
by Arora et al. [4] by imposing restrictions on the magnitudes of the coefficients
appearing in the instances of the problem. Smooth QP was shown to have an addi-
tive approximation procedures in polynomial time, i.e., a procedure that finds in
polynomial time approximate solutions whose objective function value are within
an additive error from the optimum value [3,4]. Interestingly, there is a close rela-
tion between smooth instances of QP and dense instances of several combinatorial
optimization problems. Indeed, it was shown in [3,4] that many combinatorial
optimization problems can be casted by quadratic programs and the QPs corre-
sponding to their dense instances are smooth instances. From this connection were
obtained polynomial times approximation Schemes for dense instances of several
NP-hard problems including Max CUT, Max kSAT, linear arrangements problems,
etc.

The approximability of Smooth QP has been also considered in the parallel
setting [18] where it was proven that the scheme of [4] can be also done in parallel.
It should be mentioned, however, that the Smooth QP considered in [3,4] are
in 0/1 variables. Clearly, a larger subclass of QP is that of multi-valued integer
variables, we call this class smooth multi-valued QP (Smooth MQP). We extend the
result on Smooth QP in 0/1 variables to the smooth multi-valued QP by showing
that there is a parallel additive approximation procedure to the instances of the
problem. The extension to the multi-valued case is done by reducing in NC the
instance of QP to an instance of LP in packing/covering form whose near-optimal
solution can be found in NC through the algorithm of Luby and Nisan [12] and
then the fractional solution is rounded to an integer one.

The paper is organized as follows. In Section 2 we formally define the problems
used through the paper and briefly recall some known techniques that we make
use of. The approximation procedure for smooth multi-valued QP is given in
Section 3 and, in Section 4 we apply the approximation procedure to the two
problems arising from high multiplicity scheduling introduced above. We conclude
with some open questions.

2. Preliminaries and definitions

We recall first some basic notions from the parallel complexity theory. The main
complexity classes in parallel computation are P, NC and the class of P-complete
problems. Problems in P are problems that can be solved easily on a single proces-
sor with running time polynomial in instance size. NC is the class of the problems
that admit an efficient parallel algorithm, that is, an algorithm running in poly
logarithmic time and using a polynomial number of processors. It is generally be-
lieved that P-complete problems are outside of NC class, they are called intractable
or hard to solve in parallel.

240 M. SERNA AND F. XHAFA

We use the notion of approximation to optimization problems in the parallel
setting. An NC approximation algorithm of performance ratio r is an algorithm
that runs in time polylog in the input size, uses a polynomial number (in the input
size) of processors, and finds a feasible solution to the problem whose measure
is guaranteed to be within the multiplicative factor r of the optimum. An NC
approximation scheme (NCAS) is a family of NC algorithms {Aε}ε≥0, such that
Aε has performance ratio 1 + ε, and whose running time depends arbitrarily on ε.
The NCAS class consists of all problems for which there exist an NC approximation
scheme.

We give now the definition of the smooth multi-valued QP that is central to
this paper.

Definition 2.1 (smooth MQP). Let A = (aij) be an n× n matrix, W = (wij) an
m× n matrix, b an n-vector and d an m-vector, over rational numbers and a is a
rational number. Multi-valued quadratic programming (MQP) is

(Smooth MQP)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
∑

aijxixj +
∑

bixi + a

s.t.
Wx ≥ d
0 ≤ xi ≤ ci, 1 ≤ i ≤ n
xi integral, 1 ≤ i ≤ n.

An instance of MQP is called smooth if aij are O(1), bi are4 0 or Θ(n), a is 0
or Θ(n2) and wij are O(1). The entries of W and d are non-negative; ci’s are
constants.

The definition of Smooth MQP intents to capture subclasses of the MQP prob-
lem that represent advantages with respect to the approximability. Clearly, the
imposed conditions restrict the problem, yet Smooth MQP will be strong enough
to cast instances of interest for several combinatorial optimization problems, in
particular, problems arising from high multiplicity scheduling problems.

In proving the approximability result we make use of the following known tech-
niques. The first one is a standard technique for the estimation of the sum of
n numbers by random sampling5 (see, Lem. 2.1 in [2]).

