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Abstract. We study simulation of gate circuits in the infinite algebra

of transients recently introduced by Brzozowski and Ésik. A transient
is a word consisting of alternating 0s and 1s; it represents a changing
signal. In the algebra of transients, gates process transients instead
of 0s and 1s. Simulation in this algebra is capable of counting signal
changes and detecting hazards. We study two simulation algorithms: a
general one that works with any initial state, and a special one that ap-
plies only if the initial state is stable. We show that the two algorithms
agree in the stable case. We also show that the general algorithm
is insensitive to the removal of state variables that are not feedback
variables. We prove the sufficiency of simulation: all signal changes
occurring in binary analysis are predicted by the general algorithm.
Finally, we show that simulation can be more pessimistic than binary
analysis, if wire delays are not taken into account. We propose a circuit
model that we conjecture to be sufficient for proving the equivalence of
simulation and binary analysis for feedback-free circuits.
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Introduction

Asynchronous circuits, in contrast to synchronous ones, operate without a clock.
Interest in asynchronous circuits has grown in recent years [1, 9, 12, 16], because
they offer the potential for higher speed and lower energy consumption, avoid clock
distribution problems, handle metastability safely, and are amenable to modular
design.
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Despite its advantages, asynchronous design has some problems, among them,
hazards. A hazard is an unwanted signal pulse, caused by stray delays. If a
signal is not supposed to change, but has such an unwanted pulse, the hazard is
called static; if the signal is supposed to change, the unwanted pulse constitutes a
dynamic hazard. Another type of behavior that is usually undesirable in a digital
circuit is an oscillation, which is a sequence of states repeated infinitely often.

Because hazards may affect the correctness of computations they are important,
and much research has been done on their detection. Early work [13, 17] used
Boolean algebra and Karnaugh maps in complex procedures that depend very
much on the structure of the circuits. Multi-valued algebras have been used as an
alternative to the Boolean methods; see [3] for a survey. Among these algebras, one
of the most successful is the three-valued algebra used by the ternary simulation
algorithm introduced in [8]. This simulation algorithm provides a simple and very
efficient (linear time) method of detecting static hazards and oscillations, but is
not capable of detecting dynamic hazards. A complete characterization of the
ternary simulation in terms of binary analysis is given in [6]. The characterization
states that the simulation provides the least upper bound of the result of binary
analysis, under the assumption that both gates and wires have arbitrary, but
finite, delays. As a corollary, it is shown that static hazards and oscillations are
correctly detected by simulation. The algorithm, originally defined for stable initial
states, is generalized in [15] to handle any initial state. None of the other multi-
valued algebras proposed for hazard analysis provides a simulation algorithm as
well defined and as well understood as ternary simulation.

In a recent paper [2], Brzozowski and Ésik introduced a general infinite-valued
algebra, the change-counting algebra C, that generalizes all the successful multi-
valued algebras previously used for hazard analysis. They also proposed a simple
simulation algorithm that generalizes ternary simulation. The algorithm is capable
not only of detecting and identifying hazards, but also of counting the worst-case
signal changes, in any (synchronous or asynchronous) gate circuit. This could
provide an estimate of energy consumption.

The purpose of our work is to characterize the simulation algorithm of
Brzozowski and Ésik. We study two simulation algorithms: a general one, A,
that works with any initial state, and Ã, that applies if the initial state is stable.
We show that the two algorithms agree in the stable case. We also show that A
is insensitive to the removal of state variables that are not feedback variables. We
prove the sufficiency of simulation: all signal changes occurring in binary analysis
are predicted by Algorithm A. Finally, we show that simulation can be more pes-
simistic than binary analysis, if wire delays are not taken into account. We propose
a circuit model that we conjecture to be sufficient for proving the equivalence of
simulation and binary analysis for feedback-free circuits.

The article is structured as follows. In Section 1 we define the network model
of gate circuits. We present Brzozowski and Ésik’s algebra C of transients in
Section 2. In Section 3, we describe the classical binary analysis and present
a new interpretation of its results in terms of histories of the circuit variables.
Section 4 introduces the simulation method based on algebra C. We define an
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algorithm that is more general than that of [2], in the sense that it does not
require the initial state to be stable. Our algorithm is called Algorithm A. We
also present the original definition of the simulation [2], with stable initial state,
and call it Algorithm Ã; we show that Algorithms A and Ã are equivalent (in the
stable-state case) under models containing input delays. In Section 5 we prove that
A is insensitive to the removal of state variables that are not feedback variables.
In Section 6 we establish the sufficiency of simulation by showing that all signal
changes occurring in binary analysis appear also in the result of Algorithm A, for
any gate circuit. This result implies that simulation detects all hazardous signal
changes. In Section 7 we study conditions under which binary analysis covers
simulation. Section 8 concludes the paper.

We use the following notational conventions. For an integer n > 0, the set
{1, . . . , n} is denoted by [n]. Boolean operations AND, OR, NOT, and XOR are
denoted ∧, ∨, −, and �, respectively. Whenever possible, we write the steps of
our proofs in the form

P R Q { F },

where P and Q are statements or expressions, R is a relation such as =, ≤, ≥, ⇒,
or ⇔, and F is a series of facts. These deduction steps should be read as: P is in
relation R with Q, by the facts in F .

1. Network model

This section is based on [5]. In a gate circuit with n inputs and m gates, we
have a set X = {X1, . . . , Xn} of n input variables and a set S = {s1, . . . , sm} of
m state variables , usually corresponding to gates. Input and state variables take
values in a multi-valued domain D. Each state variable si has an excitation Si. In
general, Si is a function of some inputs Xj1 , . . . , Xjl

∈ X , and some state variables
si1 , . . . , sik

∈ S, i.e., Si = f(Xj1 , . . . , Xjl
, si1 , . . . , sik

), where f : Dl+k → D. In the
case where D = {0, 1}, the excitation is the Boolean function of the corresponding
gate. For multi-valued domains, the excitation is an extension of the corresponding
Boolean gate function. We also treat Si as a function from Dn+m into D. Thus,
let S̃i : Dn+m → D be S̃i(a · b) = f(aj1 , . . . , ajl

, bi1 , . . . , bik
), for any a · b. From

now on we write Si for S̃i; the meaning is clear from the context.

Definition 1.1. A network is a tuple N = 〈D,X ,S, E〉, where D is the domain of
values, X = {X1, . . . , Xn}, the set of input variables, S = {s1, . . . , sm}, the set of
state variables with associated excitations S1, . . . , Sm, and E ⊆ (X ×S)∪(S×S), a
set of directed edges. There is an edge between x and y if and only if the excitation
of y depends1 on x. The network graph is the digraph (X ∪ S, E).

