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HOW EXPRESSIONS CAN CODE FOR AUTOMATA
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1

and Jacques Sakarovitch
2

Abstract. In this paper we investigate how it is possible to recover
an automaton from a rational expression that has been computed from
that automaton. The notion of derived term of an expression, intro-
duced by Antimirov, appears to be instrumental in this problem. The
second important ingredient is the co-minimization of an automaton, a
dual and generalized Moore algorithm on non-deterministic automata.
We show here that if an automaton is then sufficiently “decorated”, the
combination of these two algorithms gives the desired result. Reducing
the amount of “decoration” is still the object of ongoing investigation.
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1. A natural question

Kleene’s theorem states the equality of two families of languages: the family of
langagues described by rational (i.e. regular) expressions coincides with the family
of languages accepted (or recognized) by finite automata – equality which is often
written as:

RegA∗ = RecA∗.

The proof of this equality amounts to showing the two inclusions:

RecA∗ ⊆ RegA∗ (1a) and RegA∗ ⊆ RecA∗ (1b)

and is constructive – as usual in the field. In the earlier proofs, inclusion (1a) is
established by an algorithm, say Φ, that takes an automaton A and produces a
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(a) E1=a∗+a∗b(ba∗b)∗ba∗+a∗b(ba∗b)∗a(b+a(ba∗b)∗a)∗a(ba∗b)∗ba∗.
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(b) E2 = (a + bb + ba(b + aa)∗ab)∗.
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(c) E3 = a∗ + a∗b(ab∗a + ba∗b)∗ba∗.

Figure 1. The state elimination method on P1, the “divisor by 3”.

rational expression E – we thus can write E = Φ(A) – such that the language de-
noted by E is equal to the language accepted by A. And conversely, inclusion (1b)
is obtained by showing that RecA∗ is (effectively) closed under union, product
and star.

This closure proof is easily turned into an algorithm, say Ψ, that takes an ex-
pression E and computes an automaton A = Ψ(E) with the property that the
language accepted by A is equal to the language denoted by E. It was not long be-
fore it was understood that these algorithms and their properties are as interesting
in themselves as to be a piece of the proof of Kleene’s theorem.

The problem we address here is to find Φ-type and Ψ-type algorithms which
would be inverse of each other, that is which are going forth and back between
expressions and automata not only at the level of the families but at the level of
the individual objects. In order to understand the challenge of this problem, we
have to say more about the Φ-type and Ψ-type algorithms.

The two better known algorithms of the Φ-type (i.e. from automata to ex-
pressions) are the so-called “McNaughton-Yamada” algorithm (cf.[13]) and “state
elimination method” (cf.[17, 18] for instance)1. Although the computations in-
volved in these algorithms are somewhat different (above all they are organized
in a different way), they produce roughly the same results. Both algorithms de-
pend on an ordering of the states of the automaton. In this paper we take for Φ
the state elimination method. Figure 1 shows the results of the state elimination
method on a same automaton, with three different orderings of the states. The
result, and in particular its size, may considerably vary with the ordering that is
used. But one cannot avoid a combinatorial explosion in the general case2:

Fact 1.1. The size of a rational expression E computed from a finite automaton A
by the state elimination method may be exponential in the number of states of A.

1 A third one (cf.[10]) gives rise to elegant proofs but is not useful for actual computations.
2 E.g. an automaton whose underlying graph is the complete graph on the set of states.
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There is a larger variety of algorithms turning a rational expression into a finite
automaton – that is Ψ-type algorithms – both in results and in methods, than
those of Φ-type. They fall roughly into two families.

The first class of algorithms yields what is often called the Glushkov, or the po-
sition, automaton of an expression [11]. It is a non deterministic automaton with
n+ 1 states for an expression of literal length n. The Thompson construction [16]
produces an automaton with ε-moves which is transformed into the position au-
tomaton when the ε-moves are eliminated in the adequate way. Let us denote
by Ψp an algorithm that produces the position automaton.

The algorithms of the second class are based on the definition of the derivation of
an expression. First introduced by Brzozowski [6], the definition of derivation has
been slightly, but smartly, modified by Antimirov [1] and yields a non deterministic
automaton which we propose to call the derived term automaton of the expression
and which is smaller than or equal to the position automaton. The automaton of
derived expressions computed in [6] is the determinized automaton of the derived
term automaton. Champarnaud and Ziadi [8] have given an efficient method to
compute the derived term automaton of an expression.

A bridge between the two families of algorithms was first given by Berry-Sethi
who showed that the Brzozowski derivation applied on a “linearized” version of
an expression gives the position automaton of that expression [3, 4], and then by
Champarnaud-Ziadi who showed that the derived term automaton of an expression
is a quotient (i.e. a morphic image) of the position automaton [9].

Fact 1.2. In the worst case, the minimal size (number of states) of an automaton
accepting the language denoted by an expression is linear in the literal length of
the expression3.

The juxtaposition of Facts 1.1 and 1.2 shows that there is no hope to find
algorithms which are inverse of each other if we stay in these general families.

