
RAIRO-Inf. Theor. Appl. 39 (2005) 133-144

DOI: 10.1051/ita:2005008

FINDING H-PARTITIONS EFFICIENTLY ∗

Simone Dantas
1
, Celina M.H. de Figueiredo

2
, Sylvain

Gravier
3

and Sulamita Klein
2

Abstract. We study the concept of an H-partition of the vertex set
of a graph G, which includes all vertex partitioning problems into four
parts which we require to be nonempty with only external constraints
according to the structure of a model graph H , with the exception
of two cases, one that has already been classified as polynomial, and
the other one remains unclassified. In the context of more general
vertex-partition problems, the problems addressed in this paper have
these properties: non-list, 4-part, external constraints only (no internal
constraints), each part non-empty. We describe tools that yield for
each problem considered in this paper a simple and low complexity
polynomial-time algorithm.

Mathematics Subject Classification. 05C85, 68R10.

Introduction

Consider an undirected, finite, simple graph G = (V (G), E(G)) and the problem
of finding a partition of V (G) into subsets satisfying certain constraints internal
or external. An internal constraint refers to constraints within the parts as to be
a clique, an independent set, sparse, dense, etc. An external constraint refers to

Keywords and phrases. Structural graph theory, computational difficulty of problems, analysis
of algorithms and problem complexity, perfect graphs, skew partition.

∗ This research was partially supported by CNPq, FAPERJ, CAPES (Brazil)/COFECUB
(France), project 359/01/03.
1 Instituto de Computação, Universidade Estadual de Campinas, Caixa Postal 6176, CEP
13084-971, Campinas, SP, Brasil; sdantas@ic.unicamp.br
2 Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Caixa Postal
68530, CEP 21945-970, Rio de Janeiro, RJ, Brasil; celina@cos.ufrj.br & sula@cos.ufrj.br
3 CNRS, GeoD research group, “Maths à modeler” project, Laboratoire Leibniz, France;
sylvain.gravier@imag.fr

c© EDP Sciences 2005

134 S. DANTAS ET AL.

constraints between different parts, for example, some parts must be completely
adjacent or nonadjacent to other parts.

The skew partition problem was defined by Chvátal [3] as finding a partition
of the vertex set of a given graph into four nonempty parts A, B, C, D such that
there are all possible edges between A and B, and no edges between C and D.
The skew partition problem was defined in the context of perfect graphs and it has
a key role in the recent celebrated proof of the strong perfect graph conjecture by
Chudnovsky et al. [2]. De Figueiredo, Klein, Kohayakawa and Reed [4] presented
a polynomial-time algorithm for solving the skew partition problem. Our goal is
to contribute to a better understanding of this high complexity polynomial-time
algorithm. Note the skew partition problem has only external constraints.

An H-partition is a partition of the vertex set V (G) of a graph G into four
nonempty parts A, B, C, D such that the adjacencies between vertices placed
in distinct parts satisfy constraints given by the edges of a model graph H =
(V (H), E(H)). We call a model graph H = (V (H), E(H)), a complete graph
with 4 vertices V (H) = {a, b, c, d} and with 6 edges E(H) = {ab, ac, ad, bc, bd, cd},
where each vertex v ∈ V (H) represents one part of the H-partition, and each edge
e ∈ E(H) represents an external adjacency constraint between the two distinct
parts of the H-partition corresponding to the endpoints of e. In addition, the
edges of a model graph H are classified into three types: full edge, dotted edge
or non-constraint edge. A full edge ab ∈ E(H) represents the requirement that
every vertex of part A is adjacent to every vertex of part B. A dotted edge
ab ∈ E(H) represents the requirement that every vertex of part A is nonadjacent
to every vertex of part B. A non-constraint edge ab ∈ E(H) represents that there
are no adjacency constraints between the vertices of parts A and B. Using this
notation, the skew partition is the particular H-partition corresponding to the
model graph H depicted on the left of Figure 1, where a full edge is represented
by a continuous line, a dotted edge is represented by a dotted line, and a non-
constraint edge is omitted.