1A function f : Dk → D depends on its ith argument if there exist d, d′ ∈ D, d =
(d1, . . . , di−1, di, di+1, . . . , dk), d′ = (d1, . . . , di−1, d′i, di+1, . . . , dk) such that f(d) �= f(d′).
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Figure 1. Sample gate circuit.
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Figure 2. Network graph for circuit of Figure 1.

A circuit is feedback-free if, starting at any point in the circuit and proceeding
via connections through gates in the direction input to output, it is not possible
to reach the same point twice. Every feedback-free circuit has an acyclic network
graph. The converse does not hold, since there do exist circuits with feedback that
have acyclic graphs (see [5]).

Example 1.2. The circuit of Figure 1 has input variables X1 and X2, and
state variables s1, s2, s3, s4. In the domain D = {0, 1}, the excitations are S1 =
X2, S2 = X2∧s1, S3 = s2∨s3, and S4 = X1 �s3. The network graph is shown
in Figure 2.

For convenience, a circuit with associated state variables will be referred to as
a circuit or a network. This is justified, because a circuit with state variables
determines a unique network.

A state of N is an m-tuple b of values from D assigned to state variables
s1, . . . , sm. A total state is an (n + m)-tuple c = a · b of values from D, the
n-tuple a being the values of the input variables, and the m-tuple b, the values of
state variables. The dot “ · ” separates input from state variables.

For any i ∈ [m], the value of Si in total state a · b is denoted Si(a · b). The tuple
(S1(a · b), . . . , Sm(a · b)) is denoted by S(a · b). For any a · b, we define the set of
unstable state variables as U(a · b) = {si | bi 
= Si(a · b)}. Thus, a · b is stable if and
only if U(a · b) = ∅, i.e., S(a · b) = b.

For any state variable si ∈ S, its fan-in set is φ(si) = {x | x ∈ X∪S, (x, si) ∈ E}.

2. Transients

In this section we present the infinite domain of transients, introduced in [2].
A binary word is any word in {0, 1}∗. A transient is a nonempty binary word in
which no two consecutive symbols are the same. Thus the set of all transients
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Figure 3. Transients as words for waveforms.

is T = 0(10)∗ ∪ 1(01)∗ ∪ 0(10)∗1 ∪ 1(01)∗0. Transients represent waveforms in a
natural way, as shown in Figure 3.

We use boldface symbols to denote transients, tuples of transients, and func-
tions of transients. For any transient t we denote by α(t) and ω(t) its first and
last characters, respectively. A transient can be obtained from any nonempty bi-
nary word by contraction, i.e., elimination of all duplicates immediately following
a symbol (e.g., the contraction of 00100011 is 0101). For a binary word s we
denote by ŝ the result of its contraction. For any t, t′ ∈ T, we denote by tt′ the
concatenation of t and t′.

For t, t′ ∈ {0, 1}∗, t is a prefix of t′ if there exists a (possibly empty) binary
word t′′ such that t′ = tt′′. The prefix relation is a partial order on {0, 1}∗; it is
denoted ≤. In this paper we restrict the partial order relation ≤ to T. Also, for
u = (u1, . . . ,um) and v = (v1, . . . ,vm) in Tm, we say that u is a prefix of v and
write u ≤ v, if ui ≤ vi, for all i ∈ [m].

Extensions of Boolean functions to functions of transients are formally defined
in [2]. Any Boolean function f : Bn → B is extended to a function f : Tn → T so
that, for any tuple (t1, . . . , tn) of transients, f produces the longest transient when
t1, . . . , tn are applied to the inputs of a gate performing the Boolean function f .
We give an example below; for more details see [2].

Example 2.1. Let f be the two-input OR function and f , its extension. Suppose
we want to compute f(01, 010). We construct a digraph D(01, 010) in which the
nodes consist of all the pairs (t, t′) of transients such that (t, t′) ≤ (01, 010), and
there is an edge between any two pairs p,p′ only if p ≤ p′, and p differs from p′

in exactly one coordinate by exactly one letter. The resulting graph is shown in
Figure 4a. Also, for each node (t, t′) in the graph we consider as its label the value
f(ω(t), ω(t′)). This results in a graph of labels, shown in Figure 4b. The value of
f(01, 010) is the contraction of the label sequence of those paths in the graph of
labels that have the largest number of alternations between 0 and 1. Therefore,
f(01, 010) = 0101.

Let z(t) and u(t) denote the number of 0s and the number of 1s in a transient t,
respectively. We denote by ⊗ and ⊕ the extensions of the Boolean AND and OR
operations, respectively. It is shown in [2] that for any w,w′ ∈ T of length >1,
w ⊗ w′ = t, where t ∈ T is such that

α(t) = α(w) ∧ α(w′), ω(t) = ω(w) ∧ ω(w′), and u(t) = u(w) + u(w′) − 1.

Similarly, w ⊕ w′ = t, where t ∈ T is such that

α(t) = α(w) ∨ α(w′), ω(t) = ω(w) ∨ ω(w′), and z(t) = z(w) + z(w′) − 1.
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Figure 4. Graph D(01, 010) with labels.

If one of the arguments is 0 or 1, the following rules apply:

t ⊕ 0 = 0 ⊕ t = t, t⊕ 1 = 1 ⊕ t = 1,

t ⊗ 1 = 1 ⊗ t = t, t⊗ 0 = 0 ⊗ t = 0.

The complement t of t ∈ T is obtained by complementing each character of t. For
example, 1010 = 0101.

Algebra C = (T,⊕,⊗,−, 0, 1), is called the change-counting algebra, and is a
commutative de Morgan bisemigroup [2]. We also refer to C as the algebra of
transients .

We denote by t◦ t′ concatenation followed by contraction, i.e., t◦ t′ = t̂t′. The
◦ operation is associative, and also satisfies for t, t′, t1, . . . , tn ∈ T and b ∈ {0, 1}:

1. if t ≤ t′ then b ◦ t ≤ b ◦ t′; and
2. t1 ◦ . . . ◦ tn = ̂t1 . . . tn.

We extend ◦ to tuples of transients the obvious way: for any m-tuples u,v of
transients, u ◦ v = w, where w is such that wi = ui ◦ vi, for all i ∈ [m].

3. Binary analysis of networks

In response to a change of its inputs, a network passes through a sequence of
states as its internal signals change. By analyzing a network we mean exploring all
such sequences of states. This section describes a formal analysis model introduced
by Muller and Bartky [14], and later called the General Multiple Winner (GMW)
model [7]. Our presentation follows that of [5], but here we refer to the GMW
model as binary analysis. We derive new properties of binary analysis by examining
the histories of the network variables along all possible paths.