Lemma 2.2 (sampling lemma). Let {ai}n
i=1 be a set of n numbers, where each

ai is a constant O(1). Let p =
∑n

i=1 ai be their sum. If we pick uniformly at
random a subset of s = O(log n/ε2) of ai’s and compute their sum q, then with
high probability, i.e., with probability at least 1 − O(1/n), we have that p − εn ≤
qn/s ≤ p + εn.

The second technique that we use is the Randomized Rounding in NC by Alon
and Srinivasan [1] to a subclass of linear programs. This can be seen as a parallel

4 Some of the bi’s as well as a may not appear in the objective function, i.e., they are equal
to 0.

5 There is also a version of this lemma by Arora et al. in which ai are each with absolute
value at most constant M . In [4] authors use yet another version of the lemma with ai ∈ {0, 1}.

PARALLEL APPROXIMATIONS TO HIGH MULTIPLICITY SCHEDULING 241

counterpart of the randomized rounding of Raghavan and Thompson [16] and
Raghavan [15] that work in the sequential setting.

Raghavan’s bound. Raghavan’s result can be stated as follows: if v∗ is the optimal
fractional value of a packing integer program instance then an integral feasible
solution to that instance can be found whose objective function value is v′ =
v∗(1 − δ), for a small δ > 0.

It should be noted that the scheme of Alon and Srinivasan can additionally
deal with the more general case of packing integer programs having multi-valued
integer variables.

Definition 2.3 (PIP). A packing integer program is to maximize qT x subject to
Mx ≤ p where M ∈ [0, 1]m×n, p is an m-vector, and q is an n-vector such that the
entries of p and q are non-negative rational numbers, with the integrality constraint
on variables xj ∈ {0, 1, . . . , dj}; some of dj could be also infinite.

Essentially, the Alon and Srinivasan’s technique starts from a fractional solu-
tion of the linear program and shows how to do the rounding efficiently in NC.
The integer feasible solution is also found deterministically in NC. Their result is
summarized in the next two theorems.

Theorem 2.4. [1] Given an instance of PIP, if the right hand sides pi are con-
stants bounded by O(log(m + n)) then it can be approximated in NC to within a
(1+o(1)) factor of the Raghavan’s sequential bound [15].

There are applications, however, in which simply an integer feasible solution of
the PIP might be required. In such a case the following version of the above theo-
rem can be applied. Note that in this case we lose the “reasonable” performance
guarantee of the feasible integral solution.

Theorem 2.5. [1] For any constant c > 1, PIPs can be approximated in NC to
within 1/c factor of the Raghavan’s sequential bound [15].

We note that PIPs can be seen as special cases of a more general class of linear
programs known in literature as positive linear programming introduced by Luby
and Nisan.

Definition 2.6 (positive linear programming (PLP) [12]). A maximization linear
program is said to be an instance of positive linear programming if it is written as
max {cTx : Ax ≤ b,x ≥ 0} where all the entries of A, b and c are non-negative.

Luby and Nisan developed a very efficient algorithm for approximating positive
linear programming problems.

Theorem 2.7. [12] There exists a parallel algorithm that given in input a max-
imization instance P of PLP and a rational ε > 0 returns a feasible solution for
P whose cost is at least (1 − ε) times the optimum. Furthermore, the algorithm
runs in time polynomial in 1/ε and log N using O(N) processors, where N is the
number of non-zero entries in P .

242 M. SERNA AND F. XHAFA

3. Approximating smooth multi-valued quadratic

programming

In this section we show an NC additive approximation procedure that, given
in input an instance of Smooth MQP, finds a feasible solution x to that instance
whose objective function value is within an additive error from the optimum value.
In other terms, by letting g(·) the objective function and x∗ the optimal solution, it
holds that g(x) ≤ g(x∗)+ εn2, where n is the number of variables and ε a positive
constant. As a corollary, when the optimal value g(x∗) of the MQP instance is
Ω(n2), we obtain an (1 + ε)-approximation for any (constant) value of ε > 0, thus
the problem has an NC approximation scheme. In particular, we obtain NCAS
for positive instances of Smooth MQP since, as we will show, for such instances
g(x∗) = Ω(n2).

We prove the following theorem.

Theorem 3.1. Given an instance of Smooth MQP such that Wx ≥ d, 0 ≤ xi ≤ ci,
1 ≤ i ≤ n, is feasible and a fixed ε > 0, we can find 6 in NC an integral vector y
with 0 ≤ yi ≤ ci, such that y satisfies Wy ≥ d, and

g(y1, y2, . . . , yn) ≤ g(x∗) + εn2, (1)

where g(·) is the objective function and g(x∗) is its optimal value.