K 2+ S 2 2K 2

Figure 1. Examples of model graphs.

The complement H of a model graph H is the graph obtained from H by
replacing each full edge by a dotted edge and each dotted edge by a full edge (non-
constraint edges remain unchanged). Note that a graph G admits an H-partition
if and only if its complement G admits an H-partition.

The H-partition problem asks, given a graph G, whether G admits an
H-partition, and is a particular case of the M -partition problem introduced by
Feder, Hell, Klein and Motwani [6, 7]. An M -partition is a partition of a graph

FINDING H-PARTITIONS EFFICIENTLY 135

into at most k parts A1, A2, ..., Ak where the requirements are encoded by a sym-
metric k-by-k matrix M in which the diagonal entry Mi,i is 0 if Ai is required to
be independent, 1 if Ai is required to be a clique and ∗ otherwise (i.e., in case
we have no constraints). Similarly, the off-diagonal entry Mi,j is 0, ∗ or 1, if Ai

and Aj are required to be completely nonadjacent, have arbitrary connections, or
are required to be completely adjacent, respectively. In this way, the H-partition
is the particular case when the matrix M is a 4-by-4 matrix with only ∗’s in its
main diagonal, i.e., it does not impose internal constraints, and with the additional
constraint that the parts of the partition are required to be nonempty.

In [6], the authors classified all generalized list H-partition problems which
include 4-part problems with arbitrary input lists, internal and/or external con-
straints, and possibly empty-parts in the solution as quasipolynomial time solvable
or NP -complete. Cameron et al. [1] further studied and classified all generalized
list H-partition problems but one and its complement as polynomial solvable or
NP -complete.

Feder and Hell [5] showed that the list homomorphism problems that correspond
to list H-partition problems with model graphs 1 through 9 in Figure 2 (that have
only full and unconstrained edges, or only dotted and unconstrained edges) can be
solved by a polynomial time reduction to 2-SAT. To obtain the list homomorphism
to the reflexive graph H ′-problem that corresponds to the complement of the list
H-partition problem with model graph of Figure 2, take H ′ to be the complement
of the model graph (i.e., include exactly the unconstrained edges, including self-
loops). The relevant theorem of reference [5] is Theorem 2.5: if H ′ is an interval
graph then list homomorphism to H ′ is polynomial time solvable.

In the sequel, we develop simple tools which allow us to analyze most of par-
titioning problems of the vertex set of a graph G into four nonempty parts with
only external constraints. These tools yield low complexity algorithms for all
H-partition problems with the exception of two: the skew partition problem, whose
model graph H we refer to as H = K2 + S2, where K2 is the usual notation for
the complete graph with two vertices and S2 denotes the graph with two vertices
and no edges, and the H-partition problem where the model graph H contains a
full edge between vertices a and b, a full edge between vertices c and d, and the
other 4 edges of H are non-edges, which we refer to as H = 2K2. The first one of
these two problems, not studied in this paper, has already been classified. In [4], a
polynomial-time algorithm of high complexity was described for the skew partition
problem. Considering the second problem, Feder and Hell [5] have shown that its
List H-partition version, where H = 2K2, is NP -complete. Unfortunately, this
doesn’t give us any answer. Our study of H-partition problems leaves as open
problems the classification of H-partition problem where H = 2K2, and the task
of finding a lower complexity algorithm for the skew partition problem.

Theorem 0.1. All H-partition problems with the exception of the case H = 2K2

can be solved in polynomial time. Moreover, if H �= 2K2, K2 + S2, then the algo-
rithms are of low complexity.

136 S. DANTAS ET AL.

1. List H-partition problems

We consider undirected, finite, simple graphs. The H-partition problem is
defined as follows:

H-partition problem
Input: a graph G = (V (G), E(G)).
Question: is there an H-partition A, B, C, D of V (G)?