3.1. Definition of binary analysis

In binary analysis we use the binary domain, D = {0, 1}. We describe the
behavior of a network started in a given state with the input kept constant at
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Figure 5. Gate circuit for binary analysis.
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Figure 6. Sample Ga(b) graphs for circuit of Figure 5.

value a ∈ {0, 1}n, by defining a binary relation Ra on the set {0, 1}m of states
of N . For any b ∈ {0, 1}m,

bRab, if U(a · b) = ∅, i.e., if total state a · b is stable, and
bRabK , if U(a · b) 
= ∅, and K is any nonempty subset of U(a · b),

where by bK we mean b with all the variables in K complemented. No other pairs
of states are related by Ra. As usual, we associate a digraph with the Ra relation,
and denote it Ga.

For given a ∈ {0, 1}n, and b ∈ {0, 1}m we define the set of all states reachable
from b in relation Ra as

reach(Ra(b)) = {c | bR∗
ac},

where R∗
a is the reflexive and transitive closure of Ra. We denote by Ga(b) the

subgraph of Ga corresponding to reach(Ra(b)).
In examples, we represent tuples without commas or parentheses, for conve-

nience. Thus (0, 0, 0) is written as 000, etc.

Example 3.1. For the circuit in Figure 5, graph G0(000) is shown in Figure 6a,
where unstable variables are underlined. Note that the graph contains no stable
states. Graph G1(111) is shown in Figure 6b. Here there is one stable state.
To illustrate hazardous behavior, consider path π1 = 111, 011, 001. Here s2

changes once from 1 to 0, and s3 does not change. However, along path π2 =
111, 110, 100, 101, 011, 001, s2 changes from 1 to 0 to 1 to 0, and s3 changes from 1
to 0 to 1. If the behavior of π1 is the intended one, then π2 violates it. Along π2

there are unwanted signal pulses: a 1-pulse in s2, and a 0-pulse in s3. The first
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Figure 7. Circuit illustrating inertial delays.

pulse is an example of a dynamic hazard, and the second, of a static hazard. Such
pulses can introduce errors in the circuit operation.

3.2. Histories

In the following we assume an arbitrary network N and take Ga(b) to be any
one of its binary analysis graphs.

Definition 3.2. Let π = s0, . . . , sh be a path of length h ≥ 0 in Ga(b). Recall that
each sj is a tuple (sj

1, . . . , s
j
m). For any i ∈ [m], we denote by σπ

i the transient
̂s0
i . . . sh

i , which shows the changes of the i-th state variable along path π. We
refer to it as the history of variable si along the path. We define Σπ

i to be Êi,
where Ei = Si(a · s0)Si(a · s1) . . . Si(a · sh), and call it the excitation history of
variable si along path π. The histories of all variables along π constitute tuple
σπ = (σπ

1 , . . . , σπ
m). The histories of all excitations along π form tuple Σπ =

(Σπ
1 , . . . ,Σπ

m).

Consider a physical circuit, and assume that one of its gates is stable in some
state; then its output has the same value as its excitation. If the excitation changes
to a new value, the gate output also changes after some delay. When the excita-
tion changes back to its original value, the gate output follows the new change.
However, if the excitation pulse is very short, the gate output may not change at
all, because of the inertial nature of the gate delay.

In our mathematical representation of a circuit, we are able to model the inertial
delay of a gate by differentiating between the value of a variable and the value of its
excitation. The stability of a gate depends only on the present state of the circuit.
Thus, if a variable si is unstable in some state, and another variable changes,
causing a change of the excitation of si, then si is stable again. Because of this,
the histories σπ

i and Σπ
i are not always the same. If si is unstable initially, they are

obviously different, since their first characters are different, that is s0
i 
= Si(a · s0

i ).
However, σπ

i and Σπ
i can differ, even if si is stable initially.

Example 3.3. In the circuit of Figure 7, the excitations are: S1 = X2, S2 =
X1 ⊗ s1, S3 = s2, S4 = s2 ⊕ s3. One verifies that graph G11(1011) contains
path π = 1 011, 01 11, 0011, on which variable s3 changes fewer times than its
excitation. We have σπ

3 = 1, whereas Σπ
3 = 101.

In the following we establish a formal relationship between histories of variables
and histories of their excitations.

Proposition 3.4. Let π = s0, . . . , sh, sh+1 be a path in Ga(b), and let π′ =
s0, . . . , sh. Then, σπ ≤ σπ′ ◦ S(a · sh).
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Proof. For any variable si we have one of the following cases.

Case I. si changes during the transition from sh to sh+1. Then si must be
unstable in state sh, i.e., Si(a · sh) 
= sh

i , and sh+1
i = Si(a · sh), by the definition

of binary analysis. Hence σπ
i = ̂s0

i . . . sh
i sh+1

i = ̂s0
i . . . sh

i ◦ sh+1
i = σπ′

i ◦ Si(a · sh).

Case II. si does not change during the transition from sh to sh+1. Then sh+1
i =

sh
i , by the definition of binary analysis. Then σπ

i = ̂s0
i . . . sh

i sh+1
i = ̂s0

i . . . sh
i =

σπ′
i ≤ σπ′

i ◦ Si(a · sh). Thus, our claim holds. �
Corollary 3.5. For any path π = s0, . . . , sh, sh+1 in Ga(b), with π′ = s0, . . . , sh

we have σπ ≤ s0 ◦ Σπ′
.

Proof. σπ ≤ σπ′ ◦ S(a · sh) ≤ (. . . ((s0 ◦ S(a · s0)) ◦ S(a · s1)) ◦ . . .) ◦ S(a · sh) =
s0 ◦ (S(a · s0) ◦ S(a · s1) ◦ . . . ◦ S(a · sh)) = s0 ◦ Σπ′

. �
Corollary 3.6. Let π = s0, . . . , sh be a path in Ga(b). For all variables si that
are stable in s0, we have

σπ
i ≤ Σπ

i . (1)

Proof. If h = 0 then σπ
i = s0

i and Σπ
i = Si(a · s0) for all variables si. For si

initially stable we have s0
i = Si(a · s0) by the definition of stability, and the claim

holds.
For h > 0 the following argument applies for any si initially stable:

σπ
i ≤ s0

i ◦ Σπ′
i { Cor. 3.5 with π′ = s0, . . . , sh−1 }

= Σπ′
i { stability of si in s0 and α(Σπ′

i ) = Si(a · s0) }
≤ Σπ

i { definition of Σπ
i as Σπ

i = Σπ′
i ◦ Si(a · sh) }. �

The paths for which equality holds in (1) are called hazard-preserving paths.

Definition 3.7. Let π be a path in Ga(b), and si a state variable that is initially
stable. We call π hazard-preserving on si if σπ

i = Σπ
i . For V ⊆ S, path π is

hazard-preserving on V if it is hazard-preserving on all si ∈ V .