For ease of exposition and notation we present the result for the positive in-
stances of Smooth MQP, i.e. we suppose without loss of generality that the instance
has all the coefficients non-negative and then we show how to deal with the general
case in Section 3.4. We refer to such instances as positive instances.

3.1. Approximating positive smooth MQP

We state now Theorem 3.1 for the Positive Smooth MQP.

Theorem 3.2. Given a positive instance of Smooth MQP such that Wx ≥ d,
0 ≤ xi ≤ ci, 1 ≤ i ≤ n, is feasible and a fixed ε > 0, we can find in NC an integral
vector y with 0 ≤ yi ≤ ci, such that y satisfies Wy ≥ d, and

g(y1, y2, . . . , yn) ≤ g(x∗) + εn2, (2)

where g(·) is the objective function and g(x∗) is its optimal value.

The proof of the theorem follows a similar theorem in [18] for Smooth MQP with
0/1 variables. One could try to reduce the multi-valued case to the 0/1 variable
case by using a binary representation of variables xi and then derive the result
from the theorem in [18].

6 The precise bounds on parallel running time and number of processors are determined by the
Alon and Srinivasan’s theorem, which are stated in NC-like terms. These bounds are essentially
the ones given by Luby and Nissan algorithm for positive linear programs.

PARALLEL APPROXIMATIONS TO HIGH MULTIPLICITY SCHEDULING 243

There are, however, two drawbacks with such approach: first, the number of
variables of the program would grow by the total sum of all ci (each xi will be
represented as a sum of ci 0/1 variables) impacting thus in the instance size;
secondly, we have to yet prove the equivalence of the two programs – the Smooth
MQP with multi-value variables and Smooth MQP with 0/1 variables, which is not
straightforward7 at all. Hence, we prove the theorem by mimicking the steps for
the 0/1 case.

To prove the theorem, we write the program (Smooth MQP) equivalently as8:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min c;

s.t. xT Ax + bx ≤ c,
Wx ≥ d,
0 ≤ xi ≤ ci, 1 ≤ i ≤ n,
xi integral, 1 ≤ i ≤ n.

Notice that, by using a binary search, for Theorem 3.2 it suffices to prove the
following theorem.

Theorem 3.3. Suppose there is an integral solution to the following positive
smooth multi-valued quadratic system

(Positive Smooth MQS)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xT Ax + bx ≤ c

Wx ≥ d

0 ≤ xi ≤ ci, 1 ≤ i ≤ n.

Then, for any fixed ε > 0, we can find in NC an integer vector y with 0 ≤
yi ≤ ci, 1 ≤ i ≤ n, that satisfies Wy ≥ d and such that

yT Ay + by ≤ c + εn2. (3)

The main steps of the proof are as follows:
1. positive linear programming instance: reduce in parallel the instance of (Pos-

itive Smooth MQS) to an instance of positive linear programming.

1a.: write the (Positive Smooth MQS) instance as an appropriate linear
program by relaxing the integrality conditions on x′

is; we denote it
by (LP1);

1b.: transform the instance of linear program (LP1) into a positive linear
program through instances of linear programs (LP2) and (LP3) (see
below).

7 Usually results for multi-valued integer programs are directly proved rather than derived
from known results for the 0/1 case; the Alon and Srinivasan’s theorem on PIPs could be con-
sidered as such an example.

8 The constant a in the objective function is unimportant.

244 M. SERNA AND F. XHAFA

2. Fractional solution: invoke the Luby and Nisan’s procedure to find in par-
allel an approximate (sub-optimal) fractional solution to the instance of
the linear program (LP3).

3. Rounding of the fractional solution to an integer solution: round in parallel
the fractional solution of Step 2 to an integer solution through the tech-
nique of Alon and Srinivasan.

We deal with these steps in the following two subsections.

