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PICTURE CODES

Symeon Bozapalidis1 and Archontia Grammatikopoulou1

Abstract. We introduce doubly-ranked (DR) monoids in order to
study picture codes. We show that a DR-monoid is free iff it is pic-
torially stable. This allows us to associate with a set C of pictures a
picture code B(C) which is the basis of the least DR-monoid includ-
ing C. A weak version of the defect theorem for pictures is established.
A characterization of picture codes through picture series is also given.

Mathematics Subject Classification. 94B60.

1. Introduction

During the last decade, many people dealt with the task to investigate how the
word language environment is transferred into that of picture languages
(see [5, 7–10,12]). Participating in this effort we study the 2-dimensional ana-
log of a code. A picture code is a set C of pictures with the property that any
picture p can be constructed by the elements of C at most in one way.

To build up our theory we introduce the notion of the doubly-ranked (DR)
monoid which is a very convenient tool to describe phenomena in the theory of
picture languages. They play the role corresponding to that of ordinary monoids
in word language theory. A DR-monoid is a doubly ranked set M = (Mm,n)
equipped with a horizontal and a vertical ranked multiplication

h© : Mm,n×Mm,n′ → Mm,n+n′ v© : Mm,n×Mm′,n → Mm+m′,n m, m′, n, n′ ∈ N

satisfying certain natural compatibility axioms.
For a given doubly-ranked alphabet X = (Xm,n), the set pict(X) of all pictures

from it together with horizontal and vertical picture concatenation is the free
DR-monoid over X (Sect. 2).
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A picture code over the alphabet X = (Xm,n) is a subset C ⊆ pict(X) such that
the canonically induced morphism of DR-monoids pict(C) → pict(X) is injective.

In Section 3 we display a characterization of picture codes through picture series.
The ◦-star operator we use is an extension to picture series of the generalized
Kleene star of Simplot. Precisely we show that L ⊆ pict(X) is a code if and only if

ch(L◦) = ch(L)◦

where ch(L) is the characteristic series of L.
The main result of section 4 is that any DR-submonoid M of pict(X) admits a

minimum set of generators C(M). M is free over C(M) if and only if C(M) is a
picture code.

A basic well-known necessary and sufficient condition for a submonoid N of A∗

(A an ordinary alphabet) to be free is to satisfy next stability condition

r, rs, st, t ∈ N ⇒ s ∈ N for all r, s, t ∈ A∗ (cf. [3]).

Trying to transfer the above result in the framework of pictures we should notice
that neither horizontal stability (HS) nor vertical stability (VS) nor both guarantee
that a DR-submonoid of pict(X) is of the form pict(Y ), for some DR-alphabet Y.
We must incorporate to (HS)+(VS) the extra condition that we call circular sta-
bility (CS) which has as follows:

(CS) r h©s, s v©t, u h©t, r v©u ∈ M ⇒ r, s, t, u ∈ M for all r, s, t, u ∈ pict(X) of
suitable rank.

It turns out that the intersection of any family of free DR-submonoids of pict(X)
is again free and this permits us to associate with any set C of pictures a picture
code B(C) which is the basis of the least free DR-monoid including C.

A weak version of the Defect Theorem (cf. [3]) holds for pictures: for any finite
set C, the set B(C) is also finite.

2. Doubly-ranked monoids

Traditionally, pictures are two dimensional words, that is rectangular arrays of
symbols called pixels (cf. [13,14]). They can be concatenated in two different ways

• horizontally:(
,

)
�→

• vertically:(
,

)
�→

As monoid is the dominating algebraic structure in word language theory, the
corresponding notion for pictures is that of doubly-ranked monoid.