In [7], Caron and Ziadi have tackled a problem which proves to be closely related
to ours. More precisely, they describe an algorithm, say Θ, which decides whether
or not an automaton A is the position automaton of a rational expression E; and
if the answer is positive, Θ moreover computes an expression which is almost E,
namely the star normal form of E as defined by Brüggemann-Klein [5]. Even if Θ
is not properly a Φ-type algorithm since it does not compute an expression for
every automaton, it holds:

For any star normal form rational expression E, Θ(Ψp(E)) = E. (1)

Our purpose here is to describe a (slight) modification of Φ into Φ′ and an algo-
rithm Ω which given a rational expression E computes an equivalent automaton
and such that, if E is obtained from an automaton A by a Φ′-type algorithm, then
the result of Ω is precisely A:

For any automaton A, Ω(Φ′(A)) = A. (2)

3 An example of such a worst case is given by E = f where f is a word.
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The paper is organized as follow. In the next section, we present the two main
constructions on which such an Ω is built: the – barely modified – (Antimirov)
derivation of expressions and the co-minimization of an automaton. In Section 3
we show how these two constructions can be combined in order to give the core of
the algorithm Ω and how Φ has to be transformed into Φ′ by a kind of coding in
order that (2) holds (Th. 3.6). It is noteworthy that the main property on which
Theorem 3.6 relies gives an algorithm that computes a deterministic automaton
from an expression itself obtained from a deterministic automaton without any
determinization algorithm (Cor. 3.7). The last section presents three directions of
research for reducing the “gap” between Φ and Φ′. They are based on the obser-
vation of characteristic examples and by this the paper shows that the “natural”
question we have raised is not yet completely answered but still the object of a
work in progress.

2. The ingredients for a solution

As we just said, the algorithm Ω is based on the Antimirov derivation of ex-
pressions and on the co-minimization of automata. We have first to recall what
are these two operations.

In the sequel, A is an alphabet, i.e. a finite set of letters and A∗ the free
monoid generated by A. Rational expressions over A∗ are the well-formed for-
mulae with 0, 1, a ∈ A as atomic formulae, ∗ as unary operator and + and · as
binary operators. The constant term of an expression E, denoted by c(E), is (the
Boolean) 1 or 0 according to whether the empty word belongs or not to the lan-
guage denoted by E. It can easily be computed directly on the rational expression,
without computing the language denoted by the expression (cf.[1,12] for instance).
The literal length of E is the number of occurrences of letters of A in E.

2.1. The automaton of derived terms

An algebraic characterization of rational languages is that every rational lan-
guage has a finite number of left quotients. The purpose of “Brozozowski” deriva-
tives is to lift that characterization at the level of expressions [6]. Antimirov partial
derivatives achieve the same lifting in an indirect but more efficient way. To an
expression E that denotes a language L is associated a finite set T of expressions
– which we call derived terms of E – such that any left quotient of L is a union4 of
some of the languages denoted by the expressions in T [1]. The automaton build
with the “Brozozowski” derivatives is the determinized of the automaton build
with the derived terms.

4 To tell the truth, the notion of derived terms is better understood when expressed in the
larger framework of power series – languages being series with coefficients in the Boolean semiring
– and of expressions with multiplicity (cf.[12]).

A series s is rational – i.e. denoted by a rational expression E – iff it is contained in a finitely
generated module (of series) U which is closed under left quotient. The derived terms of E are
expressions that denote a set of generators of U .
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The following definitions give a procedure for computing the derived terms of
an expression.

Definition 2.1 (Antimirov[1]). Let E be a rational expression on A and let a be
a letter in A. The B-derivative5 of E with respect to a, denoted ∂

∂a E, is a set of
rational expressions on A, recursively defined by:

∂

∂a
0 =

∂

∂a
1 = ∅ ,

∀a, b ∈ A
∂

∂a
b =

{
{1} if b = a
∅ otherwise

∂

∂a
(E+F) =

∂

∂a
E ∪ ∂

∂a
F (3)

∂

∂a
(E · F) =

[
∂

∂a
E

]
· F ∪ c(E)

∂

∂a
F (4)

∂

∂a
(E∗) =

[
∂

∂a
E

]
· E∗. (5)

The induction implied by (3)–(5) should be interpreted by distributing derivation
and product over union:

∂

∂a

[⋃
i∈I

Ei

]
=

⋃
i∈I

∂

∂a
Ei,

[⋃
i∈I

Ei

]
· F =

⋃
i∈I

(Ei · F).

Definition 2.2. Let E be a rational expression onA and g a non empty word ofA∗,
i.e. g = f a with a in A. The B-derivative of E with respect to g, denoted ∂

∂g E, is
the set of rational expressions over A, recursively defined by formulae (3)–(5) and
by:

∀f ∈ A+ , ∀a ∈ A
∂

∂fa
E =

∂

∂a

(
∂

∂f
E

)
. (6)

We shall call derived term of E the expression E itself or any rational expression
which belongs to a set ∂

∂g E for some g in A+.

Remark 2.3. Contrary to the derivation defined by Brzozowski [6], the result of
the B-derivation of a rational expression is not an expression but a set of rational
expressions.

Theorem 2.4 (Antimirov [1]). The number of derived terms of a rational expres-
sion E is finite and smaller than or equal to the literal length of E plus 1.

5 We call it “B-derivative” and not simply “derivative” for two reasons. First in order to avoid
confusion with the derivation defined by Brzozowski, and second because the formulae depend
on the semiring of multiplicities and can be defined for other semirings (cf. [12]).
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Example 2.5. Let E2 =
(
a + bb + ba(b + aa)∗ab

)∗ be the expression computed
in Figure 1b. The computation of the derived terms of E2 goes as follow (for
conciseness we put H2 = (b+ aa)∗ab ):

∂

∂a
E2 = {E2} ,

∂

∂b
E2 = {b E2, a H2 E2} ,

∂

∂a
b E2 = ∅ ,

∂

∂b
bE2 = {E2} ,

∂

∂a
[a H2 E2] = {H2 E2} ,

∂

∂b
[a H2 E2] = ∅ ,

∂

∂a
[H2 E2] = {b E2, a H2 E2} ,

∂

∂b
[H2 E2] = {H2 E2}.

