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IMRE SIMON: AN EXCEPTIONAL GRADUATE
STUDENT
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Abstract. This short note reviews the main contributions of the
Ph.D. thesis of Imre Simon. His graduate work had major impact
on algebraic theory of automata and thirty years later we are in a good
position to appreciate how sensitive he was in selecting good problems,
and how clever in solving them!
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Introduction

The Ph.D. thesis written by Imre Simon in 1972 [9] was a masterpiece. One gets
even more impressed when realizing that his work was predating [2] significantly,
hence could not rely on the sophisticated framework introduced by Eilenberg.

It had been known for some time that aperiodic monoids were recognizing ex-
actly the star-free languages [8]. This result clearly indicated the relevance of using
algebra to get effective characterizations of languages that are combinatorially de-
fined. Cohen and Brzozowski [1] had suggested the neat idea of parametrizing
star-free languages by alternating concatenation and boolean operations, i.e. they
introduced the dot-depth hierarchy. It remained to see if non-trivial information
could be obtained on this parametrization, and this is when Simon entered the
scene.

Concentrating on D1, the first level of the hierarchy, he contributed three impor-
tant results, each of which later had major impact on the development of algebraic
theory of automata. First, he had the remarkable intuition to define a systematic
and manageable system of finite-index congruences to classify languages in the
family. He then used his powerful mathematical skills to characterize two natural
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hierarchies arising in his classification, the piecewise testable languages and the
locally testable languages. His thesis fell short of providing an effective character-
ization for the full class D1; this was achieved 10 years later by Robert Knast [3],
strongly building on the ideas contained in Simon’s thesis.

In this short paper, we will review the historical contributions made by Si-
mon while he was a graduate student and indicate how these later led to further
progress. We concentrate on ideas rather than on technicalities and refer the in-
terested reader to the literature for details. Hopefully, we will be able to convey
to the audience the importance and the intelligence of the early production of a
brilliant theoretical computer scientist.

1. Classifying dot-depth one languages

We begin with some preliminary definitions; we will introduce more as needed.
The reader should consult [5] for a more complete story. A semigroup is a set S
on which is defined a binary associative operation. We are interested in using
finite semigroups to recognize subsets of A+. The language L ⊆ A+ is recognized
by S iff there exists a morphism φ : A+ → S and a subset F of S such that
L = φ−1(F ). The natural ordering on semigroups is that of division: S divides T
iff S is a morphic image of a subsemigroup of T .

To every language L can be associated a canonical semigroup in the following
way. Suppose L is a subset of A+; define on A+ the syntactic congruence of L by
x γL y iff for all u and v in A∗ uxv is in L iff uyv is in L. It is an exercise to show
that γL is the coarsest congruence that saturates L. We will write S(L) for the
quotient A+/γL and call it the syntactic semigroup of the language. Equivalently,
S(L) is the unique minimal semigroup (in the division ordering) that recognizes L.
We are exclusively concerned with the case where the syntactic semigroup is finite,
i.e. the language L is regular. The number one paradigm in algebraic theory of
automata is to relate the combinatorial definition of a language L to algebraic
properties of its syntactic semigroup. It turns out that the right level at which
to pursue these investigations is that of pseudovariety, which we will simply call
variety in this paper; a variety V is a class of finite semigroups that is closed under
division and direct product. Although not yet formally present in the literature
of the early seventies, all classes of semigroups studied by Simon were in fact
varieties.

As a graduate student, Imre Simon got interested in the dot-depth hierarchy
that had just been introduced by his supervisor Janusz Brzozowski. Let D0 be the
boolean algebra consisting of the finite and cofinite subsets of A+. One constructs
a hierarchy D0 ⊆ D1 ⊆ · · · by declaring that L belongs to Di iff L is a boolean
combination of languages that are of the form L1 · · ·Lt, where each Lj belongs
to Di−1; in other words, starting from D0, the dot-depth hierarchy is obtained
by alternating closure under concatenation and closure under boolean operations.
Trivially, a language is star-free, i.e. can be obtained from the finite subsets of A+

using concatenation and boolean operations, iff it belongs to Di for some i ≥ 0;
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Schützenberger had proved in 1965 that L is star-free iff S(L) is aperiodic, i.e. no
subset of the syntactic semigroup forms a non trivial group. The very interesting
consequence of this deep result is that there exists an effective procedure to decide
if a language (given by an automaton, an expression, a grammar, . . .) is star-free
or not.