A convenient way to express the constraints determined by H and the constraint
that all parts must be nonempty is to specify for each vertex of G the set of parts of
the H-partition in which it is allowed to be. Given a graph G and for each vertex
v ∈ V (G) a list L(v) ⊆ {A, B, C, D}, a list H-partition of G with respect to the
lists {L(v) : v ∈ V (G)} is an H-partition A, B, C, D of G in which each v ∈ V (G)
belongs to a part P ∈ L(v). In other words, the List H-partition problem asks
for an H-partition of the input graph G in which each vertex is placed in a part
which is in its list. In order to ensure the constraint that A, B, C and D must be
nonempty, given the model graph H , we consider for each set of four vertices xA,
xB , xC , xD of V (G) for which the bijection xA �→ a, xB �→ b, xC �→ c, xD �→ d
satisfies: each full edge of H corresponds to an edge of G and each dotted edge
of H corresponds to a non-edge of G, the following decision problem:

Nonempty part list H-partition problem
Input: a graph G = (V (G), E(G)), four vertices xA, xB , xC , xD of V (G), and for
each v ∈ V (G) a subset L(v) ⊆ {A, B, C, D} as follows: L(xA) = {A}, L(xB) =
{B}, L(xC) = {C}, L(xD) = {D}, and L(x) = {A, B, C, D}, for all remaining
x ∈ V (G) \ {xA, xB , xC , xD}.
Question: Is there an H-partition A, B, C, D of V (G) such that each v is contained
in some part of L(v)?

Let L be a subset of {A, B, C, D}. We shall drop the brackets and refer to a
subset L = {A, C, D} simply as L = ACD. We shall also denote by L the following
subset of V (G): L = {v ∈ V (G) : L(v) = L}. We call all lists of size one trivial
lists. A vertex v such that L(v) = A is said to be placed in part A or v ∈ A.
Whereas for lists of larger size, for instance a vertex v such that L(v) = AB,
vertex v is said to be positioned in A ∪ B or v ∈ AB.

Note that the input of a nonempty part list H-partition problem partitions V (G)
into 5 sets, namely A = {xA}, B = {xB}, C = {xC}, D = {xD}, ABCD =
V (G) \ {xA, xB , xC , xD}. Vertices xA, xB, xC and xD of G are placed and the
remaining vertices of V (G) will have their lists reduced during the algorithm so
that a solution corresponds to a successful reduction of each list to a unitary list
so that V (G) is partitioned into four nonempty sets of vertices corresponding to
the possible four unitary lists. Note that if a vertex v ∈ AB, then v cannot be
placed in part C nor in part D.

FINDING H-PARTITIONS EFFICIENTLY 137

a

b

d

c(1) (2) (6)(3) (4) (5)

(7) (8) (12)(9) (10) (11)

(18)(16) (17)(15)(13) (14)

(24)(22) (23)(21)(19) (20)

(30)(28) (29)(27)(25) (26)

(33)(31) (32) (34)

Figure 2. List of model graphs.

2. Structure of model graph H

We have a corresponding algorithm for each nonempty part list-H-partition
problem, determined by the structure of the model graph H . In this section we
describe operations which will identify which type of algorithm we may use in
Section 3.

Recall that a model graph H = (V (H), E(H)) is a complete graph with 4 ver-
tices V (H) = {a, b, c, d} and with 6 edges E(H) = {ab, ac, ad, bc, bd, cd}. The
edges of a model graph H are classified into three types: full edge, dotted edge
or non-constraint edge. Define, for r ∈ V (H) its full neighbourhood NF (r) =
{h ∈ H : hr is a full edge}; and its dotted neighbourhood ND(r) = {h ∈ H :
hr is a dotted edge}. Let L be a subset of {A, B, C, D}. Extend the concept of

138 S. DANTAS ET AL.

full and dotted neighbourhood accordingly:

NF (L) = {h ∈ H : there exists l ∈ L, such that hl is a full edge};
ND(L) = {h ∈ H : there exists l ∈ L, such that hl is a dotted edge}.

We shall refer to the possible nonempty part list-H-partition problems according
to the following numbering:

Lemma 2.1. All possible model graphs H for the nonempty part list H-partition
problem, up to isomorphisms, are presented in Figures 1 and 2.