We also establish a relationship between excitation histories and extended ex-
citations.

Proposition 3.8. For any path π = s0, . . . , sh in Ga(b), Σπ ≤ S(a · σπ).

Proof. Let πj = s0, . . . , sj , for all j such that 0 ≤ j ≤ h. Then σπ0 ≤ σπ1 ≤ . . . ≤
σπh = σπ. Thus a · σπ0 ≤ a · σπ1 ≤ . . . ≤ a · σπ, which means that a · σπ0 , a ·
σπ1 , . . . , a ·σπ is a subsequence q of nodes on a path p from a ·(α(σπ

1 ) . . . α(σπ
m)) =

a · s0 = a · σπ0 to a · σπ in the graph D(a · σπ). For any i ∈ [m], we consider the
labeling of graph D(a · σπ) with Boolean excitation Si. Let λ be the sequence of
labels of p. The sequence of labels on q is Ei = Si(a · s0), Si(a · s1), . . . , Si(a · sh).
Since q is a subsequence of p, we have Êi ≤ λ̂. By the definition of extended
Boolean functions, Si(a · σπ) is the longest transient obtained by the contraction
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Figure 8. Circuit with binary analysis.

of the label sequences of paths from a · σπ0 to a · σπ in graph D(a · σπ). Hence
λ̂ ≤ Si(a · σπ). By the definition of excitation history, Σπ

i = Êi. It follows that
Σπ

i ≤ Si(a · σπ). �

Corollary 3.9. Let path π be as in Proposition 3.8, and let si be a state variable
whose excitation is independent of the input variables. Let {si1 , . . . , sik

} be the
fan-in set of si. Then

Σπ
i ≤ Si(σπ

i1 , . . . , σ
π
ik

). (2)

Proof. Since Si depends only on state variables {si1 , . . . , sik
}, from the definition

of excitations in N we have Si(a · σπ) = Si(σπ
i1

, . . . , σπ
ik

). The claim now follows
immediately by Proposition 3.8. �

The paths for which equality holds in (2) are called worst-case paths.

Definition 3.10. Let π be a path in Ga(b), si, a state variable whose excitation
is independent of the input variables, and φ(si) = {s1, . . . , sk}. We call π worst-
case on si if Σπ

i = Si(σπ
1 , . . . , σπ

k ). For a set V ⊆ S of state variables, path π is
worst-case on V if it is worst-case on each si ∈ V .

Example 3.11. In the circuit in Figure 8, a state variable is associated with
each gate and also with each wire between gates. Wire delays can be viewed as
gates performing the identity function. We indicate wire delays by adding state
variables associated with wires. The excitations are S1 = X1, S2 = X2, S3 =
s1, S4 = s2, S5 = s3 ∨ s4. We show G01(10101) in the figure. Path π =
10101, 00101, 00001, 01001, 01011 is worst-case on s5, since Σπ

5 = 101 = 10 ⊕ 01.
However, π′ = 10101, 11101, 11111, 01111, 01011 is not worst-case, since Σπ′

5 = 1,
whereas 10 ⊕ 01 = 101.

3.3. Binary analysis of feedback-free circuits

For feedback-free circuits, we now show that simultaneous changes do not affect
the histories of variables. For a graph Ga(b) we denote by G′

a(b) the subgraph
of Ga(b) in which exactly one unstable variable changes at each step.

For the circuit in Figure 8, subgraph G′
01(10101) is shown by boldface edges.
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Definition 3.12. In any binary analysis graph Ga(b), two paths π and π′ are
called equivalent if their histories are the same, i.e., if σπ = σπ′

.

Proposition 3.13. Let Ga(b) be a binary analysis graph of a feedback-free circuit.
Then for any path π in Ga(b) there exists an equivalent path π′ in G′

a(b).

Proof. Take any path π = s0, . . . , sp−1, sp, . . . , sh, with 0 < p ≤ h. Let s1, . . . , sk

be the variables that change in step p. Since the circuit has no feedback, the
graph of N is acyclic, and there exists a topological ordering of its state variables.
Let sk, . . . , s1 be the topological order of the k variables, i.e., if si ∈ φ(sj), then
i > j, for i, j ∈ [k]. It follows that for any i ∈ [k], si /∈ φ(sj), for all j such
that i ≤ j ≤ k. This means that changing si in a state in which sk, . . . , si are all
unstable, leads to a state in which sk, . . . , si+1 are still unstable, where i ∈ [k− 1].
This allows us to replace step p of π with a sequence r0, . . . , rk of k steps, where
r0 = sp−1, rk = sp, and for any i ∈ [k] only si changes in step i. The new path
π′ = s0, . . . , sp−1, r1, . . . , rk−1, sp, . . . , sh has the same history as π, i.e., σπ = σπ′

.
In a similar way we eliminate all steps with simultaneous changes, and in the end
obtain an equivalent path with no simultaneous changes. �
Example 3.14. In Figure 8, path 10101, 01101, 01011 involves two double changes
of variables. An equivalent path with single changes is 10101, 00101, 01101, 01001,
01011.

The following example shows that this result does not hold for circuits with
feedback.

Example 3.15. Consider a circuit with one input X , and two gates with excita-
tions S1 = X ∨ s2 and S2 = X ∨ s1. One verifies that in the graph G′

0(00), the
only possible paths are 00, 01 and 00, 10. However, in G0(00) there is an infinite
path 00, 11, 00, 11, 00, . . .

4. Simulation with algebra C

While binary analysis is an exhaustive analysis of a circuit, it is inefficient,
since the state space is exponential. Simulation using a multi-valued domain is
an efficient alternative, if not all the information from binary analysis is needed.
A simulation algorithm using algebra C has been proposed in [2]; it generalizes
ternary simulation [5, 8]. We now give a more general version of the simulation
algorithm, and show how it relates to the original version. This parallels the
extension of ternary simulation from stable initial state to any initial state [5].

Given any circuit, we define two networks: a binary network N =
〈{0, 1},X ,S, E〉 and the transient network N = 〈T,X ,S, E〉, having set T of tran-
sients as the domain. The two networks have the same input and state variables,
but these variables take values from different domains. A state of network N is a
tuple of transients; the value of the excitation of a variable is also a transient. Exci-
tations in N are the extensions to C of the Boolean excitations in N . It is shown in
[2] that an extended Boolean function depends on one of its arguments if and only
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if the corresponding Boolean function depends on that argument. Therefore N
and N have the same set of edges.

Recall that binary variables, words, tuples and excitations in N are denoted
by italic characters (e.g., s, S). Transients, tuples of transients, and excitations
in N are denoted by boldface characters (e.g., s, S), and components of a tuple
by subscripts (e.g., si, si).