It is easy to show that L is in D0 iff S(L) is aperiodic and contains a unique
idempotent, i.e. an element s such that s = s2. Simon investigated the question
of characterizing D1 algebraically but this proved to be quite difficult. Let us
describe how he attacked the problem.

His first observation was to obtain normalized expressions for languages in D1,
namely as boolean combinations of languages of the form w0A

∗w1 · · ·A∗ws where
each wj belongs to A∗. From this normal form, he got the intuition to define a
2-parameter congruence on A+. We need the following notation. Let m, k ≥ 0; for
x ∈ A+, prefk(x) is the prefix of length k of x if x has length at least k, and is x
itself otherwise; sufk(x) is similarly defined in terms of the suffix. We now define
on A+: x γm,k y iff prefk(x) = prefk(y), sufk(x) = sufk(y) and for all s ≤ m, for
all u1, . . . , us where each uj has length at most k + 1, x ∈ A∗u1A

∗ . . . A∗usA
∗ iff

y ∈ A∗u1A
∗ . . . A∗usA

∗.
It is easily checked that every γm.k is a congruence of finite index and that L

is a language of dot-depth one iff L is a union of γm,k-classes for some m and
some k. The name of the game is now to find algebraic information on the various
semigroups A+/γm,k.

The next two examples are well-known: the first one is folklore, the second one
is attributed to Perrin.

Example 1. L is a union of γ1,0-classes iff S(L) is commutative and idempotent.

Example 2. L is a union of γ0,k-classes for some k iff S(L) is locally trivial, i.e.
it satisfies the condition that eSe = e for every idempotent e.

In his thesis, Imre Simon was able to characterize the γm,0-languages and the
γ1,k-languages; these very sophisticated results will be the focus of the next two sec-
tions. Although an effective characterization of the complete class of dot-depth
one languages was beyond reach at the time, an important intermediate step was
also proved in the thesis, namely a decomposition theorem in terms of the classical
wreath product operation. We will briefly discuss the result in the last section.

The idea of classifying regular languages by using finite-index congruences was
pushed further in [12]. The basic technique of Simon was to define the congru-
ence class of a word by testing the existence of a factorization of the simple form
x = x0A

∗x1A
∗ · · ·A∗xs; our extension was provided by allowing counting of fac-

torizations of a more general type, namely of the form x = x0L1x1 · · ·Lsxs where
the Lj ’s are defined recursively (Simon’s definition forming the basis for the pro-
cess). In this way we were able to capture all regular languages L for which the
syntactic semigroup S(L) contains only solvable groups.
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2. Piecewise testable languages

Perhaps the most beautiful result of the thesis of Imre Simon was his charac-
terization of the γm,0-languages, which he called the piecewise testable languages.
To this day his theorem remains a true jewel of algebraic theory of automata. We
present a brief discussion of the theorem and of its modern ramifications. For
reasons of convenience, in this section languages will be taken to be subsets of A∗

(instead of A+) and the discussion is conducted in terms of monoids (rather than
semigroups). The distinction between semigroups and monoids is in general cru-
cial to make, but in the case we study here it would make no difference. A word
u = a1 . . . am is a subword of a word x if x can be written as x = x0a1x1 . . . amxm,
i.e. u can be obtained from x by erasing some letters. One readily observes that
the binary relation x ≤ u iff u is a subword of x is a partial order on A∗ that is
compatible with concatenation, and that the empty word is the maximal element
in this ordering. In an algebraic perspective, we will say that a monoid M is par-
tially ordered iff there is a binary relation on M that forms a partial order, that is
compatible with the monoid operation and for which the identity is the maximal
element.

Recall that the congruence γm,0 is defined precisely in terms of subwords:
x γm,0 y iff x and y have the same subwords of length at most m. The monoid
A∗/γm,0 is partially ordered, the order being naturally given by [x]γm,0 ≤ [y]γm,0 iff
every subword of length at most m of y is also a subword of x. In fact, a converse
to this last statement is not very difficult to prove.

Lemma 2.1. Let φ : A∗ → M , where M is partially ordered. There exists m ≥ 0
such that x γm,0 y implies φ(x) = φ(y).