Thus E2 has 4 derived terms: E2 itself, bE2, aH2 E2 and H2 E2.

Example 2.6. Let E1 = a∗+a∗b(ba∗b)∗ba∗+a∗b(ba∗b)∗a(b+a(ba∗b)∗a)∗a(ba∗b)∗ba∗

be the expression computed in Figure 1a. For conciseness we put:

F1 = (b a∗b)∗a , G1 = (b+ a (b a∗b)∗a)∗a , and H1 = (b a∗b)∗b a∗.

It holds: E1 = a∗ + a∗bH1 + a∗b F1 G1 H1, and the computation of the derived
terms of E1 goes as follow:

∂

∂a
E1 = {a∗, a∗bH1, a

∗b F1 G1 H1},
∂

∂b
E1 = {H1, F1 G1 H1},

∂

∂a
a∗ = {a∗} , ∂

∂b
a∗ = ∅ , ∂

∂a
a∗bH1 = {a∗bH1},

∂

∂b
a∗bH1 = {H1},

∂

∂a
H1 = ∅, ∂

∂b
H1 = {a∗, a∗bH1},

∂

∂a
a∗b F1 G1 H1 = {a∗b F1 G1 H1},

∂

∂b
a∗b F1 G1 H1 = {F1 G1 H1} ,

∂

∂a
F1 G1 H1 = {G1 H1} ,

∂

∂b
F1 G1 H1 = {a∗b F1 G1 H1},

∂

∂a
G1 H1 = {F1 G1 H1, H1},

∂

∂b
G1 H1 = {G1 H1}.

Thus E1 has 7 derived terms: E1 itself, a∗, a∗bH1, H1, a∗b F1 G1 H1, F1 G1 H1,
and G1 H1.

The above definition is the one given by Antimirov, which we have kept for
accurate reference. We now slightly modify the definition of derived terms in
order to reach our goal. In Antimirov’s definition, an expression E always belongs
to the set of its derived terms; in the new one, we get rid of this constraint, for
what is needed is only the property that E be a union of derived terms. We thus
define6 a new operation on rational expressions which, roughly speaking, consists
of decomposing an expression into a set of expressions whose left factor is not a
sum.

6 As explained in [12], this operation can be considered as a derivation with respect to the
empty word.
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Definition 2.7.
i) The set of initial derived terms of an expression E is a set d(E) of expres-

sions inductively defined by:

d(0) = {0} , d(1) = {1} , d(a) = {a}, ∀a ∈ A

d(E + F) = d(E) ∪ d(F) , d(E · F) = [d(E)] · F , d(E∗) = {E∗}.

ii) The set of derived terms of E is redefined as the smallest set that contains
the initial derived terms of E and that is closed under derivation (in the
sense of Def. 2.1).

From now on, “derived terms” is understood according to Definition 2.7.

Example 2.8 (Ex. 2.5 cont.). As d(E2) = E2, the new definition does not change
the derived terms of E2.

Example 2.9 (Ex. 2.6 cont.). It holds d(E1) = {a∗, a∗bH1, a
∗b F1 G1 H1} and E1

has 6 derived terms: a∗, a∗bH1, H1, a∗b F1 G1 H1, F1 G1 H1, and G1 H1.

In [1], Antimirov has defined an automaton by means of the derived terms and
we use here the same construction mutatis mutandis7.

Definition 2.10. The derived term automaton of a rational expression E is the
finite automaton AE whose states are the derived terms of E and whose transitions
are defined by:

i) if K and K′ are derived terms of E and if a is a letter of A, (K, a,K′) is a
transition of AE if and only if K′ belongs to ∂

∂a K;
ii) the initial states8 of AE are the initial derived terms of E;
iii) a derived term K is a final state of AE if and only if c(K) = 1.

The automaton AE recognizes the language denoted by E (the proof goes as in [1],
or by the general argument quoted in the footnote). In the sequel, we denote by ∆
the function that maps a rational expression onto its derived term automaton:
∆(E) = AE (and ∆ is thus a Ψ-type algorithm).

Figures 2 and 3 show the derived term automaton of E2 and E1 respectively.

2.2. Automata morphisms, automata quotients

We describe now a process of minimization of automata which is a generalization
of the classical minimization of deterministic automata (similar to the definition of
simulation among transition systems). This notion applies to any kind of automata

7 In the framework of power series, if U is a module of finite type closed under left quotient,
the choice of any set of generators of U gives rise to an automaton that recognizes any series
of U (modulo the adequate choice of initial coefficients) [15]. The automaton of derived terms is
precisely the automaton corresponding to the generators denoted by the derived terms.

8 The quality of being initial or final for a state is of the same kind as the definition of a
transition: cf. below.
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Figure 2. The derived term automaton of E2 = (a+ bb+ ba(b+ aa)∗ab)∗.
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Figure 3. The derived term automaton of
E1 = a∗+a∗b(ba∗b)∗ba∗+a∗b(ba∗b)∗a(b+a(ba∗b)∗a)∗a(ba∗b)∗ba∗.

and is more versatile. On the other hand, this process yields an automaton which
is not canonically attached to the recognized language anymore but depends on
the automaton it is computed from.