PICTURE CODES 539

Precisely, a doubly ranked semi-group (DR semi-group for short) is a doubly
ranked set M = (Mm,n) endowed with two operations (simulating the above ones)

h© : Mm,n × Mm,n′ → Mm,n+n′ (horizontal multiplication)
v© : Mm,n × Mm′,n → Mm+m′,n (vertical multiplication)

(m, m′, n, n′ ∈ N) which are associative, i.e.

a h©(b h©c) = (a h©b) h©c

a v©(b v©c) = (a v©b) v©c

and compatible to each other, i.e.

(a h©a′) v©(b h©b′) = (a v©b) h©(a′ v©b′)

for all a, a′, b, b′ of suitable rank.
A DR semi-group M = (Mm,n) whose operations h© and v© are unitary, that

is there are two sequences E = (em) and F = (fn) with em ∈ Mm,0 , fn ∈
M0,n (m, n ∈ N) such that

em h©a = a = a h©em , fn v©a = a = a v©fn , e0 = f0 ,

em v©en = em+n , fm h©fn = fm,n

is called a DR-monoid. E and F are called respectively the horizontal and vertical
units of M . Submonoids and morphisms of such structures are defined in a natural
way.

The transpose MT of the DR-monoid M = (Mm,n) is given by

MT
m,n = Mn,m.

The horizontal (resp. vertical) operation of MT is the vertical (resp. horizontal)
operation of M . Thus to any statement concerning DR-monoids, a dual statement
can be obtained by interchanging the roles of horizontal and vertical operations.

We shall see that the set of all pictures over a certain alphabet is organized into
a DR-monoid which actually is the free DR-monoid generated by that alphabet.
The alphabets we deal with have pixels of arbitrary rank and thus our notion of
picture is more general than the one proposed in the literature (cf. [5, 7–12, 15]).
Let X = (Xm,n) be a DR-alphabet. We first define the sets Pm,n(X) (m, n ∈ N)
inductively as follows:

– Xm,n ⊆ Pm,n(X);
– em ∈ Pm,0(X) , fn ∈ P0,n(X) where em, fn(m, n ∈ N) are two sequences

of specified symbols not belonging to X(e0 = f0);
– if a ∈ Pm,n(X), b ∈ Pm,n′(X), c ∈ Pm′,n(X), then the schemes

ab ∈ Pm,n+n′(X) ,

(
a
c

)
∈ Pm+m′,n(X);
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– the sets Pm,n(X) , m, n ∈ N are exclusively constructed by using the
above three items.

Now the set pict(X) = (pictm,n(X)) of all pictures from X is obtained by dividing
the set

⋃
m,n

Pm,n(X) by the equivalence generated by the relations

a(a′a′′) ∼ (aa′)a′′

 b(
b′

b′′

) ∼
(

b
b′

)
b′′


aem ∼ a ∼ ema(

em

en

)
∼ em+n(

fn

b

)
∼ b ∼

(
b
fn

)
fmfn ∼ fm+n(

aa′

bb′

)
∼

(
a
b

) (
a′

b′

)
for all a, a′, b, b′ of suitable rank.
Convention. Taking into account vertical associativity, we may omit inner paren-
theses in the same column, for instance

a1

a2

a3

a4

 =


(

a1

a2

)
(

a3

a4

)
 =


a1a2

a3

a4


 = ...

It is often convenient to represent in figures the element aa′ by a a′ and the

element
(

b
b′

)
by

b
b′

respectively.

Proposition 1. pict(X) is the free DR-monoid generated by X, i.e. each function
of DR-sets F : X → M (M = (Mm,n) a DR-monoid) can be uniquely extended into
a morphism of DR-monoids F̃ : pict(X) → M defined by the following inductive
clauses:

– F̃ (x) = F (x) , for all x ∈ X;
– F̃ (aa′) = F̃ (a) h©F̃ (a′);

– F̃

(
b
b′

)
= F̃ (b) v©F̃ (b′);

for all a, a′, b, b′ ∈ pict(X) of suitable rank.
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In the case our alphabet X = (Xm,n) is a monadic DR-alphabet, that is X1,1 =
Σ and Xm,n = ∅ for all m 
= 1 or n 
= 1 each element of pictm,n(Σ) can be
depicted as

a =

a11 . . . a1n

...
...

am1 . . . amn

, aij ∈ Σ.