4.1. General simulation: Algorithm A

We use N for binary analysis and N for simulation. We record in the value of
a variable of N all the changes in that variable since the start of the simulation,
as dictated by its excitation. For variables that are stable initially, since the
initial state agrees with the initial excitation, the state transient and the excitation
transient will be the same. Consequently, at each step we just copy the excitation
into the variable. For example, with initial state 0 and excitation 0, if the excitation
becomes 01, we set the variable to 01, and so on. For variables that are initially
unstable, we first record the initial state, and then the excitation. The operator
that gives us the desired result in both cases is ◦; thus we have new value =
initial value ◦ excitation.

Let a · b be a (binary) total state of N. Algorithm A is defined as follows:
Algorithm A
s0 := b;
h := 1;
sh := b ◦ S(a · s0);
while (sh <> sh−1) do

h := h + 1;
sh := b ◦ S(a · sh−1);

Algorithm A produces a sequence s0, s1, . . . , sh, . . ., where sh =(sh
1 , sh

2 , . . . , sh
m)∈

Tm, for all h ≥ 0. This sequence can be finite, if we reach sh0 = sh0−1 for some
h0 > 0, or infinite otherwise. For convenience, we sometimes consider the finite
sequences as being infinite, with sh = sh0 , for all h > h0.

It is shown in [2] that any extended Boolean function f : Tm → T is monotonic
with respect to the prefix order, i.e., for any x,y ∈ Tm, if x ≤ y, then f(x) ≤ f(y).

Proposition 4.1. The sequence resulting from Algorithm A is nondecreasing or
monotonic with respect to the prefix order, that is, for all h ≥ 0, sh ≤ sh+1.

Proof. Since extended Boolean functions are monotonic with respect to the prefix
order, so are excitations. We proceed by induction on h.
Basis, h = 0: s0 = b ≤ b ◦ S(a · s0) = s1.
Induction step: sh = b ◦ S(a · sh−1) ≤ b ◦ S(a · sh) = sh+1. �

For feedback-free circuits, the sequence resulting from Algorithm A is finite.
We can see this if we order the state variables by levels as follows. Level 1 consists
of all state variables which depend only on external inputs. Level l consists of all
state variables which depend only on variables of level < l, and on at least one
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Table 1. Result of algorithm A.

X1 X2 s1 s2 s3 s4 state

1 1 1 0 1 1 s0

1 1 10 01 1 1 s1

1 1 10 010 10 1 s2

1 1 10 010 101 1010 s3

1 1 10 010 101 10101 s4

s3

s4

s1

s2

X1

X2

Figure 9. Circuit with infinite simulation.

variable of level l − 1. Since the inputs do not change during simulation, level-1
variables change at most once, in the first step of Algorithm A. In general, level-i
variables change at most i times. Since the number of levels is finite, our claim
follows.

For display reasons, in examples of simulation we write binary states as words,
but during computations they are regarded as tuples.

Example 4.2. Consider the feedback-free circuit in Figure 7. The extended ex-
citations are: S1 = X2, S2 = X1 ⊗ s1, S3 = s2, S4 = s2 ⊕ s3. For the initial
state a · b = 11 · 1011, Algorithm A results in Table 1.

Example 4.3. For circuits with feedback the simulation sequence may be infinite.
Consider the circuit of Figure 9. The excitations are: S1 = X1, S2 = X2, S3 =
s1 ⊕ s4, S4 = s2 ⊕ s3. We run Algorithm A for this network started in state
a · b = 00 · 1100; the resulting sequence of states, which is infinite, is illustrated in
Table 2.

4.2. Simulation with stable initial state: Algorithm Ã

Algorithm A above makes no assumptions about the starting state a · b. If
the network starts in a stable total state and the inputs change, then we have a
slightly simpler formulation which we call Algorithm Ã; this is the version used in
[2]. Assume that N is started in stable total state ã ·b and the input tuple changes
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Table 2. Infinite simulation.

X1 X2 s1 s2 s3 s4 state

0 0 1 1 0 0 s0

0 0 10 10 0 0 s1

0 0 10 10 01 01 s2

0 0 10 10 010 010 s3

0 0 10 10 0101 0101 s4

. . . . . . . . . . . . . . . . . . . . .

Table 3. Result of Algorithm Ã.

X1 X2 s̃1 s̃2 s̃3 s̃4 state

1 10 0 0 1 1 s̃0

1 10 01 0 1 1 s̃1

1 10 01 01 1 1 s̃2

1 10 01 01 10 1 s̃3

1 10 01 01 10 101 s̃4

to a. Algorithm Ã is defined below. It results in a sequence s̃0, s̃1, . . . , s̃h, . . . , of
states, where s̃h = (s̃h

1 , s̃h
2 , . . . , s̃h

m) ∈ Tm, for all h ≥ 0.

Algorithm Ã
a = ã ◦ a;
s̃0 := b;
h := 1;
s̃h := S(a · s̃0);
while (s̃h <> s̃h−1) do

h := h + 1;
s̃h := S(a · s̃h−1);

Example 4.4. We illustrate Algorithm Ã with the network in Figure 7, started
in stable state ã · b = 11 · 0011, with the input changing to a = 10. The result is
shown in Table 3.

It is shown in [2] that the sequence of states resulting from Algorithm Ã is
nondecreasing with respect to the prefix order, i.e., Algorithm Ã is monotonic.

For feedback-free circuits, the time complexity of Ã has been shown in [2] to
be polynomial in the number of state variables and inputs. The additional work
that A performs when compared to Ã does not affect this complexity. Thus, for
feedback-free circuits, the running time of A is polynomial as well.
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For our next result, we modify the circuit model slightly. For each input Xi we
add a delay, called input delay, with output si and excitation Si = Xi. This follows
the model of [5]. The following shows that Algorithms A and Ã are equivalent for
any network N started in a stable state, provided that N contains input delays.

Theorem 4.5. Let N be a network containing input delays. Let s̃0, s̃1, . . . , s̃h, . . .
be the sequence of states produced by Algorithm Ã for N started in the stable
(binary) total state ã · b with the input tuple changing to a. Then, for all h ≥ 0,
s̃h = sh, where s0, s1, . . . , sh, . . . is the sequence of states produced by Algorithm A
for N started in total state a · b.
Proof. We prove the theorem by induction on h.
Basis, h = 0. Since s0 = b = s̃0, the basis holds.
First step, h = 1. In states s̃0 and s0 only input delays can be unstable; therefore
only they can change in the first step of Ã, and of A. One easily verifies that s̃1 = s1.
Induction step. For any i ∈ [m], if si is an input delay then sh

i = sh−1
i and

s̃h
i = s̃h−1

i , because in both algorithms the state of input delays does not change
after the first step. By the induction hypothesis, we have sh

i = s̃h
i . If si is not an

input delay, then it is initially stable in both algorithms, and its excitation does
not depend on the input tuple, i.e., Si(a · x) = Si(a · x), for any (internal) state
tuple x. Then sh

i = Si(a · sh−1) = Si(a · s̃h−1) = s̃h
i . Hence s̃h

i = sh
i , for all

i ∈ [m]. �
To illustrate this theorem, we run Algorithm Ã on the circuit of Figure 9 with

stable initial state 11 · 1100 and inputs changing to 00. The resulting states are
identical to those in Table 2.