All this is based on the notion of morphism of automata and of their local
properties. This is not new by far, and can be found in previous work of the
authors (cf.[14]) or of others (e.g. [2]) with possibly different wording. For sake
of completeness and in order to have the definitions we need under the precise
statement we shall use, we briefly recall all that matter now. More details can be
found in [15] for instance.

2.2.1. Morphisms of automata

Given an automaton A = <Q,A,E, I, T>, the set E of labelled edges is canon-
ically equipped with three mappings (the three projections): ι : E → Q, τ : E → Q
and ε : E → A∗, that is the state eι is the origin of the transition e, eτ its end
and eε its label.

A morphism ϕ from A = <Q,A,E, I, T> into B = <R,A, F, J, U> is indeed a
pair of mappings (both denoted by ϕ): one between the set of states ϕ : Q→ R and
one between the set of transitions ϕ : E → F which satisfy the three properties:

ϕ ◦ ι = ι ◦ ϕ and ϕ ◦ τ = τ ◦ ϕ, (7)

ϕ ◦ ε = ε, (8)

Iϕ ⊆ J and Tϕ ⊆ U. (9)
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Conditions (7) imply that the image of a computation in A is a computation in B.
Condition (8) implies that the label of a computation in A is the same as the label
of the image of that computation in B. Conditions (9) imply that the image of
a successful computation in A is a successful computation in B. In particular, if
ϕ : A → B is a morphism, it holds L(A) ⊆ L(B).

The composition of two morphisms is a morphism.

Remark 2.11. Let us note that Conditions (9) may adequately be replaced by the
following convention. By way of a kind of implicit normalization, every automa-
ton A is equipped with a “hidden” initial state iA and a “hidden” final state tA.
Then every initial state i of A becomes only a state such that there exists a tran-
sition (iA, 1∗A, i) from iA to i labelled by the empty word. Similarly, every final
state t of A becomes a state such that there exists a transition (t, 1∗A, tA). Obvi-
ously, if ϕ : A → B is a morphism of automata, ϕ maps iA onto iB, tA onto tB and
then (9) is implied by (7) and (8).

2.2.2. Local properties of morphisms

For every state q of an automaton A = <Q,A,E, I, T>, let us denote by
OutA(q) the set of edges of A the origin of which is q, that is edges that are “going
out” of q:

OutA(q) = {e ∈ E | eι = q}.
Dually, InA(q) is the set of edges of A the end of which is q, that is edges that are
“going in” q:

InA(q) = {e ∈ E | eτ = q}.
If ϕ is a morphism from A = <Q,A,E, I, T> into B = <R,A, F, J, U> then for
every p in Q, ϕ maps OutA(p) into OutB(pϕ), and InA(p) into InB(pϕ).

We say that ϕ is Out-surjective if for every p in Q the restriction of ϕ to
OutA(p) is surjective onto OutB(pϕ). Accordingly, we say that ϕ is In-surjective
if for every p in Q the restriction of ϕ to InA(p) is surjective onto InB(pϕ).

With the convention of Remark 2.11, it follows that if ϕ is Out-surjective then
Uϕ−1 ⊆ T and thus, by (9), Uϕ−1 = T ; moreover, if j is an initial state in B, then
there exists at least one initial state of A in jϕ−1. Dually, if ϕ is In-surjective,
then Jϕ−1 = I and if u is a final state in B, then there exists at least one final
state of A in uϕ−1.

It is clear that the composition of two Out-surjective (resp. In-surjective) mor-
phisms is an Out-surjective (resp. In-surjective) morphism. The following propo-
sition is easily established by induction on the length of the computations.

Proposition 2.12. Let ϕ : A → B be an Out-surjective (resp. In-surjective)
morphism. For every computation c in B whose origin (resp. whose end) r is
in the image of ϕ and for every p of Q such pϕ = r, there exists at least one
computation d in A whose origin (resp. whose end) is p and such that dϕ = c.

In particular if ϕ : A → B is Out-surjective, L(A) = L(B) holds.
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2.2.3. Quotients of automata

We say that ϕ : A → B is globally9 surjective if Qϕ = R and Eϕ = F . The
morphism ϕ will be said totally surjective (resp. totally co-surjective) if it is
globally surjective and Out-surjective (resp. In-surjective).

Definition 2.13. An automaton B is a quotient (resp. a co-quotient) of A if there
exists a morphism ϕ : A → B that is totally surjective (resp. totally co-surjective).

Proposition 2.14. Every automaton A has a mimimal quotient C, which is
unique up to an isomorphism, and which is the quotient of any quotient B of A.
More precisely, there exists a totally surjective morphism ψ : A → C such that
for any totally surjective morphism ϕ : A → B there exists a totally surjective
morphism θ : B → C such that ψ = ϕθ.

Obviously, the dual proposition holds:

Proposition 2.15. Every automaton A has a mimimal co-quotient D, which is
unique up to an isomorphism, and which is the co-quotient of any co-quotient B
of A.

Remark 2.16. In the terminology of transition systems [2], A and C are in bisim-
ulation if they have the same minimal quotient.

The minimal quotient or co-quotient of an automaton can be computed by
a kind of Moore algorithm that consists in successive refinements of the trivial
partition on the set of states. As we shall be more interested in the sequel by
the co-quotient than by the quotient, we rather describe the algorithm for the
co-quotient.