For every DR-monoid M = (Mm,n) , each function F : Σ → M1,1 is uniquely
extended into a morphism of DR-monoids F̃ : pict(Σ) → M whose value at the
above picture is
F̃ (a) = (F (a11) h© . . . h©F (a1n)) v© . . . v©(F (am1) h© . . . h©F (amn))

= (F (a11) v© . . . v©F (am1)) h© . . . h©(F (a1n) v© . . . v©F (amn)).

3. Picture codes

A 2-dimensional code notion related to DR-monoids is introduced in the present
section.

Using proposition 1 we can explicitly describe the elements of the DR-submonoid
generated by a set. More precisely, let M = (Mm,n) be a DR-monoid and
C = (Cm,n) be a subset of M : Cm,n ⊆ Mm,n for all m, n. Further, let us
denote by C◦ the least DR-submonoid of M which includes C. We introduce the
auxiliary DR-alphabet X(C) such that X(C)m,n is a copy of Cm,n, that is there
are bijections

F (C)m,n : X(C)m,n
∼→ Cm,n m, n non-negatives.

Proposition 2. It holds C◦ = F̃ (C)(pict(X(C))) where F̃ (C) is the unique ex-
tension of F (C) according to proposition 1.

Proof. Left to the reader. �

Remark. It should be pointed out that the operator ◦-star above is just the
generalized Kleene star of Simplot (cf. [12])

The present framework enables us to speak of codes in a quite natural way.
Thus, C ⊆ pict(X) is a picture code whenever the canonical morphism of DR-

monoids induced by the function

F (C) : X(C) → pict(X)

is injective.
Manifestly, C can not contain any element of the units E, F .

Example 1. Let X = {a, b, c} with rank(a) = (1, 1) , rank(b) = (1, 2) , rank(c) =

(2, 1). Then the set C =
{(

aa
b

)
,

(
a
a

)
c

(
a
a

)
, b

}
is a code.
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Example 2. For fixed m, n � 0 the set pictm,n(X) of all pictures with rank (m, n)
is a picture code.

Example 3. Consider the alphabet X = {a} , rank(a) = (1, 1) and let C ⊆
pict(X) be an arbitrary code.

If Card(C) > 1, then there exist two distinct elements p, q ∈ C with rank(p) =
(m, n) , rank(q) = (m′, n′) and the picture

m-times

{ n−times︷ ︸︸ ︷q . . . q
...

...
q . . . q

 =

n′−times︷ ︸︸ ︷p . . . p
...

...
p . . . p


}

m′-times ∈ C◦

has two distinct factorizations. However this is not true since C is a code. There-
fore C is a singleton.

Remark.

1. Aigrain and Beauquier introduced a nice notion of code for patterns of the
plane of integers, called polyominoes (cf. [1]).

Beauquier and Nivat proved that for a given finite set C of such objects
it is undecidable whether or not it is a code. This undecidability result also
holds for dominoes (cf. [2]). In the case of pictures, the problem remains
open.

2. In the free binoid generated by an ordinary alphabet Σ, two notions of code
are considered according to the concatenation operation used. For these
pseudo-2-dimensional codes a Sardinas-Patterson algorithm is established
(cf. [6]).

Now we point out how our code notion is related with series on pictures. We need
some additional notation.

The valuation morphism valM : pict(M) → M associated with a DR-monoid M ,
is the unique extension of the identity function id : M → M .

For instance, if m, m′ ∈ pict1,2(M) and m′′ ∈ pict2,1(M), then valM sends the
picture

m m′′

m′

of pict2,3(M) to the element (m v©m′) h©m′′ of M2,3.
In particular for M = pict(X) we have the morphism of DR-monoids valX :

pict(pict(X)) → pict(X).
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Given p ∈ pict(X), any picture p ∈ val−1
X (p) is called a partition of p. For

instance
+

is a partition of the picture
+

.