Proof. Suppose the longest chain in M has length m + 1 and let x and y be γm,0-
related. Write x = x0a1x1 . . . asxs, where 1 = φ(x0) > φ(x0a1) = φ(x0a1x1) >
· · · > φ(x0a1x1 . . . as) = φ(x); note that s ≤ m, and that φ(x) = φ(a1 . . . as).
Since a1 . . . as is also a subword of y, and because M is partially ordered, we get
φ(y) ≤ φ(a1 · · · as) = φ(x). By symmetry φ(x) ≤ φ(y) so that the two are actually
equal. �

Consider next the following binary relation on a monoid M : s ≤J t iff MsM ⊆
MtM . This relation is certainly reflexive and transitive. It is also antisymmetric,
i.e. it defines a partial order on M , exactly when MsM = MtM iff s = t. Such
monoids are called J -trivial and they form a variety which is denoted by J. Note
that the identity is always the maximal element in this order, but it is in general not
compatible with the multiplication of the monoid: hence it is not true that every
J -trivial monoid is partially ordered according to our definition above, although
it is easily seen that any partially ordered monoid must be J -trivial. Nevertheless
Simon was able to prove that every J -trivial monoid is a homomorphic image of
a partially ordered one. He stated it in the following form.

Theorem 2.2. Let φ : A∗ → M , where M is J -trivial. There exists m ≥ 0 such
that x γm,0 y implies φ(x) = φ(y).
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The key combinatorial ingredient of his proof is a result showing that whenever x
and y are in the same γm,0-class, there must exist a word z again in the same class
such that both x and y are subwords of z. In [11] a different proof was given, where
ideas of Rhodes and Birget were used to directly construct a partially ordered
expansion to a given J -trivial monoid.

The idea of investigating partial orders compatible with monoid operations was
revived rather spectacularly in the mid nineties. Pin and Weil carefully analyzed
what algebraic framework was necessary to understand classes of languages not
closed under complement [7]. The answer turned out to be a complete theory of
monoids with partial orders (in which the condition s ≤ 1 for all s is replaced by
arbitrary inequations); a long stream of results has appeared since then. The case
where the identity is the maximal element, that was considered by Simon, is thus
the most natural example of an idea that has powerful ramifications. Another
magnificent example of that theory is the case of ordered monoids in which the
partial order satisfies e ≤ 1 for every idempotent e; it corresponds to regular
languages that are open in the group topology on the free monoid [6].

3. Locally testable languages

A second deep result contained in Simon’s thesis was dealing with locally testable
languages that had been introduced in [4]. These sets are defined as follows:
imagine a window of length k + 1 that one can slide on an input x. The prefix
and suffix of length k can be detected, as well as the set of factors of length k + 1
(although not their order of appearance or their multiplicity). This is exactly the
idea of the congruence γ1,k: x γ1,k y iff x and y can not be distinguished by the
above apparatus.

When k = 0, it is an easy exercise to show that L is a γ1,0-language iff S(L)
is idempotent and commutative, i.e. S(L) belongs to the variety which is often
denoted by J1. It is also readily checked that, for every k, the syntactic semigroup
of a γ1,k-language is always locally idempotent and commutative, i.e. belongs to
the variety LJ1 = {S : for every idempotent e, eSe ∈ J1}. Simon was able to
show the converse; in doing so, he introduced ideas that were later developed into
a very powerful and elegant framework to analyse decompositions of semigroups
via wreath and block products.

Given two semigroups S and T we define their wreath product, denoted S ◦ T ,
as the set ST × T with the operation (f1, t1)(f2, t2) = (f, t1t2) where f(t) =
f1(t)f2(tt1). For two varieties V and W, it is customary to write V ∗ W for the
smallest variety that contains all semigroups of the form S ◦ T, S ∈ V, T ∈ W. It
is convenient to think of the computational power of S ◦ T in the following way.
Let x = a1 . . . an ∈ A+ be the input. The “front” machine T processes x normally,
and it thus corresponds to a congruence β on A+. The “tail” machine S, at the
ith step will have access to ai together with the β-class of a1 . . . ai−1, and will
compute, with S, on the word (·, a1)([a1]β, a2)...([a1 . . . an−1]β , an) which lives in
the alphabet (T ∪ {·}) × A.
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First, Simon made the following observation about the congruence γ1,k. The
semigroup A+/γ1,k divides S ◦ A+/γ0,k where S is idempotent and commutative.
Indeed consider an input x = a1 . . . an with n > k. The prefix and suffix of length
k are determined by the front machine A+/γ0,k. Moreover, at the ith step of the
computation the machine S sees the letter ai together with the value of a1 . . . ai−1

