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Abstract. Bertoni et al. introduced in Lect. Notes Comput. Sci.
2710 (2003) 1–20 a new model of 1-way quantum finite automaton
(1qfa) called 1qfa with control language (1qfc). This model, whose rec-
ognizing power is exactly the class of regular languages, generalizes
main models of 1qfa’s proposed in the literature. Here, we investi-
gate some properties of 1qfc’s. In particular, we provide algorithms
for constructing 1qfc’s accepting the inverse homomorphic images and
quotients of languages accepted by 1qfc’s. Moreover, we give instances
of binary regular languages on which 1qfc’s are proved to be more
succinct (i.e., to have less states) than the corresponding classical (de-
terministic) automata.
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Introduction

Quantum finite automata (qfa’s, for short) [5, 12] are computational devices
particularly interesting since they represent a theoretical model for a quantum
computer with finite memory. We can hardly expect to see a fully quantum com-
puter [11] in the near future, while it is reasonable to think of classical computers
incorporating small quantum components such as, e.g., a qfa. Qfa’s exhibit both
advantages and disadvantages with respect to their classical (deterministic or prob-
abilistic) counterpart. Basically, quantum superposition offers some computational
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advantages on probabilistic superposition. On the other hand, quantum dynam-
ics are reversible: because of limitation of memory, it is sometimes impossible to
simulate deterministic automata by quantum automata.

Originally, two models of qfa’s have been proposed and investigated. The sim-
plest model is represented by measure-once 1-way qfa’s (mo-1qfa’s) [9,15]. In this
model, the probability of accepting strings is evaluated by “observing” just once,
at the end of input processing. The computational power of mo-1qfa’s is weaker
than that of classical automata. In fact, in [4, 9] it is proved that they recognize
exactly the class of group languages [21], a proper subclass of regular languages.
In measure-many 1qfa’s (mm-1qfa’s) [2, 14], instead, such an observation is per-
formed after each move. Mm-1qfa’s are proved to have a computational power
stronger than mo-1qfa’s, but still weaker than classical automata [1, 3, 14].

Several modifications to these original models of qfa’s have then been proposed
in order to gain more computational power, but still retaining the “quantum na-
ture” of computing. Thus, “enhanced” [20], reversible [10], Latvian [1] qfa’s have
been introduced. The computational power of these models lies between that of
mo-1qfa’s and that of classical automata.

Along this line of research, Bertoni et al. proposed in [5] the model of 1-way
quantum finite automata with control language (1qfc’s for short). This model is
particularly interesting since it generalizes several models of 1qfa’s. A 1qfc A can
be regarded to as a computational device having a quantum processor controlled
by a classical automaton C. The state of A is observed after each move by an
observable with a fixed, but arbitrary, set of possible outcomes. On any given
input word x, a sequence y of outcomes is generated with a certain probability;
the computation of A on x is accepting whenever y belongs to the regular language
(the control language) recognized by C. In [5], several closure properties for the
class of stochastic events realized by 1qfc’s are investigated. Yet, it is proved that
a language accepted with isolated cut point by a 1qfc is regular.

Here, we continue the investigations on 1qfc’s by studying both their computa-
tional power and their descriptional complexity (i.e., the size of their classical and
quantum components). In Section 2, we begin by establishing the exact compu-
tational power of 1qfc’s. In fact, we prove that the class of languages recognized
with isolated cut point by 1qfc’s coincides with the class of regular languages. We
obtain this result by designing an algorithm which, having a given deterministic
automaton as input, constructs an equivalent 1qfc (although with a “large” classi-
cal component). In Section 3.1, we provide algorithms for constructing 1qfc’s that
accept quotients and inverse homomorphic images of languages accepted by 1qfc’s.
This enables us to study the cost, in terms of quantum basis states and classical
states, of these operations on 1qfc’s (for other types of 1qfa’s, these operations
have been investigated, e.g., in [1]). Moreover, the construction for the inverse
homomorphic images is used in Section 3.2 to build 1qfc’s recognizing a family
of binary regular languages. On this family, we are able to obtain 1qfc’s more
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succinct than equivalent classical automata, thus showing that, in some cases, the
general construction in Section 2 can be improved.

1. Basic definitions

We begin by quickly recalling some notations of linear algebra. For more details,
we refer the reader to, e.g., [16, 17].

We denote by N the set of non negative integers and C the set of complex
numbers. Given a complex number z ∈ C, its conjugate is denoted by z, and
its modulus is |z| =

√
zz. We denote by Cn×m the set of n × m matrices with

entries in C. The adjoint of a matrix M ∈ Cn×m is the matrix M † ∈ Cm×n,
where M †

ij = Mji. For matrices A ∈ Cn×m and B ∈ Cp×q, their direct sum
and Kronecker’s product are the (n + p)× (m + q) and np×mq matrices defined,
respectively, as

A ⊕ B =
(

A 0n×q

0p×m B

)
, A ⊗ B =

⎛
⎜⎝

A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

⎞
⎟⎠ ,

where 0n×m denotes the n × m zero matrix. As a shortcut, we let 0n = 0n×n.
For vectors π ∈ C1×n and η ∈ C1×m, their direct sum is the 1 × (n + m) vector
π ⊕ η = (π1, . . . , πn, η1, . . . , ηm).

An Hilbert space of dimension n is the linear space C1×n equipped with sum
and product by elements in C, in which the inner product 〈π, ξ 〉 = πξ† is defined.
If 〈π, ξ 〉 = 0 we say that π is orthogonal to ξ. The norm of vector π ∈ C1×n is
defined as ‖π‖=

√〈π, π 〉. Two subspaces X, Y are orthogonal if any vector in X
is orthogonal to any vector in Y ; in this case, the linear space generated by X ∪Y
is denoted by X � Y .