2.1. Isolated vertex operation

An isolated vertex in a model graph H , is a vertex that is not the end vertex of a
full edge nor a dotted edge of H . In case H has an isolated vertex p, the solution is
obtained by placing all x ∈ V (G) \ {xA, xB , xC , xD} in the corresponding part P .

2.2. Remaining operations

When we are not able to apply the Isolated vertex operation, we try to use
a reduction operation described next, which will reduce H to a smaller model
graph H ′.

Next, for all cases where the Isolated vertex operation is not used, and consider-
ing its reduced model graph, we will generate for a given graph H , its set of refined
lists, by applying the operations impossible lists and conflicting lists defined in the
sequel.

Reduction operation

Another operation determined by the structure of the model graph H is the
reduction operation which reduces a given List H-partition problem to a nonempty
part list H ′-partition problem such that H ′ has fewer vertices than H .

Two vertices r and s of H are twins if rs is a non-constraint edge of H , and such
that NF (r) = NF (s) and ND(r) = ND(s) in H . The reduction operation defines a
smaller model graph H ′ from H as follows: given a pair of twins r and s in H , the
model graph H ′ is a complete graph on vertex set V (H ′) = V (H) \ {r, s} ∪ {s′}.
The classification of the edges in E(H ′) into full, dotted and non-constraint is given
by the classification of the edges in E(H) as follows: if e′ ∈ E(H ′) is not incident
to s′, then e′ was present in E(H), and e′ has the same classification as in E(H);
whereas if e′ is incident to s′, then e′ = s′x, corresponds to e = sx ∈ E(H) and e′

has the same classification as e.
For example, when H is the model graph of Figure 3, we can group the vertices c

and d into a vertex c′ = c ∪ d and reduce the problem to a model graph H ′ with
just three vertices a′, b′, c′.

FINDING H-PARTITIONS EFFICIENTLY 139

a

b

d

c

a’

b’

c’c

d

c’a’

b’

Figure 3. Reduction operation.

We present in Table 1 the model graphs after the reduction operation.

Table 1. New model graphs after reduction operation.

Subcases Model graph H ′

(5) a′ = b, b′ = a ∪ c ∪ d
(7) a′ = a ∪ c, b′ = b ∪ d
(9) a′ = a ∪ c, b′ = b, c′ = d
(16) a′ = a, b′ = b ∪ d, c′ = c
(18) a′ = a, b′ = b ∪ d, c′ = c
(25) a′ = a, b′ = b ∪ d, c′ = c
(32) a′ = a, b′ = b, c′ = c ∪ d

Impossible lists

The structure of a model graph H can determine a set of lists that are impossible
for this model graph H .

Given a model graph H , the operation impossible lists computes its corre-
sponding set of possible lists by considering for all non-trivial lists L, the neigh-
bourhoods NF (L) and ND(L).

Let Li be a non-trivial list. If Li ⊂ Lj and Li �= Lj , for i �= j, and NF (Li) =
NF (Lj) and ND(Li) = ND(Lj), then Li is an impossible list.

For example, consider the model graph H subcase (34) of Figure 2. Clearly,
NF (ABCD) = V (H), and ND(ABCD) = ∅. Given any non-trivial list L properly
contained in ABCD, we have NF (L) = V (H), and ND(L) = ∅. So the only
non-trivial possible list for the subcase (34) is ABCD.

Conflicting lists

On the other hand, the set of possible lists may be further reduced by verifying
which lists are conflicting. This tool was used extensively in [1, 7].

A conflicting list, with respect to a model graph H , is a list that imposes two
conflicting constraints on a vertex, i.e., by having this list a vertex of G should
be simultaneously adjacent and nonadjacent to all vertices already placed in the
same part. We call non-conflicting lists the lists that are not conflicting.

Given a model graph H , after the operation impossible lists is performed, we
apply the operation conflicting lists which computes the corresponding set of non-
conflicting lists of the model graph H by considering for each p ∈ V (H) whether

140 S. DANTAS ET AL.

there exist in H a full edge rp and a dotted edge sp incident to p. In such a case,
every list L such that R, S ∈ L is a conflicting list.