Let A = <Q,A,E, I, T> be an automaton. For every letter a in A and every
state p in Q, the set of predecessors of p by a is denoted by a·p = {q | (q, a, p) ∈ E}.
We define the sequence {Q0,Q1, . . .} of partitions of Q ordered by inclusion, by
the following rules:

• Q0 = {Q \ I, I};
• For every k, Qk+1 is the refinement of Qk such that, for every states p

and q in the same class in Qk, p and q are in the same class in Qk+1 if
and only if, for every letter a in A, a · p and a · q intersect the same classes
of Qk.

The algorithm stops when Qk cannot be refined by the preceeding rules. Let
us denote by l this last index, if it exists. If Q is finite, l exists and is smaller
than Card(Q).

Let us denote by ψk the (surjective) canonical mapping from Q onto the classes
of Qk. The refinement from Qk to Qk+1 is strict iff ψk is not In-surjective thus ψl

is indeed an In-surjective morphism (and thus totally co-surjective).
We shall say that two states p and q which belong to the same class of Ql (i.e.

that have the same image by ψl) are In-similar.

9 Out-surjectivity (or In-surjectivity) is a “local” condition, which has to be verified at every
state of the automaton.
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Theorem 2.17. The automaton C = A/ψl computed by the above Moore algorithm
is the minimal co-quotient of A.

We denote this co-minimization algorithm by Υ. Let us note again that Υ(A) is
canonically attached to A and not to the language accepted by A, but for the case
where A is co-deterministic, in which case Υ(A) is the minimal co-deterministic
automaton of L(A)

Example 2.18 (Ex. 2.5 cont.). In the automaton of Figure 2, the states bE2 and
aH2 E2 are In-similar. The minimal co-quotient is therefore P1 (Fig. 1).

Example 2.19 (Ex. 2.6 cont.). In Figure 3, the states a∗, a∗bH1 and a∗bF1G1H1

on the one hand, and the states H1 and F1G1H1 on the other hand, are In-similar.
Hence, the minimal co-quotient of ∆(E1) is the automaton P1 again.

3. Building a solution

The last two examples show two instances where:

A = Υ ◦ ∆ ◦ Φ(A) (10)

and this is the main idea of the paper: Υ ◦ ∆ is “fundamentally” the inverse of Φ
(the state elmination method).

3.1. The core of the algorithm and its shortcoming

We develop in this part some other examples where Υ ◦ ∆ is the inverse of Φ
and we explain then the obstacles that prevent this property to hold in the general
case.

Example 3.1. Let us consider the automaton A1 of Figure 4a and let E4 be the
expression obtained by the state elimination method on A1 using the order 1-2-3.
It holds:

E4 = a∗ + a∗bF4 +
(
a∗a+ a∗bG4

)
H4, where

F4 = (ba∗b)∗ba∗ , G4 = (ba∗b)∗(a+ ba∗a),

and H4 =
(
b+ ba∗a+ (a+ ba∗b)G4

)∗ (
ba∗ + (a+ ba∗b)F4

)
.

Then, d(E4) = {a∗, a∗b(ba∗b)∗ba∗, a∗aH4, a
∗b(ba∗b)∗(a + ba∗a)H4}. And the

derived terms of E4 are read on the automaton ∆(E4) itself (Fig. 4b).
It is quite easy to check that the co-quotient of the automaton ∆(E4) is the

automaton A1 itself. Actually, the morphism that maps every state of ∆(E4) onto
the state of A1 drawn on the same horizontal line is In-surjective.

From the automaton A1, another rational expression can be computed, by
running the algorithm ∆ with another order, for instance 1-3-2. Let E5 be the
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b
b

a
a
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b

(a) An automaton A1.

a∗ a∗bF4 a∗aH4 a∗bG4H4

F4 G4H4

H4

a a

bbb

a

a

a
a

b

b

b b

b

a

b

a

b

b

(b) The automaton ∆(E4) of derived terms of E4.

Figure 4. The core of the algorithm applied to A1.

resulting expression:

E5 = a∗ + a∗aF5 +
(
a∗b+ a∗aG5

)
H5, where

F5 = (b+ ba∗a)∗ba∗, G5 = (b + ba∗a)∗(a+ ba∗b),

and H5 =
(
ba∗b+ (a+ ba∗a)G5

)∗ (
ba∗ + (a+ ba∗a)F5

)
.

Figure 5b shows the derived term automaton of E5. Once again, the co-quotient
of the automaton ∆(E5) is the automaton A1.

1

2

3

a

b

b
b

a
a

a

b

(a) The automaton A1.

a∗ a∗aF5 a∗bH5 a∗aG5H5

H5

F5 G5H5

a a a a

a

b

bb

b

a
a

b

b
b

b

a

b

b
b

a

(b) The automaton ∆(E5) of derived terms of E5.

Figure 5. The same algorithm and another ordering.



HOW EXPRESSIONS CAN CODE FOR AUTOMATA 229

4

1

2

3

b

b

b

a

a

aa b

(a) The automaton P ′
1.

4 3
b a

a b

a+ b b b+ a a

(b) P ′
1 after the elimination of two states.

Figure 6. The state elimination method on the automaton P ′
1.

This example shows two instances where, again:

A = Υ ◦ ∆ ◦ Φ(A), (11)

and this with an automaton which is neither deterministic nor co-deterministic.
Observe that this would not hold if we had not modified the definition of the
derivation: in Example 3.1, with the Antimirov’s definition of the derivation,
∆(E4) whould have one state more and would not accept A1 as co-quotient.