A matrix M ∈ Cn×n is said to be unitary whenever MM † = In = M †M ,
where In is the n × n identity matrix; moreover, a matrix is unitary if and only
if it preserves the norm, i.e., ‖πM ‖= ‖π ‖ for each vector π ∈ C1×n. M is said
to be Hermitian whenever M = M †. Given an Hermitian matrix O ∈ Cn×n, let
c1, . . . , cs be its eigenvalues and E1, . . . , Es the corresponding eigenspaces. It is well
known that each eigenvalue ck is real, that Ei is orthogonal to Ej , for any i 	= j,
and that E1�· · ·�Es = C1×n. Each vector π ∈ C1×n can be uniquely decomposed
as π = π1 + · · · + πs, where πj ∈ Ej . The linear transformation π 
→ πj is the
projector Pj on the subspace Ej . It is easy to see that

∑s
j=1 Pj = I. The Hermitian

matrix O is biunivocally determined by its eigenvalues and its eigenspaces or,
equivalently, by its projectors: in fact, we have that O = c1P1 + · · · + csPs.

Let us now use this formalism to describe quantum systems.
Given a set Q = {q1, . . . , qm}, every qi can be represented by its charac-

teristic vector ei = (0, . . . , 1, . . . , 0). A quantum state on Q is a superposition
π =

∑m
k=1 αkek, where the coefficients αk are complex amplitudes and ‖ π ‖= 1.

Every ek is called quantum basis state. Given alphabet Σ = {σ1, . . . , σl}, with
every symbol σi we associate a unitary transformation U(σk) : C1×m → C1×m.
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An observable is described by an Hermitian matrix O = c1P1 + · · ·+csPs. Suppose
that a quantum system is described by the quantum state π. Then, we can operate

(1) Evolution U(σj). In this case, the new state ξ = πU(σj) is reached; this
dynamics is reversible, since π = ξU †(σj).

(2) Measurement of O. In this case, every result in {c1, . . . , cs} can be ob-
tained; cj is obtained with probability ‖πPj ‖ 2 and the state after such
a measurement is πPj/ ‖ πPj ‖ . The state transformation induced by a
measurement is typically irreversible.

1.1. Quantum finite automata with control language

Let us now recall the model of 1-way quantum finite automata with control
language as stated in [5]. In this model, an input word x from a given input
alphabet Σ is placed onto an input tape with a special character � 	∈ Σ as right
endmarker. The state of the system can be observed after each symbol of x is
processed. An observable O with a fixed, but arbitrary, set of possible results
C = {c1, . . . , cs} is considered. On x, the computation displays a sequence y ∈ C∗

of results of measurements of O with a certain probability p(y; x): the computation
is “accepting” if and only if y belongs to a fixed regular control language L ⊆ C∗.
More formally:

Definition 1.1. Given an alphabet Σ and an endmarker symbol � /∈ Σ, an m-state
1-way quantum finite automaton with control language (1qfc, for short) is a system
A = (π, {U(γ)}γ∈Γ,O,L), for Γ = Σ ∪ {�}, where

• π ∈ C1×m is the initial amplitude vector satisfying ‖π‖= 1;
• U(γ) ∈ Cm×m is a unitary matrix, for all γ ∈ Γ;
• O is an observable on C1×m; if C = {c1, . . . , cs} is the class of all pos-

sible results of measurements of O, P (ci) denotes the projector on the
eigenspace corresponding to ci, for all ci ∈ C;

• L ⊆ C∗ is a regular language (the control language).

Now, we define the behavior of A on a word x1 · · ·xn� ∈ Σ∗�. At any time, the
state of A is a vector ξ ∈ C1×m with ‖ ξ ‖= 1. The computation starts in the
state π, then transformations associated with the symbols in the word x1 · · ·xn�
are applied in succession. The transformation corresponding to a symbol γ ∈ Γ
consists of two steps:

(1) First, U(γ) is applied to the current state ξ of the automaton yielding the
new state ξ′.

(2) Then, the observable O is measured on ξ′. According to quantum me-
chanics principles above recalled, the result of measurement is ck with
probability ‖ ξ′P (ck) ‖ 2, and the state of the automaton “collapses” to
ξ′P (ck)/ ‖ξ′P (ck)‖ .
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Thus, a computation on x1 · · ·xn� leads to a sequence y1 · · · yny� of results of the
measurements of O with probability pA(y1 · · · yny�; x1 · · ·xn�) given by

pA(y1 · · · yny�; x1 · · ·xn�) =

∣∣∣∣∣
∣∣∣∣∣π
(

n∏
i=1

U(xi)P (yi)

)
U(�)P (y�)

∣∣∣∣∣
∣∣∣∣∣
2

.

A computation leading to the word y1 · · · yny� is accepting if y1 · · · yny� ∈ L, other-
wise it is rejecting. Hence, the probability that, on input x1 · · ·xn�, the automaton
generates an accepting computation is

EA(x1 · · ·xn) =
∑

y1···yny�∈L
pA(y1 · · · yny�; x1 · · ·xn�). (1)

The function EA : Σ∗ → [0, 1] is the stochastic event induced by A. The language
accepted by A with cut point λ ∈ (0, 1] is the set

LA,λ = {x ∈ Σ∗ | EA(x) > λ}.

A language L is said to be accepted by A with isolated cut point λ, if there exists
ε > 0 such that, for any x ∈ L (x 	∈ L), we have EA(x) ≥ λ + ε (EA(x) ≤ λ − ε).

In what follows, we say that A has q quantum basis states and k classical states
whenever it is a q-state 1qfc and the control language L can be recognized by a
k-state 1-way deterministic finite state automaton (1dfa). In other words q (resp.,
k) measures the size of the quantum (resp., classical) component of our device.

2. The computational power of 1qfc’s

In [5], Bertoni et al. proved that: (1) the stochastic events induced by 1qfc’s
are bounded rational formal series, and (2) the languages defined with isolated cut
point by bounded real valued rational formal series are regular. These two facts
lead to the following

Theorem 2.1. The languages recognized with isolated cut point by 1qfc’s are
regular.

We are now going to show that the converse holds true as well, and hence the
class of languages accepted by 1qfc’s coincides with the class of regular languages.
In what follows, a 1dfa will be denoted by a 5-tuple (K, Σ, δ, q, F ) where K is the
set of states, Σ the input alphabet, δ the transition function, q the initial state,
and F the set of accepting states.