For example, consider the model graph H subcase (11) of Figure 2. Vertex a
has incident edges ab which is full and ac which is dotted. So, by definition, BC
is a conflicting list and so are lists ABC, BCD, ABCD, as they contain list BC.
Indeed, assume that during the algorithm a vertex v is in BC. So, since B ∈ L(v),
v should be adjacent to all vertices placed in A and since C ∈ L(v), v should be
nonadjacent to all vertices placed in A. In this case, v should be adjacent and
nonadjacent to each vertex already placed in A, a contradiction. Similarly, for
subcase (11), lists AB, AD, BC, CD, ABD, ACD can be shown conflicting.

In order to obtain the set of refined lists, we performed first the operation im-
possible lists, and then we performed the operation conflicting lists. The following
lemma shows that this order is not relevant.

Lemma 2.2. Let R be the set of lists obtained by performing first the operation
impossible lists followed by performing the operation conflicting lists. Let R′ be the
set of lists obtained by performing first the operation conflicting lists followed by
performing the operation impossible lists. Then R = R′.

Proof. Clearly, R ⊆ R′. Suppose R ⊂ R′. Then there exist lists L′ ∈ R′ \ R,
L �∈ R′ such that: |L′| = 2, |L| = 3, L′ is not a conflicting list and L is conflicting
list, L′ ⊂ L, NF (L′) = NF (L) and ND(L′) = ND(L).

Without loss of generality, let L′ = AC, L = ABC. Since ABC is a conflicting
list, we may assume with no loss of generality that AB is a conflicting list.

We distinguish now two cases, and both lead to a contradiction.
First assume ad is a dotted edge, and bd is a full edge. Now d ∈ NF (ABC) =

NF (AC) says cd is a full edge, which in turn implies AC is a conflicting list, a
contradiction.

Second assume ac is a dotted edge, and bc is a full edge. Now {b, c} ⊆ NF (ABC)
and c �∈ NF (AC) is a contradiction. �

3. Efficient nonempty part list H-partition algorithm

We have as input of the nonempty part list H-partition problem a graph G =
(V (G), E(G)), with |V (G)| = n, |E(G)| = m, and four initial vertices xA, xB , xC

and xD of V (G) which have as lists A, B, C and D, respectively, and all other
vertices x ∈ V (G) with list ABCD.

If the model graph H has an isolated vertex as in one of the subcases (1), (2),
(3), (4), (22), (29) presented in Figure 2 then the algorithm solves the problem by
placing the vertices in a part corresponding to an isolated vertex of H , as described
in Subsection 2.1.

In all remaining subcases listed and numbered in Figure 2, the algorithm pro-
ceeds by trying to position the vertices v ∈ V (G) \ {xA, xB , xC , xD} into one of
the refined lists of the model graph H as follows.

We initialize the position of all vertices of V (G) as follows: A = xA, B = xB ,
C = xC , D = xD, ABCD = V (G) \ {xA, xB , xC , xD} and all other refined lists

FINDING H-PARTITIONS EFFICIENTLY 141

determined by the structure of H are empty. For each vertex v of V (G), v can be
placed or v can be positioned in one of the non-trivial refined lists. This is made
by means of keeping as invariant the property below:

Property 3.1. If ab is a full edge of H and A ∈ L(v), then v sees every vertex
with list B. If B ∈ L(v), then v sees every vertex with list A.

In the same way, if ab is a dotted edge of H and A ∈ L(v) then v is nonadjacent
to every vertex with list B. If B ∈ L(v) then v is nonadjacent to every vertex with
list A.

Once a vertex v is placed, it is necessary to update as follows all non-trivial
refined lists in order to keep the Property 3.1 as invariant. Let ab be a full edge
and v ∈ L with A ∈ L. If v does not see a vertex in B, v cannot be in a set L
containing A. Then, we move v to L \ A. Similarly, if ab is a dotted edge and
v ∈ L with A ∈ L. If v is adjacent to a vertex in B, we move v to L \ A.