in A+/γ0,k; this becomes new information only when i > k and then S has access to
the factor of length k+1 ending at ai. If we view S as working over the “alphabet”
that consists of the possible factors of length k + 1 (i.e. Ak+1), then S needs to
know which “letters” have appeared in order to provide the information needed
to identify the γ1,k-class of the input x; by a remark previously made, detecting
the set of letters that appear in a word can always be done with an idempotent
and commutative semigroup. The converse also holds and this analysis can be
summarized by saying that L is a γ1,k-language iff S(L) is in the variety J1 ∗ LI.

It remained to establish that J1 ∗ LI = LJ1. Simon introduced an explicit
formulation of this question in terms of graphs and was then able to prove the
appropriate combinatorial lemma on graphs that corresponds to the above claim.
We can briefly describe his method. Let S be a semigroup and E be the set
of its idempotents. To S one associates a graph as follows: the vertices are the
idempotents E and the edges are the triples in E × S × E, the edge (e, s, f)
going from vertex e to vertex f . We define a congruence on the set of paths by
declaring that two paths are related if they are coterminal (i.e. they start and end
at the same vertex) and multiplying out the sequence of triples of each path yields
the same value in S. By definition, the semigroup S is locally idempotent and
commutative iff this congruence satisfies the condition that xx is congruent to x
for every loop x and xy is congruent to yx whenever x and y are loops around the
same vertex. It can also easily be shown that S is in J1 ∗ LI iff the congruence
satisfies the property that any two paths that are coterminal and contain the same
set of edges are congruent. The required combinatorial result that will yield the
theorem is thus that whenever two paths are related by the later condition, one
can be transformed in the other by using idempotency and commutativity of loops.
Once again, Simon was able to provide a proof for that and that proved the

Theorem 3.1. Let φ : A+ → S, where S is locally idempotent and commutative.
There exists k ≥ 0 such that x γ1,k y implies φ(x) = φ(y).

4. More on dot-depth one languages

The analysis in the previous section described how the semigroup A+/γ1,k could
be decomposed into S ◦ A+/γ0,k where S is idempotent and commutative, i.e. S
is testing for the presence of letters over a certain extended alphabet. Simon
conducted exactly the same analysis on the semigroup A+/γm,k; this semigroup
can be decomposed into S ◦ A+/γ0,k where S is J -trivial, i.e. S is testing for
the presence of subwords over the same extended alphabet. In this case as well
the converse also holds and this analysis can be summarized by saying that L is a
γm,k-language iff S(L) is in the variety J ∗ LI.
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This result does not give an effective criterion to decide if a language has dot-
depth one as we do not know a priori how to check if a semigroup decomposes as
above. It is easy to see that J∗LI is contained in LJ = {S : eSe is J -trivial for all
idempotents e} and Simon conjectured this was an equality. In [3] the conjecture
was disproved and a subtle characterization was established for membership in D1.

Further work on varieties of the form V ∗ LI was conducted by Straubing [10]
who in particular gave a post-Eilenberg presentation of the ideas used by Simon to
prove his theorem on locally testable languages. Around that time, [13] obtained
a difficult characterization for the variety Com∗LI. In parallel, Tilson completely
formalized the graph approach (which he expressed in the equivalent language of
categories) to study general instances of the wreath product [14]. This point of
view can also be adapted to the case of the block product, which is the two-sided
incarnation of the wreath operation. The key idea is that, given S and T , one
can actually construct the “best” solution to the equation S divides X ◦ T , and
this optimal value for X is a category rather than a semigroup. An exact similar
statement holds in the case of block product.

5. Conclusion

Imre Simon had powerful intuition. In retrospect, his idea of parametrizing dot-
depth one languages using sequences of segments may look obvious; at the time it
was providing a new point of view that proved to be most helpful in much more
general situations. Simon was also able to see that his construction was naturally
connected to the wreath product operation; the graph theoretical presentation
he gave for his problem was an important piece in the puzzle of understanding
correctly this operation which eventually led to the categorical presentation of
Tilson. His theorem on J -trivial monoids and piecewise testable languages is a
gem that would deserve to be better known in the mathematical world at large.
Indeed, our field was fortunate to be able to count on his ability.
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