3.2. Reducing positive smooth MQS to positive LP

Let x be a feasible solution to (Positive Smooth MQS), as supposed, and let
us write r = xA + b, where the components of r are computed (estimated) using
sampling lemma (see Lem. 2.2 and [2] for details). Notice that ri = Θ(n) due to the
conditions on the coefficients (aij are positive O(1) values and bi are 0 or θ(n); see
Def. 2.1) and the definition of sampling9 values ri. Since xT Ax+bx = (xT A+b)x,
we can express the quadratic program (Positive Smooth MQS) as a linear program
as follows:

(LP1)

⎧⎪⎪⎨
⎪⎪⎩

xT A + b ≤ r,
rx ≤ c,
Wx ≥ d,
0 ≤ xi ≤ ci, 1 ≤ i ≤ n,

for which x is also a feasible solution. The following observation is immediate.

Proposition 3.4. If x is a feasible solution to (LP1) then x is also feasible to
(Positive Smooth MQS).

Clearly, any coefficient in (LP1) is non-negative. However, (LP1) is not a positive
linear program because in it we have both types of restrictions ≥ and ≤. To
overcome this, we modify (LP1) appropriately by introducing variables zi = ci−xi.
Thus, (LP1) is written as:

(LP2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xT A + b ≤ r,
rx ≤ c,∑n

j=1 wkjzj ≤ ∑n
j=1 wkjcj − dk, 1 ≤ k ≤ m,

xi + zi = ci, 1 ≤ i ≤ n,
0 ≤ xi, zi, 1 ≤ i ≤ n,

We can suppose, without loss of generality, that ∀k, 1 ≤ k ≤ m,
∑n

j=1 wkjcj −
dk ≥ 0 because otherwise the system {Wx ≥ d, xi ≤ ci, 1 ≤ i ≤ n} would not
be feasible. So, the above program (LP2) is still positive. The relation between
(LP1) and (LP2) is given as follows.

Proposition 3.5. (a) If x is a feasible solution to (LP1) then (x,z), where zi =
ci − xi, is also feasible to (LP2); (b) if (x,z) is a feasible solution to (LP2) then x
is a feasible solution to (LP1).

9 The values ri used in sampling are defined as ri = bi + (n/k) · ∑j∈S aijsj where S is a set

of k = O((log n)/ε2) indices.

PARALLEL APPROXIMATIONS TO HIGH MULTIPLICITY SCHEDULING 245

Finally, to transform the conditions xi + zi = ci into xi + zi ≤ ci, we add
to (LP2) an adequate objective function resulting in the following program:

(LP3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑n

i=1(xi + zi);

s.t. xT A + b ≤ r,
rx ≤ c,∑n

j=1 wkjzj ≤ ∑n
j=1 wkjcj − dk, 1 ≤ k ≤ m,

xi + zi ≤ ci, 1 ≤ i ≤ n,
0 ≤ xi, zi, 1 ≤ i ≤ n.

Notice that (LP3) is a positive linear program, as required by the Luby and Nisan’s
algorithm. The programs (LP2) and (LP3) are related as follows:

Proposition 3.6. (a) If (x, z) is a feasible solution to (LP2) then it is also feasible
to (LP3); (b) if (x, z) is an (1 − ε)-optimal solution to (LP3) then we can con-
struct (x′, z′) in NC such that it is feasible to {∑n

j=1 wkjzj ≤ ∑n
j=1 wkjcj − dk,

1 ≤ k ≤ m, xi + zi ≤ ci, 1 ≤ i ≤ n} and

⎧⎨
⎩

x′T A + b ≤ r + K1ε1

rx′ ≤ c + K2εn

where K1 and K2 are two constants computable in NC from the instance and 1 is
the vector all whose entries are equal to 1.

Proof. b) A near-optimal solution (x, z) to (LP3) can be found via the Luby and
Nisan’s algorithm. Such solution will have cost at least (1− ε)

∑n
i=1 ci (supposing

that (LP2) is feasible). Now, we define z′ = z and x′ by taking x′
i = ci − zi. Since,

due to near optimality of the solution (x, z),

n∑
i=1

(xi + zi) ≥ (1 − ε)
n∑

i=1

ci

we have that xi + zi ≈ (1 − ε)ci therefore, intuitively, the values of x′
i will not

increase too much. More precisely, let, for any i, εi = x′
i − xi and also let

e = (ε1, . . . , εn). Notice that εi are non-negative values. By the definition of
εi we have:

n∑
i=1

εi =
n∑

i=1

(x′
i − xi) =

n∑
i=1

ci −
n∑
i

(xi + zi)

≤
n∑

i=1

ci − (1 − ε)
n∑

i=1

ci = ε

n∑
i=1

ci.