If during the process of updating L(v), the list L(v) is reduced to the empty
set, then the algorithm stops with the answer NO, and the instance in question
(this graph G with those four particular vertices placed as indicated by their four
trivial initial lists) does not have a corresponding nonempty part list H-partition.

Else, we succeed in updating all L(v), positioning all vertices of G in one of the
refined lists according to Property 3.1. If all L(v) are reduced to a trivial list, the
algorithm stops with the answer YES and the instance in question (this graph G
with those four particular vertices placed as indicated by their four trivial initial
lists) does have a corresponding nonempty part list H-partition.

Note that for the subcase (12) in Figure 2, the set of refined lists contains only
lists A, B, C and D. This means that we always have a decision after running the
positioning procedure.

Else and finally, we succeed in updating all L(v), positioning all vertices of G
in one of the refined lists according to Property 3.1, but not all L(v) are reduced
to a trivial list. We show next that these nonempty part list H-partition problems
always have a simple solution by applying the tool List transversal, as described
below.

List transversal

A list transversal is a list LT that intersects all lists of size at least 2, and such
that LT is trivial, or nontrivial having no constraints between the parts contained
in LT .

The existence of a list transversal LT leads to a solution because each vertex v
can be placed in a part P ∈ L(v) ∩ LT , for all |L(v)| ≥ 2, and P ∈ {A, B, C, D}.

For example, let H be the model graph subcase (6) of Figure 2. The refined lists
for this subcase are: A, B, C, D, AC, AD, BD, ABD, ACD, ABCD. List AD
satisfies the definition of a list transversal. Hence, a solution for this nonempty
part list H-partition problem is given by: A = {v ∈ V (G)|A ∈ L(v)}, B = {xB},
C = {xC}, and D = {v ∈ V (G)|D ∈ L(v) and A �∈ L(v)}.

We present in Table 2 the refined lists and the list transversal for the final
subcases.

142 S. DANTAS ET AL.

Table 2. Refined lists and list transversals.

Subcases Refined lists Transversal

(5) A’, B’, A’B’ A’ or B’
(6) A, B, C, D, AC, AD, BD, ABD, ACD, ABCD AD
(7) A’, B’, A’B’ A’ or B’
(8) A, B, C, D, AC, BC, ABC, ABCD C
(9) A’, B’, C’, A’B’C’ A’ or B’ or C’
(13) A, B, C, D, ABC A or B or C
(14) A, B, C, D, CD C or D
(15) A, B, C, D, AB, AD, CD BD
(16) A’, B’, C’, A’C’ A’ or C’
(17) A, B, C, D, AC, BC, BD AB
(18) A’, B’, C’, A’B’, B’C’ B’
(19) A, B, C, D, AC, AD, BC, BD AB or CD
(20) A, B, C, D, AB, AD, BC, CD AC or BD
(21) A, B, C, D, AD, BC, ACD AB or BD
(23) A, B, C, D, AC A or C
(24) A, B, C, D, BD, BCD B or D or BD
(25) A’, B’, C’, A’B’, B’C’ B’
(26) A, B, C, D, AB, AC, AD, ABC, ACD A or AC
(27) A, B, C, D, AB, CD AC or AD
(28) A, B, C, D, ACD A or C or D
(30) A, B, C, D, AB, CD AD
(31) A, B, C, D, AB, AD, BC, CD AC or BD
(32) A’, B’, C’, A’C’ A’ or C’
(33) A, B, C, D, AB, AC, AD, ACD AC or AD
(34) A, B, C, D, ABCD A or B or C or D

One can extend the list transversal tool in order to solve the remaining cases (10)
and (11). In fact, if there exists a solution to nonempty part list H-partition
problems (10) and (11) then there exists one for which all vertices having A in its
list are placed in part A. Therefore, one can consider the following transversals:

FINDING H-PARTITIONS EFFICIENTLY 143

Table 3. Refined lists and List transversals.

Subcases Refined lists Transversal

(10) A, B, C, D, AD, BC AB or AC or DB or DC
(11) A, B, C, D, AC, BD AB or AD or CB or CD

Now, it is sufficient to check if these transversals define a solution (i.e. if there
is no violated constraint).