Given a partition p of a picture p ∈ pict(X) we say that r ∈ pict(X) belongs to
p if r is a piece of p.

Now given a commutative semiring K, mappings of the form

S : pict(X) → K

are called picture series. The value of S at p is denoted by (S, p) and is referred
to as the coefficient of S at p (cf. [4]).

Given a series S : pict(X) → K and a partition p of a picture p, we set

(S,p) =
∏
r∈p

(S, r).

Then we define the ◦-star of S by the formula

(S◦, p) =
∑

p∈val−1
X (p)

(S,p), p ∈ pict(X).

Thus in the case of a picture language L ⊆ pict(X),

ch(L)◦ : pict(X) → N

sends every picture p to the number of its partitions with pieces in L, where ch(L)
is the characteristic series of L.

The equality
ch(L)◦ = ch(L◦)

means that each picture p has at most one partition into pieces of L. Therefore:

Proposition 3. L ⊆ pict(X) is a picture code if and only if it holds

ch(L)◦ = ch(L◦).

4. Minimum generation of DR-monoids of pictures

Proposition 4. Consider, a DR-submonoid M of pict(X) and let

M = (M − E) − F.
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Then M has a minimum, with respect to inclusion, set of generators

C(M) = M − (M h©M ∪ M v©M).

Proof. First, we show that C(M) generates M .
Obviously, C(M)◦ ⊆ M .
To establish the opposite inclusion, let p ∈ Mm,n. If p /∈ (M h©M)m,n ∪

(M v©M)m,n, then p∈C(M)m,n ⊆ (C(M)◦)m,n. Otherwise, either p∈ (M h©M)m,n

or p ∈ (M v©M)m,n. In the first case, p = p1p2 with rank(pi) = (m, ni) , ni <
n(i = 1, 2) , n1 + n2 = n. Using double induction on rank(p) , pi ∈ (C◦)m,ni(i =
1, 2) and so p ∈ (C(M)◦)m,n. The other case is treated analogously.

Now, let D be a set of generators of M . We may suppose that D does not
contain any identity element, i.e. (D − E) − F = D. Let p ∈ C(M)m,n. Since
M = D◦, either p ∈ Dm,n or

p = p1p2 or p =
(

q1

q2

)
(1)

with pi ∈ (D◦)m,ni , n1 + n2 = n , qi ∈ (D◦)mi,n , m1 + m2 = m , i = 1, 2.
Case (1) is excluded, because p /∈ M h©M ∪ M v©M . Thus, p ∈ Dm,n for all

m, n, that is C(M) ⊆ D. �

Proposition 5. The minimum set of generators of a free DR-submonoid M of
pict(X), is a picture code.

Conversely for any picture code C ⊆ pict(X), C◦ is a free DR-submonoid of
pict(X) and its minimum set of generators is again C.

Proof. Since M is a free DR-submonoid of pict(X), there is an isomorphism α :
pict(B) → M for some DR-alphabet B. Thus C(M) = α(B) is a code.

In addition, M = α(pict(B)) = (α(B))◦ = C(M)◦ and thus C(M) generates M .
Moreover, by applying α to

B = pict(B) − (pict(B) h©pict(B) ∪ pict(B) v©pict(B))

we obtain

α(B) = α(pict(B)) − (α(pict(B)) h©α(pict(B)) ∪ α(pict(B)) v©α(pict(B)))

which implies
C(M) = C◦ − (C◦ h©C◦ ∪ C◦ v©C◦)

and so
C(M) = M − (M h©M ∪ M v©M).