246 M. SERNA AND F. XHAFA

Clearly, the system

⎧⎨
⎩

n∑
j=1

wkjzj ≤
n∑

j=1

wkjcj − dk, 1 ≤ k ≤ m, xi ≤ ci, 1 ≤ i ≤ n

⎫⎬
⎭

is satisfied by (x′, z′). We check now whether it satisfies the restrictions (4). Due
to the magnitudes of aij = O(1) and ri = Θ(n), we have that

x′T A + b = (xT + e)A + b ≤ (xT A + b) + eA ≤ r + K1ε1 (4)
rx′ = r(x + e) ≤ c + K2εn (5)

where K1 and K2 are two constants defined as follows: K1 = (
∑n

i=1 ci) ·maxi,j aij

and K2 = (
∑n

i=1 ci) ·maxi αi where αi are the upper bounds on ri, ri ≤ αi ·n. �

3.3. Rounding of the fractional solution to an integer solution

Having the fractional solution (x′, z′), as given in Proposition 3.6, we apply the
randomized rounding procedure of Alon and Srinivasan to the system

⎧⎨
⎩

n∑
j=1

wkjzj ≤
n∑

j=1

wkjcj − dk, 1 ≤ k ≤ m

⎫⎬
⎭ .

Rounding the feasible fractional solution z′ gives an integral solution u,
that satisfies

n∑
j=1

wkjuj ≤
n∑

j=1

wkjcj − dk, 1 ≤ k ≤ m.

Letting y such that yi = ci − ui, we have

Wy ≥ d,
yi ≤ ci, 1 ≤ i ≤ n.

(6)

Furthermore, for y we have:

yT Ai + bi ≤ (ri + K1ε1) + O(
√

n log n),

ry ≤ (c + K2εn) + O(n) · O(
√

n logn).
(7)

PARALLEL APPROXIMATIONS TO HIGH MULTIPLICITY SCHEDULING 247

Consequently,

yT Ay + by = (yT A + b)y ≤ (
(r + K1ε) + O(

√
n logn)

)
y

≤ ry + K1ε1 · y + O(
√

n log n)1 · y

≤ (c + K2εn) + O(n) · O(
√

n logn) + K1ε1 · y + O(
√

n log n)1 · y

≤ c + (ε + o(1))n2 + O(n3/2
√

log n) + (ε + o(1))n2 + O(n3/2
√

log n)

≤ c + (2ε + o(1))n2,

(8)

where the last inequality is derived by using the definition of K1 and K2 (see
Prop. 3.6) and the fact that y has integral non-negative values; we have then
upper bounded each term (except c) by n2. Thus, by taking ε′ = (2ε + o(1))
we obtain the solution (x′, z′) that yields to the solution y satisfying (6) and
yT Ay + by ≤ c + ε′n2.

But, we can write (LP1) only if we knew the values ri, i.e., the vector r. Instead,
it is shown in [4] that using estimates ri for them such that |ri − ri| < εn then (7)
and (8) still hold. These estimates are found similarly as in [3,4], through the
Sampling Lemma, and we omit the details.

Derandomization. Notice that the proof of Theorem 3.3 involves sampling lemma
(Step 1) and the Rounding of the fractional solution (Step 3). The de-randomizat-
ion of sampling lemma can be found in [18]. As regards the rounding of the
fractional solution, Alon and Srinivasan [1] theorem already provides the rounding
procedure deterministically in NC.

Corollary 3.7. If the instance of Smooth MQP has optimal value g(x∗) = Ω(n2),
i.e., g(x∗) ≥ δn2, for some δ > 0, then Theorem 3.1 implies an (1+ε)-approximat-
ion to such instances, i.e. an NC approximation scheme.

Indeed, in this case the solution x satisfies g(x) ≤ (1 + ε/δ)g(x∗).

3.4. The general case: smooth MQP

A close observation of the proof of Theorem 3.2 shows that the assumption on
the coefficients aij , bi and a of the MQP objective function to be non-negative
can be removed10. Indeed, this assumption is used only in the reduction step to
obtain a positive linear program (LP3) in order to enable the application of Luby
and Nisan’s algorithm. More precisely, the positiveness assumption assures that

10 To be precise, the notation on the magnitudes of the coefficients given in the definition of

Smooth MQP becomes now aij = O(1), bi = O(n) and c = O(n2); also, r#
i = O(n) (the notation

used in [4]).