Complexity analysis

For each O(n4) feasible assignment of one vertex to each part, we update
in O(n2) time the set of non-trivial refined lists in order to keep the Property 3.1 as
invariant. Finally, we place in O(n) time the vertices according to corresponding
list transversal listed in Tables 2 and 3. For the problems listed in Table 3, we
need to check whether there is no violated constraint in additional O(n2) time.

Therefore, the simple proposed solution for each nonempty part list H-partition
problems of Figure 2 decides in time O(n2) whether a given feasible assignment of
one vertex to each part yields a solution.

4. Conclusion

We have presented polynomial-time algorithms for all H-partition problems,
with the exception of the cases H = 2K2, H = K2+S2. The described polynomial-
time algorithms are simple and of low complexity.

Recently, Cameron et al. [1] studied List H-partition problems that allow the
partitions to have at most 4 parts. In addition, they considered adding inner
constraints to the parts as to be a clique or an independent set. We refer to this
problem as a generalized list H-partition problem.

Clearly, a polynomial-time algorithm for such a generalized list H-partition
problem also solves the corresponding non list H-partition problem (where the
partition is required to have 4 nonempty parts). Nevertheless, the converse is
not true. For instance, [1] classified as an NP -complete problem any generalized
List H-partition with parts A, B and C required to be independent sets, part D
with no inner constraints, and no external constraints between the parts. The
corresponding non list partition problem with 4 nonempty parts is trivially a
polynomial problem as any graph with at least 4 vertices admits such a partition.

It is clear that similar simple tools as the ones developed in the present pa-
per can be applied even if we add internal constraints to the parts of the de-
sired H-partition. For instance, Cameron et al. [1] call stubborn problem the
partition of a graph G into at most four parts A, B, C, D, with the following
constraints: the only external constraint is that every vertex of part A is nonad-
jacent to every vertex of part C; the internal constraints are part A and part B
are required to be independent sets, and part D is required to be a clique. The
stubborn problem (and its complement) is the only problem of the class studied

144 S. DANTAS ET AL.

in [1] that was not classified as NP -complete or polynomial time solvable. The
stubborn problem such that all but four special vertices xA, xB , xC , xD have lists
ABCD can be easily solved by noticing that its refined set of nontrivial lists is
{ABCD, ABC, ACD, BCD, AC, BC, BD, CD}. Indeed, a vertex containing A in
its list must contain also C. Therefore, we may place all vertices containing C in
their nontrivial lists into C, and verify if the remaining graph (subgraph induced
by the vertices with list BD) is a split graph which can be done by applying 2-SAT.

Acknowledgements. We are very grateful to Pavol Hell and to the referee who helped us to
integrate our results in the subject of list partition problems and its existing bibliography.

References

[1] K. Cameron, E.M. Eschen, C.T. Hoàng and R. Sritharan, The list partition problem for
graphs, in Proc. of the ACM-SIAM Symposium on Discrete Algorithms – SODA 2004.
ACM, New York and SIAM, Philadelphia (2004) 384–392.

[2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, Strong Perfect Graph Theorem,
in Perfect Graph Conjecture workshop. American Institute of Mathematics (2002).

[3] V. Chvátal, Star-Cutsets and Perfect Graphs. J. Combin. Theory Ser. B 39 (1985) 189–199.
[4] C.M.H. de Figueiredo, S. Klein, Y. Kohayakawa and B. Reed, Finding Skew Partitions

Efficiently. J. Algorithms 37 (2000) 505–521.
[5] T. Feder and P. Hell, List homomorphisms to reflexive graphs. J. Combin. Theory Ser. B

72 (1998) 236–250.
[6] T. Feder, P. Hell, S. Klein and R. Motwani, Complexity of graph partition problems, in

Proc. of the 31st Annual ACM Symposium on Theory of Computing - STOC’99. Plenum
Press, New York (1999) 464–472.

[7] T. Feder, P. Hell, S. Klein and R. Motwani, List Partitions. SIAM J. Discrete Math. 16
(2003) 449–478.

To access this journal online:
www.edpsciences.org