Conversely, let C ⊆ pict(X) be a code. Then there is a doubly ranked alphabet B
and a bijection α : B → C which is extended into an isomorphism of DR-monoids
α′ : pict(B) → C◦. Thus C◦ is free.
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Furthermore, from the equality

B = pict(B) − (pict(B) h©pict(B) ∪ pict(B) v©pict(B))

we get

α(B) = α′(pict(B)) − (α′(pict(B)) h©α′(pict(B)) ∪ α′(pict(B)) v©α′(pict(B))).

It turns out that
C = C◦ − (C◦ h©C◦ ∪ C◦ v©C◦)

and by virtue of proposition 1, C is the minimum set of generators of C◦. �

We need the following definition. Let M be a DR-monoid; if C(M) is a picture
code, then we say that C(M) is the basis of M .

Next remarkable result is a consequence of the previous proposition.

Corollary 1. Given picture codes C1, C2 ⊆ pict(X), it holds

C◦
1 = C◦

2 implies C1 = C2.

Let X be a DR-alphabet. A picture code C is maximal over X whenever C is not
properly contained in any other picture code over X , that is if

C ⊆ C′ , C′ code ⇒ C = C′.
Let M be a free DR-submonoid of pict(X) , M 
= pict(X). Then M is maximal if
it is not properly contained in any other free DR-submonoid excepted pict(X).

Proposition 6. If M is a maximal free DR-submonoid of pict(X), then its basis
C(M) is a maximal picture code.

Proof. Let C1 ⊆ pict(X) be a code with C(M) ⊂ C1. Then C(M)◦ ⊆ C◦
1 and

C(M)◦ 
= C◦
1 (by corollary 1). But M is maximal and thus C◦

1 = pict(X).
Let p ∈ X −C(M). The set C2 = C(M)∪ pp is a code and M ⊂ C◦

2 ⊂ pict(X)
since pp /∈ M and p /∈ C◦

2 . This contradicts the maximality of M . �

5. Stable DR-monoids

The next fundamental characterization of monoid freeness is established in [3]:
given an ordinary alphabet A, a submonoid N of A∗ is free if-f it is stable, that is

r, rs, st, t ∈ N ⇒ s ∈ N for all r, s, t ∈ A∗.

In pictures, we have the possibility to generalize the above stability condition in
two directions: horizontally and vertically. Precisely, we say that a DR-submonoid
M of pict(X) is horizontally stable (HS) whenever for all a ∈ pictm,n1(X), b ∈
pictm,n2(X), c ∈ pictm,n3(X) it holds

a ∈ Mm,n1 , a h©b ∈ Mm,n1+n2 , b h©c ∈ Mm,n2+n3 , c ∈ Mm,n3 ⇒ b ∈ Mm,n2.
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M is said to be vertically stable (VS) whenever its transpose MT is horizontally
stable, that is for all a ∈ pictm1,n(X), b ∈ pictm2,n(X), c ∈ pictm3,n(X) it holds

a ∈ Mm1,n , a v©b ∈ Mm1+m2,n , b v©c ∈ Mm2+m3,n , c ∈ Mm3,n ⇒ b ∈ Mm2,n.

Example 4. A DR-submonoid M of pict(X) fulfilling both (HS) and(VS) may
not be free. Take the monadic alphabet X = {a, b, c, d, e, f},

C =
{

ab, ef, c, d,

(
a
d

)
,

(
b
e

)
,

(
c
f

)}
and M = C◦.

M is (HS)+(VS) but fails to be free since the picture(
abc
def

)
has two distinct decompositions in elements of C.

Therefore, in order to characterize freeness in the setup of pictures, we need an
additional condition.

A DR-submonoid M of pict(X) is termed circularly stable (CS) whenever for
all r ∈ pictm1,n1(X) , s ∈ pictm1,n2(X) , t ∈ pictm2,n2(X) , u ∈ pictm2,n1(X)

r s
u t

(Fig. 1)

it holds

r h©s ∈ Mm1,n1+n2 , s v©t ∈ Mm1+m2,n2 , u h©t ∈ Mm2,n1+n2 , r v©u ∈ Mm1+m2,n1

implies
r ∈ Mm1,n1 , s ∈ Mm1,n2 , t ∈ Mm2,n2 , u ∈ Mm2,n1 .