Theorem 2.2. For any regular language L ⊆ {a, b}∗ accepted by a k-state 1dfa A,
there exists a 1qfc A recognizing deterministically L with 3 quantum basis states
and 3k classical states.
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Proof. We define A = (π0, {U(γ)}γ∈{a,b,�},O,L) as follows:

• π0 = (1, 0, 0);

• U(a) = I3, U(b) =

(
0 1 0
0 0 1
1 0 0

)
, U(�) =

(
0 0 1
1 0 0
0 1 0

)
;

• O = 0 · P (0) + 1 · P (1) + 2 · P (2), where

P (0) =

(
1 0 0
0 0 0
0 0 0

)
, P (1) =

(
0 0 0
0 1 0
0 0 0

)
, P (2) =

(
0 0 0
0 0 0
0 0 1

)
;

• the control language L is accepted by the 1dfa C constructed as follows.
Let A = (K, {a, b}, δ, q, F ) be the k-state 1dfa recognizing L, then

C = (K ′ = K × {0, 1, 2}, {0, 1, 2}, δ′, (q, 0), F ′ = {(p, i) ∈ K ′ | p ∈ F})

where, for any (p, i) ∈ K ′ and j ∈ {0, 1, 2}:

δ′((p, i), j) =

⎧⎨
⎩

(δ(p, a), j) if j = i
(δ(p, b), j) if j = (i + 1)mod 3
(p, j) if j = (i + 2)mod 3.

(2)

Let us now briefly explain how the 1qfc A works. First of all, it is easy to see that,
at any time during a computation, A is exactly in one of the following states:
π0 = (1, 0, 0), π1 = (0, 1, 0), π2 = (0, 0, 1). Moreover, the observation performed in
these states leads with certainty to the outcome 0, 1, 2, respectively, thus leaving
A in the same state. Suppose that A is in πi (hence the outcome of the observation
has been i) and reads the input symbol γ ∈ {a, b, �}. Then:

• if γ = a, A remains in πi and then the observation outputs i with certainty,
as the outcome at the previous step;

• if γ = b, A moves to state π(i+1) mod 3 and then the observation outputs
(i + 1)mod 3 with certainty;

• if γ = �, A moves to state π(i+2) mod 3 and then the observation outputs
(i + 2)mod 3 with certainty.

In other words, the dynamics of A is deterministic and, on any input string x�,
it returns with certainty a unique string ΨA(x�) ∈ {0, 1, 2}∗ of outcomes of the
observations. Yet, this transduction ΨA : {a, b, �}∗ → {0, 1, 2}∗ is bijective, as the
reader may easily verify. Thus, for any x ∈ {a, b}∗ and y ∈ {0, 1, 2}∗, we get

pA(y, x�) =
{

1 if y = ΨA(x�)
0 otherwise. (3)

If we set the control language as L = {ΨA(x�) | x ∈ L}, by (3), we would obtain

EA(x) =
∑
y∈L

pA(y; x�) =
{

1 if ΨA(x�) ∈ L (iff x ∈ L)
0 otherwise,
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whence the correctness of our construction. Thus, it is enough to show that the
1dfa C given in the definition of A recognize {ΨA(x�) | x ∈ L}. We informally
describe how C works. By definition, the states of C consists of two components:
the first is a state of A (the 1dfa accepting L), the second records the outcome of
the last observation of A. According to the definition (2), the transition of C takes
place by comparing the second component i of the state (p, i) with the input symbol
j. If these two values coincide, then the 1qfc has read an a; if j = (i + 1)mod3
(j = (i + 2)mod3) then the 1qfc has read a b (the endmarker �). The transition
leads to a state where the second component stores j, while in the first component
we operate as follows: if the symbol read by the 1qfc is a (b) then we evolve in
δ(p, a) (δ(p, b)), otherwise, on input �, we remain in the current state p. It is
easy to see that, at the end of the computation of A on x�, C reaches the state
(δ(q, x), h), for some h ∈ {0, 1, 2}. Hence, ΨA(x�) is accepted by C if and only if
(δ(q, x), h) ∈ F ′ if and only if δ(q, x) ∈ F if and only if x ∈ L. �

3. On the descriptional complexity of 1qfc’s

As we have seen in the previous section, the class of languages accepted by
1qfc’s coincides with the class of regular languages. This directly implies that the
class of languages accepted by 1qfc’s is closed under inverse homomorphic images
and quotients. In what follows, we are going to design algorithms to explicitly
construct 1qfc’s that accept quotients and inverse homomorphic images of regular
languages (defined by 1qfc’s). This will enable to study the cost, in terms of
quantum basis states and classical states, of these operations on 1qfc’s.

3.1. Building 1qfc’s

First, let us recall the operations on languages we are interested in.

Definition 3.1. Given a language L ⊆ Σ∗ and two words v, w ∈ Σ∗, the quotient
of L with respect to v, w is the language v−1Lw−1 = {x ∈ Σ∗ | vxw ∈ L}.
Definition 3.2. Given two alphabets Σ, ∆, a language L ⊆ ∆∗, and an homo-
morphism ϕ : Σ∗ → ∆∗, the inverse homomorphic image of L is the language
ϕ−1(L) = {x ∈ Σ∗ | ϕ(x) ∈ L}. Given a word y ∈ ∆∗, we also set ϕ−1(y) =
{x ∈ Σ∗ | ϕ(x) = y}; thus, ϕ−1(L) = ∪y∈Lϕ−1(y).

We begin by approaching the construction of 1qfc’s for quotients. We will
construct 1qfc’s for accepting σ−1L and Lσ−1, for σ ∈ Σ and language L ⊆
Σ∗ accepted by a 1qfc. By iterating these constructions, one obtains a 1qfc for
v−1Lw−1, for given v, w ∈ Σ∗.