However, it is clear that (11) cannot hold in full generality: if A is not co-
minimal for instance, certainly (11) does not hold; A may then be a quotient of
∆ ◦ Φ(A), but one does not know how to chose which one.

But the situation is even more tricky and it may happen that (11) does not
hold even for co-minimal automata, as shown by the following example.

Example 3.2. The automaton P ′
1 (Fig. 6) is co-minimal. After two steps of the

elimination Φ, the configuration (Fig. 6b) is the same as the one obtained after
one step of the elimination on the automaton of Figure 1b. Thus Φ(P ′

1) = E2

and Υ(∆(E2)) is equal to P1 and not to P ′
1.

3.2. Tagging for a solution

A way of escaping the above mentioned difficulties is to “decorate” some labels
of the automaton in order to indicate in the expression that some occurrences of
letters in the expression come from different transitions. We call this operation a
partial linearization and we denoted it by Λ. The delinearization is a projection
that we denote by Π.

Example 3.3 (Ex. 3.2 cont.). P ′
1 is linearized into P ′′

1 as shown in Figure 7; the
result of Φ is E′

2 = (a + bb + ba(b + aa)∗ab)∗, and ∆(E′
2) is an automaton whose

minimal co-quotient is P ′′
1 .

The linearization may consists in tagging not only letters on the transitions of
the automaton but spontaneous transitions from a final state to the “hidden” final
state as shown in the following example10.

10 Obviously, the tagging of the spontaneous transitions from the “hidden” initial state to an
initial state is possible, but it will appear later (Th. 3.5) that this is useless.
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(a) The linearized automaton P ′′
1 .

E′
2

bE′
2

bE′
2

aH2 E′
2

aH2 E′
2

H2 E′
2

b

b

b

b

a

a

a

a

a b

(b) The derived term automaton of E′
2.

Figure 7. The complete algorithm on automaton P ′
1.

1

a

(a) The minimal automaton A2.

a

(b) The co-minimal automaton.

a 1 1
1a

(c) The automaton ∆(Φ(Λ(A2))).

Figure 8. Three automata that recognize 1 + a.

Example 3.4. Let A2 be the automaton of Figure 8a. Without any tag, the
expression computed from A2 is Φ(A2) = 1 + a. If we apply ∆, we obtain the
automaton of Figure 8b, which is co-minimal. But, if one of the terminal arrows
of A2 is tagged, the expression obtained is 1 + a and the automaton of derived
terms is the automaton of Figure 8c whose minimal co-quotient is A2.

This tagging of final states has to appear in the rational expression computed
from the automaton and is symbolized by tagged 1’s. Like the transitions labelled
by letters, the spontaneous transitions to the hidden final state keep their tagging
in the derived term automaton.

The aim is obviously to keep the linearization as small as possible. Indeed, if
the linearization makes every arrow of A distinct, the expression is nothing else
than a description of the automaton. Fortunately, the linearization required to
retrieve the automaton is far more succint. Unfortunately, as far as now, we are
not able to give a characterization of the necessary and sufficient linearization.
We give in the following subsection a sufficient condition which is certainly not a
necessary one.
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3.3. A sufficient tagging

This condition allows somehow to get around the difficulty of choosing a good
linearization. It does not take advantage of the properties of the minimal co-
quotient of an automaton but refer to the language accepted by the automaton.

We shall establish that ∆ ◦ Φ preserves the co-determinism and this will imply
that a tagging which makes the automaton co-deterministic is certainly sufficient.

Theorem 3.5. Let A be a co-deterministic automaton and E = Φ(A) a rational
expression computed from A by the state elimination method. Then, the derived
term automaton ∆(E) of E is co-deterministic.

As a direct consequence of Theorem 3.5, we have:

Theorem 3.6. Let A be an automaton, Λ a partial linearization that makes Λ(A)
a minimal co-deterministic automaton and Π the corresponding delinearization. It
then holds:

A = Π ◦ Υ ◦ ∆ ◦ Φ ◦ Λ(A) . (12)

Proof. The minimal co-quotient of any co-deterministic automaton is the co-
minimal automaton of the language. Therefore, if Λ(A) is the co-minimal au-
tomaton of the language denoted by E = Φ(Λ(A)), Υ(∆(E)) = Λ(A) and A =
Π ◦ Λ(A). �

If we come back to the notation of the introduction, Theorem 3.6 gives the Φ′

and Ω we are looking for: Φ′ = Φ ◦ Λ and Ω = Π ◦ Υ ◦ ∆.
It may seem that the hypothesis on Λ makes Theorem 3.6 obvious since, as soon

as it is known that B is a minimal co-deterministic automaton, it is easy to retrieve
it from any description of the language L(B). This is not the case because the
algorithm described in this theorem is not a classical one to compute a minimal
automaton and in particular involves no determinization procedure.

Another way to understand the true meaning of Theorem 3.5 (and thus of
Th. 3.6) is to state the result in the dual form:

Corollary 3.7. Let E be a rational expression computed from a deterministic
automaton A. Then, the automaton of right derived terms of E is deterministic.