Note that the result does not necessarily hold for networks without input delays.
Consider a two-input AND gate with inputs X1, X2 and state variable s1 with
excitation S1 = X1⊗X2. Algorithm Ã with initial state 01 ·0 and inputs changing
to 10 produces states s̃1

0 = 0, s̃1
1 = 010, while Algorithm A with initial state 10 ·0

produces only state s0 = 0.

5. Reduced networks

We now study how simulation is affected by the removal of state variables from
networks. This is important in determining the minimum number of variables
sufficient for simulating a circuit. Our results parallel the ones in [5].

Let N = 〈T,X ,S, E〉 be a transient network with m state variables and n
inputs. We assume that N contains at least one state variable that is not an input
delay and does not depend on itself. Without loss of generality, we assume that
the last state variable, sm, is such a variable; we can always renumber the variables
in such a way that the assumption holds. Hence, for any total state a · b ∈ Tn+m

of N, we have Sm(a · b) = Sm(b1, . . . ,bm−1, t), where t is any transient.
Let Ṅ = 〈T,X , Ṡ, Ė〉 be the network obtained from N by removing state vari-

able sm as described below; we call Ṅ a reduced network of N. The set Ṡ of
state variables is S \ {sm}, with labels ṡ1, . . . , ṡm−1 and excitations Ṡ1, . . . , Ṡm−1,
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X1 s1

s3

s2

X2

(a)

X1 ṡ1 ṡ2

X2

(b)

Figure 10. Illustration of state variable removal.

respectively. The excitations in Ṅ are defined as follows, for all i ∈ [m − 1] and
any total state c · ḋ ∈ Tn+m−1 of Ṅ:

Ṡi(c · ḋ) = Si(c · (ḋ,Sm(d, t))),

where t is any transient. In other words, we replace the mth variable with its
excitation.

Example 5.1. Consider the network N with the graph shown in Figure 10a,
and excitations S1 = X1, S2 = s1 ⊕ s3, S3 = X2. In Figure 10b we show
the network Ṅ obtained from N by removing s3. The new excitations are Ṡ1 =
X1, Ṡ2 = ṡ1 ⊕ X2.

The next proposition states that the results of algorithm A for a network N
and for a reduced version Ṅ of N agree on the variables that are common to Ṅ
and N, in the sense that the resulting state sequences “sandwich” each other.

Proposition 5.2. Let s0, . . . , sh, . . . be the sequence resulting from Algorithm A
for N started in binary total state a · b. Let ṡ0, . . . , ṡg be the sequence resulting
from Algorithm A for Ṅ started in binary total state a · ḃ, where ḃi = bi for all
i ∈ [m − 1]. Then, for each h ≥ 0 there exists j > 0 such that, for all i ∈ [m − 1],

sh
i ≤ ṡh

i ≤ sh+j
i . (3)

Proof. We prove (3) by induction on h ≥ 0.
Basis, h = 0. By the definition of Algorithm A, and the hypothesis of the propo-
sition, we have s0

i = bi = ṡ0
i , for all i ∈ [m− 1]. By the monotonicity of Algorithm

A, we know s0 ≤ s1. Then s0
i ≤ ṡ0

i ≤ s1
i , for all i ∈ [m − 1], and the basis holds

with j = 1.
Induction hypothesis. Suppose (3) holds for some h ≥ 0.
Induction step. We show that for all i ∈ [m − 1],

sh+1
i ≤ ṡh+1

i ≤ sh+1+(j+1)
i .
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For any i ∈ [m − 1] the following argument applies:

sh+1
i = bi ◦ Si(a · sh) { definition of A }

≤ bi ◦ Si(a · (ṡh, sh
m)) { induction hypothesis,

monotonicity of excitations,
and property of ◦ }

= bi ◦ Si(a · (ṡh,Sm(a · sh−1))) { definition of A }
≤ bi ◦ Si(a · (ṡh,Sm(a · (ṡh−1, sh−1

m )))) { induction hypothesis,
monotonicity of excitations,
and property of ◦ }

≤ bi ◦ Si(a · (ṡh,Sm(a · (ṡh, sh
m)))) { monotonicity of A }

monotonicity of excitations,
and property of ◦ }.

Hence
sh+1
i ≤ bi ◦ Si(a · (ṡh,Sm(a · (ṡh, sh

m)))). (4)

Next, we note that

bi ◦ Si(a · (ṡh,Sm(a · (ṡh, sh
m)))) = ṡh+1

i , (5)

since
bi ◦ Si(a · (ṡh,Sm(a · (ṡh, sh

m)))) = bi ◦ Ṡi(a · ṡh) = ṡh+1
i ,

by the definitions of Ṡi and of A, and using a property of ◦.
We have

bi ◦ Si(a · (ṡh,Sm(a · (ṡh, sh
m))))

≤ bi ◦ Si(a · (sh+j
1 , . . . , sh+j

m−1,Sm(a · sh+j))) { induction hypothesis,
monotonicity of A
and of excitations }

= bi ◦ Si(a · (sh+j
1 , . . . , sh+j

m−1, s
h+j+1
m )) { definition of A }

≤ bi ◦ Si(a · sh+j+1) { monotonicity of A
and of excitations }

= sh+j+2
i { definition of A }.

Thus,
bi ◦ Si(a · (ṡh,Sm(a · (ṡh, sh

m)))) ≤ sh+j+2
i . (6)

By (4)–(6) we obtain the claim of the induction step. �

Corollary 5.3. Algorithm A terminates on N if and only if A terminates on Ṅ.
Let sH be the final state resulting from A on N, and ṡG that resulting from A on Ṅ.
Then, sH and ṡG agree on their common variables, that is for all i ∈ [m − 1],

sH
i = ṡG

i .
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Table 4. Simulation of reduced network.

X1 X2 ṡ1 ṡ2 ṡ3 state

0 0 1 1 0 ṡ0

0 0 10 10 0 ṡ1

0 0 10 10 010 ṡ2

0 0 10 10 01010 ṡ3

. . . . . . . . . . . . . . . . . .