Theorem 3.3. Let L ⊆ Σ∗ be a language recognized with isolated cut point by
a 1qfc A with q quantum basis states, k classical states and a control language
alphabet consisting of s > 1 symbols. Then, there exists a 1qfc B with (s2 + s)q
quantum states and ks classical states that recognizes σ−1L with isolated cut point.
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Proof. For the sake of simplicity, we begin by proving the result for binary control
languages. Then, we generalize our reasoning to arbitrary observables. Thus, let
A = (π, {U(γ)}γ∈Γ,O,L), with Γ = Σ∪{�}, O = 0·P (0)+1·P (1) and L ⊆ {0, 1}∗,
be the 1qfc accepting the language L with isolated cut point. We construct the
1qfc B = (π′, {U ′(γ)}γ∈Γ,O′,L′) inducing the stochastic event EB(x) = EA(σx),
for any x ∈ Σ∗, thus recognizing σ−1L with isolated cut point. Roughly speaking,
on input x ∈ Σ∗, B “carries on the possible computations” of A on input σx. By
the choice of a suitable observable, these computations are correctly taken into
account upon evolving and observing on �.

The initial state of B is the 1 × 6q unit vector π′ = (πU(σ)P (0), πU(σ)P (1),
01×4q). The evolution on γ ∈ Σ is represented by the 6q × 6q unitary matrix

U ′(γ) = U(γ) ⊕ U(γ) ⊕ I4q,

while the evolution on � is defined as

U ′(�) =

⎛
⎜⎜⎜⎜⎜⎝

0q 0q U(�)P (0) U(�)P (1) 0q 0q

0q 0q 0q 0q U(�)P (0) U(�)P (1)
0q 0q U(�)P (1) U(�)P (0) 0q 0q

0q 0q 0q 0q U(�)P (1) U(�)P (0)
Iq 0q 0q 0q 0q 0q

0q Iq 0q 0q 0q 0q

⎞
⎟⎟⎟⎟⎟⎠ .

The reader may verify that U ′(�) is unitary.
The observable is O′ = 0·P ′(0)+1·P ′(1)+a·P ′(a)+b·P ′(b)+c·P ′(c)+d·P ′(d),

where the projectors are as follows:

P ′(0) = P (0) ⊕ P (0) ⊕ 04q P ′(1) = P (1) ⊕ P (1) ⊕ 04q

P ′(a) = 02q ⊕ Iq ⊕ 03q P ′(b) = 03q ⊕ Iq ⊕ 02q

P ′(c) = 04q ⊕ Iq ⊕ 0q P ′(d) = 05q ⊕ Iq .

The control language is L′ = Λ0 ∪ Λ1, where Λ0 = 0−1L0−1a ∪ 0−1L1−1b and
Λ1 = 1−1L0−1c ∪ 1−1L1−1d. Supposing that L is recognized by the k-state 1dfa
C = (K, {0, 1}, δ, q0, F ), it is not hard to see that Λ0 can be recognized by the
k-state 1dfa C0 = (K, {0, 1, a, b}, δ0, δ(q0, 0), F ). The transition function δ0 is
defined as δ except for transitions leading to a final state: for any p ∈ K such that
δ(p, 0) = s ∈ F (δ(p, 1) = s ∈ F ), we let δ0(p, a) = s (δ0(p, b) = s). In a similar
way, a k-state 1dfa C1 recognizing Λ1 can be built from C. Finally, a k2-state
1dfa accepting L′ = Λ0 ∪ Λ1 can be built from C1 and C2 by using the standard
Cartesian product construction (see, e.g., [13]).

Let us now evaluate the stochastic event realized by B on the word x =
x1 · · ·xn ∈ Σ∗. In what follows, we let y = y1 · · · yn ∈ {0, 1}∗ be a sequence
of observation outcomes. By definition, we have

EB(x) =
∑

yy�∈L′
pB(yy�; x�). (4)
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By the definition of U ′(�) and the observable O′, one can see that y� ∈ {a, b, c, d}.
Thus, we can rewrite (4) as

EB(x) =
∑

ya∈L′
pB(ya; x�)+

∑
yb∈L′

pB(yb; x�)+
∑

yc∈L′
pB(yc; x�)+

∑
yd∈L′

pB(yd; x�). (5)

Let us focus on the first sum in (5). First of all, by the definition of L′, we observe
that ya ∈ L′ if and only if 0y0 ∈ L. Moreover, by the definition of the 1qfc B, we
have

pB(ya; x�) =

∣∣∣∣∣
∣∣∣∣∣π′
(

n∏
i=1

U ′(xi)P ′(yi)

)
U ′(�)P (a)

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣πU(σ)P (0)

(
n∏

i=1

U(xi)P (yi)

)
U(�)P (0)

∣∣∣∣∣
∣∣∣∣∣
2

= pA(0y0; x�).

This enables us to rewrite the first sum in (5) as
∑

0y0∈L pA(0y0; σx�). With
analogous reasonings, we can replace the other three sums in (5), respectively,
with

∑
0y1∈L pA(0y1; σx�),

∑
1y0∈L pA(1y0; σx�),

∑
1y1∈L pA(1y1; σx�). Thus, we

obtain

EB(x) =
∑

0y0∈L
pA(0y0; σx�) +

∑
0y1∈L

pA(0y1; σx�) +
∑

1y0∈L
pA(1y0; σx�)

+
∑

1y1∈L
pA(1y1; σx�) =

∑
y0yy�∈L

pA(y0yy�; σx�) = EA(σx).

If A presents a general observable O with outcomes {c1, . . . , cs}, the construction of
B generalizes as follows. The initial superposition is represented by the 1×(s+s2)q
unit vector π′ = (

⊕s
i=1 πU(σ)P (ci)) ⊕ 01×s2q. The evolution on γ ∈ Σ is given

by the unitary matrix U ′(γ) = (
⊕s

i=1 U(γ)) ⊕ Is2q, while the evolution on � is
represented by

U ′(�) =

⎛
⎜⎜⎜⎜⎜⎝

0sq ⊕s
j=1H1

0sq ⊕s
j=1H2

...
...