248 M. SERNA AND F. XHAFA

the linear restrictions

xT A + b ≤ r# (9)

r#x ≤ c

have positive coefficients. This last fact can be assured without the positiveness
assumption as follows:

a) if some aij < 0 then substitute the term aijxi by −aij(zi − ci);
b) if some r#

i < 0 then substitute the term r#
i xi by −r#

i (zi − ci).

Notice that by applying a) the left-hand sides of restrictions (9) become non-
negative and therefore the right-hand sides so do (otherwise the program would
be infeasible). Doing these (possible) variable changes we obtain the positive
linear program (LP3). The variable change effects the right-hand sides of {xT A +
b ≤ r#, r#x ≤ c} but yet it doesn’t effect Proposition 3.6 due to the definition
of (x′, z′) and the magnitudes of the coefficients. On the other hand, removing
the positiveness condition on aij , bi and a doesn’t effect the rounding scheme
of Alon and Srinivasan since it applies to the program Wz ≤ W · c − d. From
this observation we can restate Theorem 3.2 without the positiveness condition
on the coefficients of the objective function of the MQP instance thus yielding
Theorem 3.1.

4. Applications

In this section we show that the additive approximation procedure for Smooth
MQP can be applied to a couple of problems arising from high multiplicity sched-
uling problems, namely, the weighted model with identical processing requirements
and the unweighted model with variable processing requirements. We first give the
description of the general model of high multiplicity scheduling.

General model

The multiplicity scheduling problem, in its general form, is stated as follows [6].
There are n types of jobs, J1, J2, . . . , Jn and there are nj identical jobs of type Jj .
There are m parallel machines M1, M2, . . . , Mm to process the jobs. Machine Mi

is released at time ri and it can process at most ci jobs. Each job should be
processed in its entirety in one of the m machines. All the jobs are available for
processing at time 0. The processing requirement of job of type j on machine i
is pij time units. There is a non-negative weight wij associated to job j when
processed by machine i. The objective is to schedule the jobs on m machines so
that the total weighted completion time is minimized.

PARALLEL APPROXIMATIONS TO HIGH MULTIPLICITY SCHEDULING 249

Weighted model with identical processing requirements

In this case we have identical processing requirements (the pij are written as
pij = 1/si) and general weights wij . For any machine i, i = 1, . . . , m, let σi be a
permutation of {1, . . . , n} which arranges n types of jobs in a non-increasing order
of their weights. Let also the variable xij denote the number of jobs of type σi(j)
processed in machine i. The cost of assigning a job of type σi(j) to the kth place,
k = 1, . . . , ci, is (ri + k(1/si))wi,σi(j). The integer programming formulation [6] of
the problem (WIP) follows.

(WIP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑m

i=1

∑n
j=1 riwiσi(j)xij +

∑m
i=1

∑n
j=1

1
si

wiσi(j)

∑xij

k=1

(∑j−1
l=1 xil + k

)

s.t. ∑n
j=1 xij = ci, (i = 1, . . . , m)

∑
{(i,k),i=1,...m,σi(k)=j} xik = nj, (j = 1, . . . , n)

0 ≤ xij ≤ ci, integral, (i = 1, . . . , m; j = 1, . . . , n).

Notice that the restriction
∑n

j=1 xij = ci, (i = 1, . . . , m) is written with equal-
ity since we can always introduce an additional type of job (n + 1) with weight
wi,n+1 = 0. In [6] this program was written as a convex separable quadratic pro-
gram and then was solved through known polynomial time algorithms (e.g. [13]).

Unweighted model with variable processing requirements

This problem is obtained from the general model by letting wij = vi for all types
of job j and machine i. The processing time of each one of the nj jobs of type j
on the ith machine is pij . Let us suppose that, for any machine i, i = 1, . . . , m,
the processing times are sorted in non-increasing order given by the permutation
σi. Let also the variable xij denote the number of jobs of type σi(j) processed
in machine i. With these notations, we have the following integer programming
formulation [6] for the problem (UIP).