Proof. This follows immediately from (3). �
It is worth noting that for ternary simulation a relation similar to (3) has been

proven [5], but there j is always 1. In our case this does not hold. Consider the
network of Figure 9. The simulation of this network started in state 00 · 1100
is illustrated in Table 2. Suppose we remove variable s4 and obtain a reduced
version of that network with variables ṡ1, ṡ2, ṡ3 and excitations Ṡ1 = X1, Ṡ2 =
X2, Ṡ3 = s1 ⊕ s2 ⊕ s3. The simulation of the reduced network with initial state
00 ·110 is shown in Table 4. Comparing Tables 2 and 4, we note that s3

3 ≤ ṡ3
3 � s4

3.

Definition 5.4. A set F of vertices of a directed graph G is called a feedback-vertex
set if every cycle in G contains at least one vertex from F .

We now show that any feedback-vertex set [5] is sufficient in order to simulate
a circuit.

Consider any graph G. If we remove all vertices belonging to a feedback-vertex
set F , along with all their incident edges, the resulting graph is acyclic. The
following proposition is a slight variation of a similar result from [5].

Proposition 5.5. For any feedback-vertex set F of a network N there exists a
reduced network Ṅ of N with vertex set X ∪ I ∪ F , where I is the set of input
delays.

Proof. See [5].

Theorem 5.6. Let F be any feedback-vertex set of a network N, and let Ṅ be
its reduced version Ṅ having vertex set X ∪ I ∪ F . If Algorithm A terminates on
N, the final state of N agrees with that of Ṅ with respect to the state variables in
I ∪ F .

Proof. By Corollary 5.3, the results are the same for the remaining variables if
only one variable is removed. The claim of the theorem now follows by induction
on the number of state variables not in I ∪ F and by Proposition 5.2. �

6. Covering of binary analysis by simulation

Given the two networks N and N modeling a gate circuit, we perform binary
analysis for N and Algorithm A for N, both with the same starting total state
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a · b. The binary analysis results in graph Ga(b). Let the state sequence resulting
from Algorithm A be s0, s1, . . . , sh, . . ., where sh = (sh

1 , sh
2 , . . . , sh

m) ∈ Tm, for all
h ≥ 0.

We now show that binary analysis is covered by Algorithm A. Take any path
from the initial state b in graph Ga(b). Suppose the length of the path is h. For
each state variable si, we show that its history along the path is a prefix of the
value sh

i that variable si takes in the h-th iteration of Algorithm A.

Example 6.1. Consider the binary counterpart of the transient network in Fig-
ure 7 with S1 = X2, S2 = X1 ∧ s1, S3 = s2, S4 = s2 ∨ s3. In G11(1011),
with the same initial total state as in Example 4.2, we find, for instance, path
π = 1011, 1111, 0111, 0001 of length h = 3. The history of variable s3, for exam-
ple, is 10. The value of s3 in the third step of Algorithm A is s3

3 = 101, which
has 10 as a prefix. In fact, this holds for all variables, since (10, 010, 10, 1) ≤
(10, 010, 101, 1010).

Theorem 6.2. For all paths π = s0, . . . , sh in Ga(b), with s0 = b, we have
σπ ≤ sh, where sh is the (h + 1)st state in the sequence resulting from Algorithm
A.

Proof. We prove the theorem by induction on h ≥ 0.
Basis, h = 0. We have π = s0 = b = s0; hence σπ = s0 = s0, so the claim holds.
Induction hypothesis. The claim holds for some h ≥ 0, i.e., for all paths π of
length h from b in Ga(b), we have σπ ≤ sh.
Induction step. Let γ = s0, . . . , sh, sh+1 be a path of length h + 1 from b in
Ga(b). Then π = s0, . . . , sh is a path of length h, and we have

σγ ≤ s0 ◦ Σπ { Cor. 3.5 }
≤ b ◦ S(a · σπ) { s0 = b and Prop. 3.8 }
≤ b ◦ S(a · sh) { induction hypothesis, monotonicity of excitations,

and property of ◦ }
= sh+1 { definition of Algorithm A }. �

Corollary 6.3. If Algorithm A terminates with state sH, then for any path π
from b in Ga(b), σπ ≤ sH .

Proof. Suppose there exists a path π from b in Ga(b) that satisfies σπ
i > sH

i ,
for some i ∈ [m]. Let h be the length of π. If h ≤ H , Theorem 6.2 shows that
σπ ≤ sh. We also have sh ≤ sH , by Proposition 4.1. So σπ ≤ sH , and in particular
σπ

i ≤ sH
i , which contradicts our supposition. If h > H , then Theorem 6.2 states

that σπ ≤ sh. By our convention, sh = sH . So, again we have σπ
i ≤ sH

i , which is
a contradiction. �

In summary, every history of a variable along a path in the binary analysis is a
prefix of the transient predicted by the simulation with Algorithm A. In general,
however, simulation may predict more changes than binary analysis, as will be
shown next.
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s1

s2
s3

X2

X1

Figure 11. Circuit showing the need for wire delays.

Table 5. Result of Algorithm Ã.

X1 X2 s1 s2 s3 state

01 10 0 0 0 s0

01 10 010 0 0 s1

01 10 010 010 010 s2

01 10 010 010 01010 s3

7. From simulation to binary analysis

We now study conditions under which binary analysis covers simulation. Al-
though the special case of a feedback-free circuit constructed with 1- and 2-input
gates and started in a stable state was solved in [10, 11], the answer is not known
in general. For simplicity, we continue to restrict our attention to feedback-free
circuits with stable initial states.

Let N and N be the two networks modeling a circuit. We run Algorithm Ã for
N started in stable total state ã · b, with the input tuple ã changing to a. We also
perform binary analysis for N with initial total state a · b. We would like to know
whether for any state sh resulting from Algorithm Ã, there exists a path π from b
in Ga(b) such that sh ≤ σπ.

7.1. Complete network model

For the result in Section 6, the network model with state variables associated
only to gates is sufficient. For the converse of that result we need to take wire
delays into account. The following example shows that Algorithm Ã can produce
states that are not covered by binary analysis, if delays on the input wires are not
taken into account.

Consider the circuit in Figure 11 with associated networks N and N. The
excitations in N are S1 = X1 ∧ X2, S2 = s1, S3 = s1 ∨ s2, and those in N are
S1 = X1 ⊗ X2, S2 = s1, S3 = s1 ⊕ s2.

We run Algorithm Ã for N started in stable total state ã · b, where ã = 01 and
b = 000; we change the input ã to a = 10. The result is in Table 5.

Graph G10(000) resulting from the binary analysis of N has only one state,
namely 000, since total state 10 ·000 is stable. Hence, there is no path in G10(000)
whose history covers states s1, s2, or s3 of the simulation. This shows that there
exist networks whose binary analysis does not cover simulation.
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s3X1

X2

s4
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Figure 12. Circuit of Figure 11 with input-gates.

Table 6. Simulation for circuit of Figure 12.