Now we state

Theorem 1. A DR-submonoid M of pict(X) is free if and only if it is horizontally,
vertically and circularly stable.

Proof. Assume that M is free, that is M = C◦ with C ⊆ pict(X) a picture code

and let r, s, t, u of suitable rank so that rs ,

(
s
t

)
, ut ,

(
r
u

)
∈ C◦. If for instance

r does not belong to C◦, then in the unique factorization p of rs in C◦, there is
at least a piece x such that

x = ab

with a ∈ pict(X) − C◦ lying on the eastern border of r and b ∈ pict(X) lying on
the western border of s.

Similarly a (or a′ ∈ pict(X) − C◦ which lies on the south-eastern border of a)
must lie on the western part of a piece y ∈ C



PICTURE CODES 547

y = a

in the unique factorization p′ of
(

r
u

)
in C◦. Therefore x and y belong in two

distinct factorizations of
(

rs
ut

)
in C◦ which is impossible. Thus M = C◦ has the

circular property.

Now, if a, b, c are pictures of suitable rank such that a ,

(
a
b

)
,

(
b
c

)
, c ∈ M and

b does not belong to M , then (
a
b

)
c

 ,

 a(
b
c

)
would be two different factorizations of the same picture, contradiction. Hence M
is v-stable.

Horizontal stability is established analogously.
Conversely, assume that M is hv- and circularly stable. Furthermore suppose

that the minimum set of generators C(M) is not a code and let p be a picture of
minimal rank which admits two different decompositions (D1) and (D2) in C(M)◦.
The following alternatives may arise.
Case 1. p = p1p2 = q1q2.

Subcase 1a. If rank(p1) = rank(q1) and p1, q1 have the same decompo-
sition in C(M)◦, then the picture p2 = q2 has smaller rank than that of p and
admits two different decompositions in C(M)◦, which contradicts the choice of p.
By the same argument, we exclude the case the picture p1 = q1 has two different
decompositions.

Subcase 1b. rank(p1) > rank(q1). Then there exists a picture s ∈
pict(X) such that p1 = q1s and sp2 = q2. As M is h-stable, it comes s ∈ M =
C(M)◦. This implies that the decompositions (D1) and (D2) are identical, con-
tradiction.

Case 2. p =
(

p1

p2

)
=

(
q1

q2

)
. Dual to Case 1.

Case 3. p = p1p2 =
(

q1

q2

)
.

p1

{ q1︷ ︸︸ ︷
r s
u t︸ ︷︷ ︸

q2

}
p2

Since by hypothesis, M has the circular property r, s, t, u ∈ C(M)◦ and there-
fore the factorizations (D1), (D2) coincide, contradiction.
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We conclude that C(M) is a picture code, i.e. M is free. �
Example 4 (continue). We observe that M is not CS since

abc ∈ M1,3 , def ∈ M1,3 ,

(
a
d

)
∈ M2,1 ,

(
bc
ef

)
∈ M2,2

while a /∈ M1,1.
Thus it is not free.

Example 5. Although prefix (suffix) word subsets constitute a wide class of codes,
in the 2-dimensional case this fails to be true with respect to horizontal (vertical)
concatenation.

For instance given a ∈ pict(X) the set C =
{

aa ,

(
a
a

)}
is not a code as it can

be easily seen.

6. Free hull of a picture language

The results of the previous section enable us to study more in depth picture
codes.

First, from Theorem 1 we immediately deduce that:

Proposition 7. The intersection of any family of free DR-submonoids of pict(X)
is again free.

Proof. It is omitted. �
This allows us to speak of the free hull of a picture language C ⊆ pict(X); it

is the intersection of all free DR-submonoids of pict(X) including C, i.e. it is the
smallest free DR-submonoid of pict(X) including C.