(UIP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑m

i=1

∑n
j=1 rivixij +

∑m
i=1

∑n
j=1 vipiσi(j)

∑xij

k=1

(∑j−1
l=1 xil + k

)

s.t. ∑n
j=1 xij = ci, (i = 1, . . . , m)

∑
{(i,k),1≤i≤m,σi(j)=k} xij = nj , (j = 1, . . . , n)

0 ≤ xij , integral, (i = 1, . . . , m; j = 1, . . . , n).

4.1. Approximation results

In order to apply the additive approximation procedure, we limit ourselves to
dense instances of both problems as specified below. We say that an instance of

250 M. SERNA AND F. XHAFA

the high multiplicity scheduling problem (weighted model with identical process-
ing requirements and unweighted model with variable processing requirements) is
dense if it satisfies the following two restrictions: (a) the weights wij , the released
times ri and the processing times pij are bounded by constants; (b) the completion
time of the minimum schedule is Ω(n2).

Further, we consider a relaxation of the integer program (WIP) by relaxing the
equality restrictions into covering type restrictions by adding dummy variables as
follows.

(WQP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑m

i=1

∑n
j=1riwiσi(j)xij

+
∑m

i=1

∑n
j=1

1
si

wiσi(j)

(
xij(xi1 +· · ·+ xi,j−1 + 1

2xij)
)

+
∑m

i=1 L
(1)
i · yi +

∑n
j=1 L

(2)
j · zj

s.t. ∑n
j=1 xij + yi ≥ ci, (i = 1, . . . , m)

∑
{(i,k),i=1,...m,σi(k)=j} xik + zj ≥ nj , (j = 1, . . . , n)

0 ≤ xij , yi ≤ ci, (i = 1, . . . , m; j = 1, . . . , n)

0 ≤ zj ≤ nj , j = 1, . . . , n,

where L
(1)
i (i = 1, . . . , m) and L

(2)
j (j = 1, . . . , n) are positive constants defined

next. The programs (WIP) and (WQP) are equivalent with regard to the optimal
and near-optimal solutions. To this end, the term added to the objective function
due to the relaxation is multiplied by appropriately chosen positive constants L

(1)
i

and L
(2)
j . This kind of equivalence between a program and its relaxed version with

regard to optimality and near-optimality of solutions was first given in [20,21] and
further used in [22] and [19]. It consists essentially in defining the multiplying coef-
ficients L

(1)
i and L

(2)
j as a sum of the “weights” of constraints where the introduced

variables yi and zj appear, resp. More precisely, we define, for any i = 1, . . . , m,
L

(1)
i =

∑
j wiσi(j) and for any j = 1 . . . n, L

(2)
j =

∑
{(i,k),i=1,...m,σi(k)=j} wiσi(k).

It should be noticed that this choice of the multiplying coefficients is necessary
for the near-optimality equivalence between the two programs; for the optimality
equivalence large positive constants would suffice. The reader is refereed to [19,20]
for further details.

The following relation between dense instances of our scheduling problem and
the smooth instances of multi-valued QP is straightforward.

Proposition 4.1. If the instance of scheduling is dense then the corresponding
(WQP) instance is a smooth multi-valued QP instance.

PARALLEL APPROXIMATIONS TO HIGH MULTIPLICITY SCHEDULING 251

Hence by applying Theorem 3.1 and Corollary 3.7 to such instances we obtain
the following theorem.

Theorem 4.2. Given a dense instance of weighted models with identical processing
requirements of N jobs (N =

∑n
j=1 nj) and m machines there is an NC algorithm

that finds a schedule whose completion time is at most (1 + ε) times the minimum
schedule.

We apply our approximation scheme to the dense instances of unweighted
model with variable processing requirements in the same way as in the case of
the weighted model with identical processing requirements and obtain the follow-
ing theorem.

Theorem 4.3. Given a dense instance of unweighted model with variable process-
ing requirements of N jobs (N =

∑n
j=1 nj) jobs and m machines there is an NC

algorithm that finds a schedule whose completion time is at most (1 + ε) times the
minimum schedule.

Open questions

Our approximation procedure applies to a restricted class of instances of the
scheduling problems. It would be interesting to extend the result to other instances
of the problem without the denseness condition. Also, applying our procedure to
other combinatorial optimization problems modelled by multi-valued QP would be
of interest.