0sq ⊕s
j=1Hs

Isq 0sq×s2q

⎞
⎟⎟⎟⎟⎟⎠ ,

where, for 1 ≤ i ≤ s, we set Hi = H(Π⊗Iq)i−1, with H being the q×sq block ma-
trix H = (U(�)P (c1), U(�)P (c2), . . . , U(�)P (cs)), and Π the circular permutation
matrix on s symbols. The reader may verify that U ′(�) is unitary. The observable
is O′ =

∑s
i=1 ciP

′(ci) +
∑s

i,j=1 dijP
′(dij), where, for 1 ≤ i, j ≤ s,

P ′(ci) =

(
s⊕

h=1

P (ci)

)
⊕ 0s2q, P ′(dij) = 0sqi+(j−1)q ⊕ Iq ⊕ 0sq(s−i)+(s−j)q .
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The control language L′ ⊆ {c1, . . . , cs, d11, . . . , di,j , . . . , dss}∗ is defined as L′ =⋃s
i=1 Λci , where Λci =

⋃s
j=1 c−1

i Lc−1
j dij . Every Λci is easily seen to be recognized

by a k-state 1dfa, and hence L′ turns out to be recognized by a ks-state 1dfa. �

Theorem 3.4. Let L ⊆ Σ∗ be a language recognized with isolated cut point by
a 1qfc A with q quantum basis states, k classical states and a control language
alphabet consisting of s > 1 symbols. Then, there exists a 1qfc B with (s2 + 1)q
quantum states and k classical states that recognizes Lσ−1 with isolated cut point.

Proof. The technique is similar to that used in the proof of the previous theorem.
We directly give the construction for general observables; its correctness may be
easily verified by the reader. Let A = (π, {U(γ)}γ∈Γ,O,L), with Γ = Σ ∪ {�},
O =

∑s
i=1 ciP (ci) and L ⊆ {c1, . . . , cs}∗, be the 1qfc accepting the language L with

isolated cut point. We construct the 1qfc B = (π′, {U ′(γ)}γ∈Γ,O′,L′) inducing
the stochastic event EB(x) = EA(xσ), for any x ∈ Σ∗, thus recognizing Lσ−1 with
isolated cut point. This time, on input x, B simulates A on input xσ. By the
choice of a suitable observable, the evolution and observation on σ is taken into
account upon evolving and observing on �.

The initial state of B is represented by the 1 × (s2 + 1)q unit vector π′ = π ⊕
01×s2q. The evolution on γ ∈ Σ is given by the unitary matrix U ′(γ) = U(γ)⊕Is2q,
while the evolution on � is represented by

U ′(�) =

⎛
⎜⎜⎜⎜⎜⎝

0q R1

0q R2

...
...

0q Rs2

Iq 0q×s2q

⎞
⎟⎟⎟⎟⎟⎠ ,

where, for 1 ≤ i ≤ s2, we set Ri = R(Π ⊗ Iq)i−1, with R being the q × s2q block
matrix

R = (U(σ)P (c1)U(�)P (c1), U(σ)P (c1)U(�)P (c2), . . . , U(σ)P (c1)U(�)P (cs),
U(σ)P (c2)U(�)P (c1), U(σ)P (c2)U(�)P (c2), . . . , U(σ)P (c2)U(�)P (cs),
. . . ,

U(σ)P (cs)U(�)P (c1), U(σ)P (cs)U(�)P (c2), . . . , U(σ)P (cs)U(�)P (cs)),

and Π the circular permutation matrix on s2 symbols. The reader may verify
that U ′(�) is unitary. The observable is O′ =

∑s
i=1 ciP

′(ci) +
∑s

i,j=1 dijP
′(dij),

where, for 1 ≤ i, j ≤ s,

P ′(ci) = P (ci) ⊕ 0s2q, P ′(dij) = 0sq(i−1)+jq ⊕ Iq ⊕ 0sq(s−i+1)−jq .

The control language L′ ⊆ {c1, . . . , cs, d11, . . . , dij , . . . , dss}∗ is the language
L′ =

⋃s
i,j=1 L(cicj)−1dij . Supposing that L is recognized by the k-state 1dfa
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(K, {c1, . . . , cs}, δ, q0, F ), it is not hard to see that L′ can be recognized by the k-
state 1dfa (K,{c1, . . . , cs, d11, . . . , dij , . . . , dss}, δ′, q0, F ). The transition function
δ′ is defined as δ except for transitions leading to a final state in two moves: for
any p ∈ K such that δ(p, cicj) = s ∈ F , we let δ′(p, dij) = s. �

Let us now focus on constructing 1qfc’s for inverse homomorphic images. Here,
we state our construction for homomorphisms from binary alphabets. Yet, for
avoiding too many technicalities, we will assume that 1qfc’s do not work with the
endmarker � at the end of input strings. These assumptions do not substantially
influence the generality of our construction.

Theorem 3.5. Let L ⊆ ∆∗ be a language recognized with isolated cut point by a
1qfc A with q quantum states, k classical states and a control language alphabet
consisting of s > 1 symbols. Then, given an homomorphism ϕ : {a, b} → ∆∗ with
m = max {|ϕ(a)|, |ϕ(b)|}, there exists a 1qfc B with 2smq quantum basis states and
2smk classical states that recognizes ϕ−1(L) with isolated cut point.

Proof. We begin by exhibiting our construction for an homomorphism ϕ : {a, b} →
{α, β}∗ defined as ϕ(a) = αβ and ϕ(b) = β, so that m = 2. Yet, we start from a
language L accepted by a 1qfc with a binary observable. We omit the proof of the
correctness of the construction which is quite technical but not hard to provide.
Instead, we explain how the resulting 1qfc for ϕ−1(L) works. Then, we sketch the
construction for arbitrary homomorphisms and 1qfc’s.