Next lemma is useful.

Lemma 1. Let r, s, t, u ∈ pictm,n(X) and assume that B◦ is the free hull of the

set C =
{

rs, ut,

(
r
u

)
,

(
s
t

)}
. Then B = {r, s, t, u}.

Proof. It holds C ⊆ {r, s, t, u}◦ and by the definition of the free hull,

B(C)◦ ⊆ {r, s, t, u}◦.

On the other hand, since rs, ut,

(
r
u

)
,

(
s
t

)
∈ B(C)◦ which has the circular prop-

erty, we obtain r, s, t, u ∈ B(C)◦. Therefore {r, s, t, u}◦ ⊆ B(C)◦.
We conclude that the free hull of C is {r, s, t, u}◦. �
In the sequel, we are interested in the cardinality of the basis B(C) of the

free hull B(C)◦ of a set C ⊆ pict(X). The well known Defect Theorem for words,
states that B(C) is a finite set and even CardB(C) � CardC, the equality holding
exactly when C is a code (cf. [3]).
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Example 6. As we have seen (Lem. 1) the basis of the free hull of the set C =

{rs,
(

s
t

)
, ut,

(
r
u

)
} is B(C) = {r, s, t, u}. Although CardC = CardB(C), C is

not a picture code.

Example 7. Consider the set

C =
{

abc, def,

(
a
d

)
,

(
b
e

)
,

(
c
f

)}
where all the symbols a, b, c, d, e, f have rank (1, 1). The basis of its free hull is
B(C) = {a, b, c, d, e, f} and thus CardB(C) > CardC.

Proposition 8. Let C = {c1, ..., cζ} be a subset of pict(X) whose free hull is
B(C)◦ and rank(ci) = (mi, ni) , 1 � i � ζ. Then

CardB(C) �
ζ∑

i=1

mi(mi + 1)
2

· ni(ni + 1)
2

·

Proof. For all i = 1, ..., ζ in the picture ci ∈ B(C)◦ appear at most (mi+1−κi)(ni+
1 − λi) distinct elements of B(C) with rank (κi, λi) , 1 � κi � mi , 1 � λi � ni.
Therefore, in ci appear at most

mi∑
κi=1

ni∑
λi=1

(mi + 1 − κi)(ni + 1 − λi) =
mi∑

κi=1

(mi + 1 − κi)
ni∑

λi=1

(ni + 1 − λi)

=
mi · (mi + 1)

2
· ni · (ni + 1)

2

distinct elements of B(C) and so

CardB(C) �
ζ∑

i=1

mi(mi + 1)
2

· ni(ni + 1)
2

· �

Remark. If all pictures of C have rank (1, 1), then B(C) = C and in this case we
have CardB(C) = CardC.

Next proposition gives us more information about how the basis of the free hull
is located.

Proposition 9. Assume that C ⊆ pict(X) and Cp = C − {p} for some p ∈ C. If
B(C)◦ is the free hull of C and B(Cp)◦ is the free hull of Cp, then B(C)◦ is also
the free hull of B(Cp) ∪ {p}.
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Proof. Assume that D◦ is the free hull of B(Cp) ∪ {p}. From

C = Cp ∪ {p} ⊆ B(Cp)◦ ∪ {p} ⊆ (B(Cp) ∪ {p})◦ ⊆ D◦

we get B(C)◦ ⊆ D◦ because D◦ is free and B(C)◦ is the free hull of C.
Conversely, from Cp ⊆ C ⊆ B(C)◦ and the fact that B(Cp)◦ is the free hull of

Cp we deduce that B(Cp)◦ ⊆ B(C)◦. Hence, B(Cp)∪{p} ⊆ B(Cp)◦∪{p} ⊆ B(C)◦

and so D◦ ⊆ B(C)◦ as wanted. �
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