Right derived terms are obtained by replacing the derivation (which is a left

derivation) by a right derivation
∂R

∂a
, defined by the same induction rules as in

Definition 2.1 but for (4) and (5) which are replaced by:

∂R

∂a
(E · F) = E ·

[
∂R

∂a
F

]
∪ c(F)

∂R

∂a
E (4’)

∂R

∂a
(E∗) = E∗ ·

[
∂R

∂a
E

]
· (5’)
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The definition of the automaton of right derived terms is dual to the one of the
automaton of derived terms: (K, a,K′) is a transition if K belongs to ∂R

∂a K′ and
the definition of initial and final states is changed accordingly. This deterministic
automaton has a linear number of states (in the size of E) and its computation does
not call any determinization algorithm. To the authors’ knowledge there exists no
other algorithm with the same properties in the literature.

Proof of Theorem 3.5. Let A be a co-deterministic automaton and let E be the
expression computed by the state elimination method with respect to an order ω.

For every expression F, we define the sets of occurrences of letters in F, First(F)
and Last(F) as in the algorithm which computes the position automaton of F
(cf.[11]).

First(0) = First(1) = ∅ Last(0) = Last(1) = ∅
First(a) = a Last(a) = a

First(E + F) = First(E) ∪ First(F) Last(E + F) = Last(E) ∪ Last(F)

First(E · F) = First(E) ∪ c(E)First(F) Last(E · F) = Last(F) ∪ c(F)Last(E)

First(E∗) = First(E) Last(E∗) = Last(E).

It can be shown by induction that, for every derived term K of F, First(K) is in
bijection with the transitions that go out of K in the derived term automaton of F.

We can first notice the following fact (that is easy to prove by induction): in
the course of the elimination state method, for every state p, for every incoming
edge on p (incoming transition or initial edge) labelled by F, no element of Last(F)
is under a star operator. More, if F is not a letter, the element of Last(F) come
from the incoming transitions on p that have been deleted before. Likewise, c(F)
is false.

Let us focus on a transition (p, a, q) of A and study the position of occurrences
of this a in E (i.e. that comes from this transition). It depends on the order
between p and q.

Our aim is to described the form of derived terms K such that this a belongs
to First(K). We want to prove that the derived terms that are obtained by the
derivation of this occurrence give states that are (locally) co-deterministic with
respect to a.

If we prove this fact for every transition, then every state of the automaton of
derived term is locally co-deterministic with respect to every letter. Hence, the
automaton of derived terms is co-deterministic.

Case 1. p = q. Before the elimination of p, the local configuration of the automa-
ton is:

pri sj

a+ G

Fi Hj

F0 H0
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In this case, this amay appear several times in E, but each of its occurrences belong
to a factor of the form Fi(a+ G)∗Hj . For every i, First(Fi(a+ G)∗Hj) = First(Fi)
and a is neither in Last(Fi) nor in Last(G), since A is co-deterministic. Therefore
the only derived terms such that this occurrence of a belongs to the First set, are
the derived terms that begins with (a + G)∗Hj . The only way to reach one of
these derived terms K from another one is by derivating Fi or G and the resulting
transitions are labelled by a letter different from a. The derivative of K with
respect to this occurrence of a is K itself. Notice that a may belong to First(Hj),
but this occurrence comes from another transition (an outgoing transition from p)
and we shall deal with this configuration in case 3.

Case 2. p < q. The state p is eliminated before the state q. Before the elimination
of q, the local configuration of the automaton is:

qri sj

G

Fi Hj

F0 H0

a may belong to the Last set of Fi and G. There are two subcases:

– when p has been eliminated, it had a loop labelled by G(p). Then, every
occurrence of a is preceded by (G(p))∗ and therefore, every occurrence of
a belongs to a factor (. . . (G(p))∗a)(G)∗Hj . Hence, for every derived term
K = (G)∗HjK

′, there is only one incoming transition labelled by a; it comes
from the derived term (G(p))∗a)(G)∗HjK

′;
– if p had no loop, every occurrence of a is preceded by a factor F

(p)
l (that

labelled an incoming transition on p before its elimination) and no element
of the Last sets of these factors is under a star; hence, for every derived
term K = (G)∗HjK

′, there is only one incoming transition labelled by a,
which comes from the derived term a(G)∗HjK

′.

Case 3. p > q. The state q is eliminated first. Every occurrence of this a in
E belongs to a factor aG∗Hj – if q has a loop labelled by G – or to a factor aHj

otherwise. Moreover, and in the latter case, no element of First(Hj) is under a
star. Hence, for every derived term K = (G(q))∗H(q)

j K′ (resp. K = H
(q)
j K′), there

is only one incoming transition labelled by a, which comes from the derived term
a(G)∗HjK

′ (resp. aH(q)
j K′). �

4. Discussion

As we have already said, the conditions put on Λ in Theorem 3.6 are sufficient
but far from being necessary. For instance, the automaton A1 in Example 3.1 is not
co-deterministic and A1 = Υ(∆(Φ(A1))) holds though. This example and other
computations have led us to consider several ways that can help in distinguishing
derived terms and thus reducing the role of Λ. As far as now, they can serve as
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heuristics and it is our current work to turn these ideas into precise statements.
Let us quote here three of these directions of research.

Choosing a smart ordering. Actually, the choice of the ordering ω used in Φ
may be very important. The automaton P ′

1 of Example 3.2 may give an illustration
of this idea:

Example 4.1 (Ex. 3.2 cont.). Let E′′
2 = a + b(b + ab∗a(ab∗a)b)∗ be the rational

expression obtained by running Φ on P ′
1 (Fig. 6) with order 3-2-4-1. Then, without

any linearization, we get the derived term automaton of Figure 9a, whose minimal
co-quotient is P ′

1.