We assume that A = (π, {U(γ)}γ∈Γ,O,L), with Γ = {α, β, �}, O = 0 ·P (0)+1 ·
P (1) and L ⊆ {0, 1}∗, is the 1qfc accepting the language L with isolated cut point.
We construct the 1qfc B = (π′, {U ′(σ)}σ∈{a,b,�},O′,L′) inducing the stochastic
event EB(x) = EA(ϕ(x)), for any x ∈ {a, b}∗, thus recognizing ϕ−1(L) with isolated
cut point. Roughly speaking, on reading the input symbol a (b), B “carries on”
the possible computations of A on input αβ (β). By the choice of a suitable
observable, these computations are correctly taken into account at each evolution
step plus observation.

The initial superposition of B is the 1 × 8q unit vector π′ = π ⊕ 01×7q. The
evolution is represented by the following 8q × 8q unitary matrices:

U ′(a) =
(

Ua 04q

04q Ua

)
where Ua is the 4q × 4q matrix

⎛
⎜⎝

U(α)P (0)U(β)P (0) U(α)P (0)U(β)P (1) U(α)P (1)U(β)P (0) U(α)P (1)U(β)P (1)
U(α)P (0)U(β)P (1) U(α)P (0)U(β)P (0) U(α)P (1)U(β)P (1) U(α)P (1)U(β)P (0)
U(α)P (1)U(β)P (0) U(α)P (1)U(β)P (1) U(α)P (0)U(β)P (0) U(α)P (0)U(β)P (1)
U(α)P (1)U(β)P (1) U(α)P (1)U(β)P (0) U(α)P (0)U(β)P (1) U(α)P (0)U(β)P (0)

⎞
⎟⎠ ,

U ′(b) =
(

04q Ub

Ub 04q

)
with Ub =

⎛
⎜⎝

U(β)P (0) 0q U(β)P (1) 0q

0q U(β)P (0) 0q U(β)P (1)
U(β)P (1) 0q U(β)P (0) 0q

0q U(β)P (1) 0q U(β)P (0)

⎞
⎟⎠ .
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The observable is O′ =
∑4

i=1 ci ·P ′(ci)+
∑4

i=1 ĉi ·P ′(ĉi), where the projectors are
as follows, for 1 ≤ i ≤ 4:

P ′(ci) = 0(i−1)q ⊕ Iq ⊕ 0(8−i)q

P ′(ĉi) = 0(3+i)q ⊕ Iq ⊕ 0(4−i)q.

Let us now describe the 1dfa C that recognizes the control language L′, supposing
that L is recognized by the k-state 1dfa (K, {0, 1}, δ, q0, F ). We begin by setting
T = {c1, . . . , c4}, T̂ = {ĉ1, . . . , ĉ4}, and letting KT = K × T, KT̂ = K × T̂. Then,
we define C = (KT ∪ KT̂, T ∪ T̂, δ′, (q0, c1), F ′ = {(p, τ) | p ∈ F}). The transition
function δ′ is defined according these two rules:

(1) if (p, τ) ∈ KT and x ∈ T or (p, τ) ∈ KT̂ and x ∈ T̂, then δ′((p, τ), x) =
(δ(p, W (τ, x)), x), where W is the function displayed in the following table:

W c1/ĉ1 c2/ĉ2 c3/ĉ3 c4/ĉ4

c1/ĉ1 00 01 10 11
c2/ĉ2 01 00 11 10
c3/ĉ3 10 11 00 01
c4/ĉ4 11 10 01 00

(2) if (p, τ) ∈ KT and x ∈ T̂ or (p, τ) ∈ KT̂ and x ∈ T, then δ′((p, τ), x) =
(δ(p, V (τ, x)), x), where V is the function displayed in the following table
(⊥ denotes a situation that never occurs):

V c1/ĉ1 c2/ĉ2 c3/ĉ3 c4/ĉ4

c1/ĉ1 0 ⊥ 1 ⊥
c2/ĉ2 ⊥ 0 ⊥ 1
c3/ĉ3 1 ⊥ 0 ⊥
c4/ĉ4 ⊥ 1 ⊥ 0

Let us now explain how the 1qfc B works on an input in {a, b}∗.
First of all, at any time during a computation, the state of B has one of the

following form: (ξ, 01×4q) or (01×4q, ξ), for some ξ ∈ C1×4q. We swap from a form
to the other upon reading b, while reading a does not change the form of the state.
The outcomes of observations on states of the first (second) form belong to T (T̂).
The initial superposition is (π, 01×7q), i.e., a state in the first form. Suppose that
B reads a, then the state remains in the first form with ξ = (πU(α)P (0)U(β)P (0),
πU(α)P (0)U(β)P (1), πU(α)P (1)U(β)P (0), πU(α)P (1)U(β)P (1)) and the obser-
vation leaves B in one of these four components, say (01×3q, η). Thus, the out-
come of the observation on B encompasses two observation outcomes of A (in this
case, 11). Suppose now that B reads b, then the state assumes the second form
with ξ = (01×q, ηU(β)P (1), 01×q, ηU(β)P (0)) and the observation leaves B in one
of the two nonzero components, say (01×3q, η

′). Now, the outcome of the observa-
tion on B represents only one observation outcome of A (in this case, 0). This fact
is correctly taken into account by the alternation between T and T̂ in the symbols
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of the string of outcomes, witnessing that b has been read. In fact, let us see how
the 1dfa C recognizing the control language L′ works. The states of C consist of
two components: the first is a state of the 1dfa recognizing the control language L
of A, and the second is an observation outcome of B. The transition function δ′

simulates the computation of the 1dfa for L in the first component by following
two different rules:

(1) two moves are performed according to the function W , for outcomes after
reading a;

(2) one move is performed according to the function V , for outcomes after
reading b.

Yet, an outcome of B does not always represents the same sequence of observations
of A, but it depends on the position of the nonzero component of the previous
state (the one in which B has collapsed after the previous observation). As we have
already seen in the other constructions of 1qfc’s, this problem is solved by storing
the result of the previous observation in the second component of the states of C.