X1 X2 s4 s5 s1 s2 s3 state

01 10 0 1 0 0 0 s0

01 10 01 10 0 0 0 s1

01 10 01 10 010 0 0 s2

01 10 01 10 010 010 010 s3

01 10 01 10 010 010 01010 s4

One problem in this example is the static hazard 010 on s1 predicted by simu-
lation, but not by binary analysis. As in [5], we add input-gate variables to fix this
problem.2 We add an input-gate variable for each input port. The new network
is in Figure 12.

The excitations in N are now S1 = s4 ∧ s5, S2 = s1, S3 = s1 ∨ s2, S4 =
X1, S5 = X2, and those in N are S1 = s4⊗s5, S2 = s1, S3 = s1⊕s2, S4 =
X1, S5 = X2.

For b = 01000, the result of the simulation is shown in Table 6. We now write
state s as s = (s4, s5, s1, s2, s3). This time, in G10(01000) we find path

π = 01000, 11000, 101 0 0, 10011, 10000

that covers states s0, s1, s2, s3. However, we show next that there is no path that
covers state s4.

We know from Theorem 4.5 that the result of Algorithm Ã is the same as
the result of Algorithm A for networks containing input-gate variables, and, in
particular, for N. Hence, we can apply the propositions and corollaries of Section 6
for the result of Algorithm Ã and graph G10(01000) in our example.

Since s4
1 = 010 and s4

2 = 010, from Corollary 6.3 we know that, for any path π
from 01000 in G10(01000), we have σπ

1 ≤ 010 and σπ
2 ≤ 010. The graph of

Figure 13a shows all possible orders in which (s1,s2) may change along paths
starting from 01000 in G10(01000). Any path from (0, 0) in this graph shows a
possible scenario. Note that we do not claim all such scenarios actually take place
in G10(01000). If we replace each pair (s1, s2) of values in this graph with the
corresponding value of s1 ∨ s2, we obtain the graph of Figure 13b which shows all
possible orders in which s1 ∨ s2 may change along paths from the initial state in

2Input-gate variables are equivalent to wire variables. We choose to call them input-gate
variables to emphasize the fact that they are associated with the inputs.
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Figure 13. Possible changes of s1, s2, and s1 ∨ s2.
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Figure 14. Circuit of Figure 12 with a wire variable.

G10(01000). Since S3 = s1∨s2, this graph gives us the possible excitation histories
of s3. Observe that the longest history of S3 in this graph, 01010, can be obtained
in only two cases:

(0, 0) −→ (0, 1) −→ (0, 0) −→ (1, 0) −→ (0, 0),
or
(0, 0) −→ (1, 0) −→ (0, 0) −→ (0, 1) −→ (0, 0).

With s3 initially stable, by Corollary 3.6 we know that σπ
3 ≤ 01010. Suppose there

exists a path π from the initial state in G10(01000) with σπ
3 = 01010. The two

cases above show that π must have a prefix π′ with (i) σπ′
1 = 010 and σπ′

2 = 0,
or (ii) σπ′

1 = 0 and σπ′
2 = 010. Case (ii) is impossible, as explained next.

By Corollary 3.6, σπ′
2 ≤ Σπ′

2 . Hence case (ii) implies that Σπ′
2 ≥ 010. But

S2 = s1 means Σπ′
2 = σπ′

1 . Therefore 010 ≤ σπ′
1 , which contradicts the fact that

in case (ii) σπ′
1 = 0.

Thus only case (i) is possible, with σπ′
1 = 010, and σπ′

2 = 0. It follows that the
last state of path π′, say sl, is such that sl

1 = 0, and sl
2 = 0. In such a state neither

one of these variables is unstable and cannot become unstable, since all changes
on s1 have been exhausted. So s1 and s2 do not change any more along π. Hence
π has σπ

3 ≤ 010, which contradicts our supposition. This shows that there does
not exist a path π from 01000 in G10(01000) with σπ

3 ≥ 01010. Thus, there is no
path from 01000 in G10(01000) that covers s4.

The problem is solved if we add a wire variable s6 on the input wire of the OR
gate coming from the buffer. We now have the circuit of Figure 14 with S6 = s2 and
S3 = s1∨s6. The other excitations are unchanged. The simulation with b = 010000
is in Table 7 (the inputs are not shown). State s is now s = (s4, s5, s1, s2, s6, s3).
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Table 7. Simulation for circuit of Figure 14.

s4 s5 s1 s2 s6 s3 state
0 1 0 0 0 0 s0

01 10 0 0 0 0 s1

01 10 010 0 0 0 s2

01 10 010 010 0 010 s3

01 10 010 010 010 010 s4

01 10 010 010 010 01010 s5

Table 8. Path with desired history.

s4 s5 s1 s2 s6 s3
0 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 1
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0

In G10(010000) we find path π shown in Table 8 with

σπ = (01, 10, 010, 010, 010, 01010),

which satisfies sh
i ≤ σπ

i , for all i ∈ [6], h ∈ [5] ∪ {0}.
The examples above motivate us to augment our network model in order to

account for wire delays.
We construct the complete counterpart of a network N modeling a circuit as

follows. For each input Xi, we add an input-gate variable si; we represent the
input gate by a triangle. We also consider each fork as a fork gate, and add a
variable for each fork output; we represent a fork gate by a rectangle. Finally, we
add a variable for each wire. The excitations of the added variables are identity
functions, and the excitations of the original variables are updated appropriately
to the new set of variables.

Example 7.1. Figure 15a shows a gate circuit consisting of an inverter and an
OR gate. It has input variable X1 and state variables sa and sb with excitations
Sa = X1, and Sb = X1 ∨ sa. We add input-gate variable s1, fork-gate variables s3

and s4, wire variables s2, s5, s7, and s8, and we relabel sa as s6 and sb as s9.
The resulting complete circuit is in Figure 15b. The new excitations are: S1 =
X1, S2 = s1, S3 = S4 = s2, S5 = s3, S6 = s5, S7 = s6, S8 = s4, S9 = s7 ∨ s8.

Conjecture 7.2. For any feedback-free complete network the results of binary
analysis cover those of the simulation with Algorithm A.

For a proof of this conjecture for feedback-free circuits constructed with 1- and
2-input gates see [10, 11].
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sbX1
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s1
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Figure 15. Circuit with complete version.

8. Conclusions

Simulation in the algebra of transients provides an efficient method of counting
signal changes and detecting hazards in digital circuits. We have shown that simu-
lation covers classical binary analysis in any gate circuit. Our work generalizes the
results previously obtained for ternary simulation to simulation with the infinite
algebra of transients. The converse result, that binary analysis covers simulation
if a sufficient number of delays is taken into account, remains an open problem in
the general case.
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