Acknowledgements. We thank Josep Dı́az and Paul Spirakis for useful comments and
discussion on issues related to parallel approximability of Linear Programming. Fatos
Xhafa thanks Ray Greenlaw for an early discussion on the parallel complexity of quadratic
programming problems.

References

[1] N. Alon, and A. Srinivasan, Improved parallel approximation of a class of integer program-
ming problems. Algorithmica 17 (1997) 449–462.

[2] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense
instances of NP-hard problems. Proceedings of the twenty-seventh annual ACM Symposium
on Theory of Computing (STOC ’95) 58 (1995) 284–293, ACM Press.

[3] S. Arora, A. Frieze, and H. Kaplan, A new rounding procedure for the assignment problem
with applications to dense graph arrangement problems, in Procedings of the FOCS’96
(1996) 21–30.

[4] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense
instances of NP-hard problems. J. Comput. Syst. Sci. 58 (1999) 193–210.

[5] M.R. Garey, and D.S. Johnson, Computers and Intractability – A Guide to the Theory of
NP-Completeness. W.H. Freeman and Co. (1979).

[6] F. Granot, J. Skorin-Kapov, and A. Tamir, Using quadratic programming to solve high
multiplicity scheduling problems on parallel machines. Algorithmica 17 (1997) 100–110.

252 M. SERNA AND F. XHAFA

[7] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo, Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press (1995).

[8] D.S. Hochbaum, and R. Shamir, Strongly polynomial algorithms for the high multiplicity
scheduling problem. RAIRO Oper. Res. 39 (1991) 648–653.

[9] M. Karpinski, J. Wirtgen, and A. Zelikovsky, An approximation algorithm for the bandwidth
problem on dense graphs. Technical Report TR97-017, ECCC (1997).

[10] M. Karpinski, J. Wirtgen, and A. Zelikovsky, Polynomial times approximation schemes for
some dense instances of NP-hard problems. Technical Report TR97-024, ECCC (1997).

[11] M. Karpinski, and A. Zelikovsky, Approximating dense cases of covering problems. Network
design: connectivity and facilities location (Princeton, NJ, 1997). Amer. Math. Soc. (1998)
169–178.

[12] M. Luby, and N. Nisan, A parallel approximation algorithm for positive linear programming,
in Proceedings of 25th ACM Symposium on Theory of Computing (1993) 448–457.

[13] M. Minoux, Mathematical programming: theory and algorithms, Wiley (1986).
[14] R. Motwani, and P. Raghavan, Randomized Algorithms. Cambridge University Press (1995).
[15] P. Raghavan, Probabilistic construction of deterministic algorithms: approximating packing

integer programs. J. Comput. Syst. Sci. 37 (1988) 130–143.
[16] P. Raghavan, and C. Thompson, Randomized rounding: a technique for provably good

algorithms and algorithmic proofs. Combinatorica 7 (1987) 365–374.
[17] M. Serna, Approximating linear programming is logspace complete for P. Inform. Process.

Lett. 37 (1991) 233–236.
[18] M. Serna, and F. Xhafa, The parallel approximability of a subclass of quadratic program-

ming. Theoret. Comput. Sci. 259 (2001) 217–231.
[19] P.S. Efraimidis, and P.G. Spirakis, Fast, parallel and sequential approximations to “hard”

combinatorial optimization problems. Technical Report TR99/06/01, CTI, Patras (June
1999).

[20] L. Trevisan, Luca Trevisan: Positive linear programming, parallel approximation and PCP’s.
Lect. Notes Comput. Sci. 1136 (1996) 62–75.

[21] L. Trevisan, Parallel approximation algorithms by positive linear programming. Algorith-
mica 21 (1998) 72–88.

[22] M. Serna, L. Trevisan, and F. Xhafa, The approximability of non-boolean satisfiability
problems and restricted integer programming. Theoret. Comput. Sci. 332 (2005) 123–139.

Communicated by R. Baeza-Yates.
Received March 17, 2004. Accepted December 24, 2006.

	Introduction
	Preliminaries and definitions
	Approximating smooth multi-valued quadratic programming
	Approximating positive smooth MQP
	Reducing positive smooth MQS to positive LP
	Rounding of the fractional solution to an integer solution
	The general case: smooth MQP

	Applications
	General model
	Weighted model with identical processing requirements
	Unweighted model with variable processing requirements
	Approximation results

	Open questions
	References