As a final observation on this example, we notice that the construction may be
easily modified in case the homomorphism maps the symbol b into the empty word.
In this case, Ub = I4q and the rule (2) for the construction of the 1dfa C recognizing
L′ modifies as follows: if (p, ci) ∈ KT and ĉj ∈ T̂, then δ′((p, ci), ĉj) = (p, ĉi); if
(p, ĉi) ∈ KT̂ and cj ∈ T, then δ′((p, ĉi), cj) = (p, ci). Basically, this rule enables C
to ignore the observation after reading b.

Let us now generalize our reasoning for a general homomorphism ϕ : {a, b} →
∆∗ defined as ϕ(a) = x1 · · ·xm and ϕ(b) = y1 · · · yr, with xi, yi ∈ ∆ an m ≥ r > 1.
We notice that the case in which ϕ maps a symbol into the empty string can be
dealt with as before.

We now assume that the 1qfc A accepting L has a general observable O =∑s
i=1 i ·P (i). The 1qfc B modifies as follows. The initial superposition of B is the

1 × 2smq unit vector π′ = π ⊕ 01×(2sm−1)q. The evolution is represented by the
following 2smq × 2smq unitary matrices:

U ′(a) =
(

Ua 0smq

0smq Ua

)
,

with Ua built according to the following rule. With each symbol xi, on which the
evolution of A is U(xi), we associate the matrix

Mi =
si−1⊕
h=1

⎛
⎜⎝

N1

...
Ns

⎞
⎟⎠ ,

where Nj = N(Π ⊗ Ism−iq)j−1, with Π the circular permutation matrix on s

symbols, and N = (⊕sm−i

t=1 U(xi)P (1), . . . ,⊕sm−i

t=1 U(xi)P (s)) a sm−iq × sm−i+1q
block matrix. Then, we let Ua =

∏m
i=1 Mi. In a similar way, we define the
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evolution on b:

U ′(b) =
(

0smq Ub

Ub 0smq

)
,

with Ub =
∏r

i=1 Si and Si built as Mi by substituting U(xi) with U(yi).
The observable is O′ =

∑sm

i=1 i · P ′(i) +
∑sm

i=1 î · P ′(̂i), where the projectors are
an easy generalization of those presented before. Moreover, the reader may easily
argue that the definition of the 1dfa C accepting L′ is analogous to that above
shown, except for the tables V and W used in the definition of the transition
function. These two tables must now be derived from the definition of Ua and Ub,
respectively. For instance, given two observation τ, x ∈ {1, . . . , sm}, W (τ, x) is
now the word consisting of the outcomes of the observations in the (τ, x)th entry
of Ua. �

3.2. 1qfc’s VS. classical automata

In Section 2, we have provided an algorithm to construct an 1qfc A recognizing
a given regular language L with only 3 quantum basis states and (due to the
generality of our construction) three times the number of states of the 1dfa for L
for the classical component. Hence, the size of the classical component of A turns
out to be quite expensive. However, this must be considered together with the
fact that A recognizes L deterministically.

Here, we show instances of regular languages for which we are able to consis-
tently decrease the size of the classical component — which becomes less than the
size of minimal 1dfa’s for these languages — paying by a certain error probability
of acceptance.

We define a family of binary regular languages as follows. Any x ∈ {0, 1}∗ can
be clearly written as x = 1s101s20 · · · 01st , for suitable t ≥ 0 and si ≥ 0. For a fixed
m > 0, we define a function φm(x) = φm(1s101s20 · · · 01st) = |{i ∈ {1, . . . , t − 1} :
si modm 	= 0}|. In other words, φm(1s101s20 · · · 1st) returns the number of blocks
of consecutive 1’s ending with a 0, whose length is not a multiple of m. We call
these blocks bad, good otherwise. Thus, for m > 0, h ≥ 0, our family of languages
is defined as

Lm,h = {x ∈ {0, 1}∗ | φm(x) ≤ h},
i.e., Lm,h consists of words containing no more than h bad blocks ended by 0.

It is not hard to see that Lm,h can be recognized by a 1dfa consisting of a
sequence of h + 1 disjoint deterministic cycles each one containing m states, plus
a trap state at the end. Each cycle counts the length of blocks of consecutive 1’s
modulo m. We start from the first cycle and, each time we discover a bad block,
we jump into the next cycle upon reading 0. So, if we reach the ith cycle, we
have already found i − 1 bad blocks. If we never reach the last cycle we accept.
Otherwise, if we have reached the last cycle, there are two possibilities. Either we
never find a bad block ending with 0 and hence we accept (the possible last 1’s
not ending with 0 are simply ignored), or we find the (h + 1)th bad block ending
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with 0 and then we reject by entering the trap state upon reading 0. It is not hard
to prove that this (m(h + 1) + 1)-state 1dfa is minimal for Lm,h.

We are now going to construct a succinct 1qfc recognizing Lm,h with isolated
cut point where the number of quantum basis states is a constant, and the number
of classical states is O(h) and does not depend on m.

To this regard, we first slightly modify Lm,h by introducing the homomorphism
ϕ : {0, 1}∗ → {a, b, $}∗ such that ϕ(1) = a and ϕ(0) = b$, and letting L$

m,h =
ϕ(Lm,h).

We say that a string in {a, b, $}∗ is well formed if, whenever b ($) appears in the
string, the next (previous) symbol must be $ (b). For instance, b$ is well formed,
while b or $ are not well formed. We now design a 1qfc A that accepts L$

m,h

whenever input strings are restricted to be well formed. Next, by applying the
construction in Theorem 3.5, we will obtain a 1qfc for ϕ−1(L$

m,h) = Lm,h which
simulates A working on well formed inputs.

The quantum component of our 1qfc is basically a 2-state measure-once automa-
ton described in [19] for accepting the unary language Lm = {an | n modm = 0}:

M =

⎛
⎝(1, 0), U =

⎛
⎝ cos π

m i sin π
m

i sin π
m cos π

m

⎞
⎠ , Pe =

(
1 0
0 0

)⎞⎠ .