E′′
2

(b+ ab∗a(ab∗a)∗b)E′′
2

(ab∗a)∗bE′′
2

b∗a(ab∗a)∗bE′′
2

b

b

b

a

a

aa

b

(a) The automaton ∆(E′′
2 ).

4

1

2

b

b ab∗a

b ab∗a

a

(b) The first step of the elimination.

Figure 9. Running the algorithm with a smart ordering.

One can try to explain why this ordering is relevant for our purpose. The
elimination of the state 3 generates a loop on state 2 (Fig. 9b), and the label on
that loop makes state 2 different from state 1 in the remaining of the computation.
The choice of an ordering that builds such tagging loops during the elimination
algorithm seems to be a good strategy to get an expression that is faithful to the
automaton without linearization.

Using the structure of ∆(Φ(E)). The previous examples show the remarkable
structure of the derived term automaton of a rational expression computed on a
strongly connected automaton A: the last p of A to be eliminated corresponds to
a term that is a cutvertex in ∆(E) and this property holds inductively on subau-
tomata. This observation is another way to distinguish states that are otherwise
labelled by a same derived term. It thus lead to an improved version of ∆ which
may again depend on the ordering of the elimination.

Example 4.2 (Ex. 3.1 cont.). In Figure 4b, the state H4 is the cutvertex. Actually,
it corresponds to the state 3 of the automaton A1 that is eliminated last in ∆. In
Figure 5, the state 2 of A1 is eliminated last and the corresponding state in ∆(E5)
is indeed the cutvertex.

Example 4.3. Let A6 be the (linearized) automaton of Figure 10a. The elimina-
tion method with the ordering indicated by labels of states gives:

E6 =
(
(a+ b)∗bb+ H6b

)
F6 + H6, where

H6 =
(
ba+ a(b+ aa)

)∗ (b + aa) and F6 = (aH6b)∗(1 + aH6).
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(a) The automaton A6.

(a+ b)∗bbF6

bF6

F6

H6 G6F6

a (b+ aa)H6 abF6 (b+ aa)G6F61 aH6 aG6F6bF6

a+ b

b

b

a a

a
a

a
a

b b

a a a a

b

b

b

ba a

b

a

b

(b) The automaton ∆(E6).

Figure 10. Using the structure of the automaton.

The automaton ∆(E6) is drawn of Figure 10b, where G6 = H6bF6. Without any lin-
earization, the gray state bF6 is not built and its incomming transition are replaced
by the dashed ones. In this case, no cutvertex can be found in ∆(E6); therefore,
there are some derived terms that represent several states of the automaton that
one tries to retrieve. The difficulty is obviously to decide which derived term has
to be split to get a cutvertex. . .

Taking multiplicity into account. A fundamental property of the algorithms Φ
and ∆ is the fact that they respect the multiplicity of pathes. This is not necessarily
the case for the co-quotient, if it is computed in a Boolean framework. To take
this into account, we can compute co-quotient of automata with multiplicity, that
means that every letter on transitions has a weight which is a (positive) integer.
Such an automaton is a N-automaton and for this kind of automaton, the notion
of co-quotient can be generalized.

Definition 4.4. Let A = <Q,A,E, I, T> and B = <R,A, F, J, U> be two au-
tomata. Then, B is a co-N-quotient of A if there exists a morphism µ from A
onto B such that:

∀q ∈ R, ∀s ∈ qµ−1, Jq = Is, ∀p ∈ R, Up =
∑

r∈pµ−1

Tr,

∀p, q ∈ R, ∀s ∈ qµ−1, Fp,q =
∑

r∈pµ−1

Er,s.

Now, if we associate to the derived term automaton of an expression the corre-
sponding characteristic automaton, that is the N-automaton with the same tran-
sitions and with every weight equal to 1, a way to assure that the co-quotient does
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aE7

aF7
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(a) The automaton ∆(E7).
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a
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a

(b) The automaton A7.

a

a

a

aa a

(c) Another characteristic co-N-quotient.

a

2a

a

(d) The minimal co-N-quotient of ∆(E7).

Figure 11. Taking multiplicities into account.

not fold some pathes is to assure that the co-N-quotient does not produce any
transition with weight greater than 1.

Example 4.5. Let E7 be the expression computed from the automaton A7 of
Figure 11b. E7 = (aa)∗(a+ aa)F7, with F7 =

(
aa+ (a+ aa)(aa)∗(a+ aa)

)∗.
The derived terms automaton of E7 has four states: E7 itself, aE7, F7 and aF7.
The minimal co-quotient of this automaton has two states, but it is not char-

acteristic. Here arises a problem: there may be several smallest characteristic
co-N-quotients of an automaton. For instance, A7 is indeed a minimal character-
istic co-N-quotient of ∆(E7), but it is not unique; the automaton of Figure 11c
fills the same property. Taking multiplicities into account is here not sufficient to
decide which co-quotient of ∆(E7) is A7.
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5. Conclusion

In spite of the work that remains to be done on the subject, we hope that
we have given strong evidences that the computation of the derived terms of an
expression is not only an algorithm that builds an equivalent automaton but also
a way to retrieve the “track” of the states of an automaton when the expression
has been computed from that automaton. How far these tracks are faithful, and
how to read them efficiently are questions that are still under investigation.

Acknowledgements. The authors are pleased to thanks the careful referees who pointed
out several inaccuracies in the definitions, and whose remarks were of precious help for
improving the presentation of the paper.
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