This automaton processes the whole string and it is observed only once, at the
end of computation. The observable has only two outcomes: e for accept (with
projector Pe) and r for reject (with projector Pr = I2 − Pe). One can easily
verify that the probability that M accepts the string an amounts to pM (an) =
||(1, 0)UnPe||2 = cos2

(
πn
m

)
. Hence, M accepts with certainty the strings whose

length is multiple of m, while the acceptance probability for the other strings is
bounded above by ρ = pM (a) < 1 (maximum error probability). We can also state
that M recognizes Lm with cut point (1 + ρ)/2 isolated by (1 − ρ)/2.

Notice that the same event pM could be realized by M also by having (0, 1) as

initial superposition and Pr =
(

0 0
0 1

)
as projector. Clearly, in this case, the role

of outcomes e and r are swapped: e stands for reject and r for accept.

Theorem 3.6. There exists a 1qfc A with 4 quantum basis states and h + 2
classical states recognizing L$

m,h with isolated cut point when inputs are restricted
to be well formed strings.

Proof. Let us provide the 1qfc A = (π, {U(γ)}γ∈{a,b,$,�},O,L). The initial super-
position is the 1 × 4 unit vector π = (1, 0, 0, 0). The evolution on {a, b, $, �} are
represented by the following 4 × 4 unitary matrices:

U(a) = U ⊕ I2, where U is the evolution of the measure-once automaton M ,

U(b) = U($) =
(

02 I2

I2 02

)
, U(�) = I4.
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The observable is O = g · P (g) + e · P (e) + r · P (r), where the projectors are as
follows:

P (g) = I2 ⊕ 02, P (e) = 02 ⊕ Pe, P (r) = 02 ⊕ Pr,

where Pe, Pr are the projectors of the measure-once automaton M .
The control language is defined as L = ∪h

j=0Ej , where Ej ’s enjoy the following
recursive definition: E0 = {e, g}∗, E2i+1 = E2ir{r, g}∗, E2i = E2i−1e{e, g}∗. A
1dfa for L has h + 1 accepting states {q0, . . . , qh} and a trap state qh+1. These
states are organized into a path with the trap state at the end. Each state has a
loop on the symbol g. Except for the trap state, each q2i (q2i+1) has also a loop
on e (r) and a transition labeled r (e) leading to q2i+1 (q2i+2). The trap state has
a loop also on the symbols e, r.

Let us see how the 1qfc A works on a well formed input as1b$as2b$ · · ·ast{b$�, �}.
The idea is that A on input asib simulates M on input asi . The scanning of the
symbol $ restarts A on the next block.

First of all, at any time during a computation, the state of A has one of the
following form: (ξ, 0, 0) or (0, 0, ξ), for some ξ ∈ C1×2. The first form is assumed
as long as the symbol a is read. The observation in this phase always yields the
outcome g without modifying the quantum state. Hence, after processing the first
block as1 , A reaches the state ((1, 0)Us1 , 0, 0). When reading b, the quantum states
assumes the second form (0, 0, (1, 0)Us1). The observation makes A collapsing to
(0, 0, 1, 0) with probability ||(1, 0)Us1Pe||2 giving the outcome e. This happens
when as1 is a good block. Otherwise, A collapses to (0, 0, 0, 1) with probability
||(1, 0)Us1Pr||2 giving to the outcome r. This happens when as1 is a bad block.
Then, A reads $, the state becomes (1, 0, 0, 0) or (0, 1, 0, 0), and the observation
gives g. The computation on the next block then starts. If as2 is a good block the
outcome after reading b is e in case A started from (1, 0, 0, 0), r in case A started
from (0, 1, 0, 0) (i.e., the meaning of observation results are swapped in this latter
case). If A started from (0, 1, 0, 0) and as2 is bad, than e and r swap their role
again, reassuming their original meanings. Thus, the reader may easily verify that
the number of bad blocks in the input string is given by the number of times e and
r alternate in the string of observation outcomes. Yet, it is easy to see that the
control language L consists exactly of those strings in {g, e, r} where the symbols
e and r alternates at most h times.

Let us now evaluate pA(y, x�), for any well formed x ∈ {a, b, $}∗ and y ∈
{g, e, r}∗. We observe that each good block of x is correctly classified with certainty
while bad blocks can be wrongly classified as good with probability not exceeding
ρ, as pointed out in the description of the measure-once automaton M . It is clear
that if x ∈ L$

m,h, then A accepts x with certainty since classifying bad blocks as
good leaves the number of bad blocks less than or equal to h. On the contrary,
an error may occur on x 	∈ L$

m,h since the number of wrong block classifications
could reduce the number of bad blocks thus leading A to accept. As an example,
suppose that x has h + z bad blocks, with z > 0. It is not hard to verify that the
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probability that A wrongly accepts x is bounded above by

1 −
z−1∑
i=0

(
h + z

i

)
ρi(1 − ρ)h+z−i.

The maximum value of this probability is given by z = 1, i.e., 1 − (1 − ρ)h+1.
In conclusion A, restricted on well formed input, recognizes L$

m,h with cut point

1− (1−ρ)h+1

2 isolated by (1−ρ)h+1

2 . A has 4 quantum basis states and h+2 classical
states. �

In conclusion, by applying Theorem 3.5 on L$
m,h, we get

Corollary 3.7. There exists a 1qfc with a constant number of quantum basis states
and O(h) classical states recognizing Lm,h with isolated cut point.

As a final observation, we point out that the quantum component we used in our
1qfc A — the measure-once automaton M — is very small but not very accurate
on the error probability which approaches to 1 for m becoming large. However,
Bertoni et al. provide a O(1/ε3 log m)-state measure-once automaton that accepts
the words in Lm with certainty, and the others with arbitrary small probability
ε [7, 8]. This latter automaton can replace M in our construction to enhance
acceptance precision, paying by only O(log m) quantum basis states plus O(h)
classical states. This should be compared with the size of minimal 1dfa’s for Lm,h

which we recalled to be O(mh).
As future investigations, it could be interesting to replace M with a measure-

once automaton recognizing a given unary periodic language with isolated cut
point (see, e.g., [6,18]) or a given binary group language (see, e.g., [4]). Thus, our
construction (or a suitable generalization) could be useful for producing succinct
1qfc’s for other families of languages.
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