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µ-CALCULUS WITH EXPLICIT APPROXIMATIONS ∗

Christoph Sprenger
1

and Mads Dam
2

Abstract. We investigate a Gentzen-style proof system for the first-
order µ-calculus based on cyclic proofs, produced by unfolding fixed
point formulas and detecting repeated proof goals. Our system uses ex-
plicit ordinal variables and approximations to support a simple seman-
tic induction discharge condition which ensures the well-foundedness of
inductive reasoning. As the main result of this paper we propose a new
syntactic discharge condition based on traces and establish its equiva-
lence with the semantic condition. We give an automata-theoretic re-
formulation of this condition which is more suitable for practical proofs.
For a detailed comparison with previous work we consider two simpler
syntactic conditions and show that they are more restrictive than our
new condition.

Mathematics Subject Classification. 68Q60, 03F07, 03B35.

1. Introduction

The first-order µ-calculus [9] provides a useful setting for semi-automatic pro-
gram verification. It is expressive enough to encode, from the bottom up, a range
of program logics (e.g. LTL, CTL, CTL*, Hoare Logic) as well as process calculi
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and programming languages including their data types and operational semantics.
A framework based on this idea is described by Fredlund [6] and has been applied
to a substantial part of the concurrent programming language Erlang in the Er-
lang Verification Tool [1]. A key aspect in the design of such a framework is proof
search, in particular the handling of fixed point formulas. The standard approach,
Park’s fixed point induction rule (cf. [7]), is not suitable for proof search in prac-
tice. An alternative is to admit cyclic proof structures (cf. [2,4,8,14]) and look for
sound induction discharge conditions, external global criteria that ensure the well-
foundedness of the inductive reasoning. In this setting, proof trees are completed
into proof graphs by adding back edges (called repeats) from non-axiom leafs to
nodes of which they are substitution instances. This type of proof is favourable to
proof search as it allows one to delay decisions concerning induction strategies as
long as possible.

In this paper, we study induction discharge conditions in the context of a
Gentzen-style proof system for the first-order µ-calculus and present a new syntac-
tic condition, which is weaker than previously published ones in the sense that it
qualifies more proof structures as valid proofs. Our proof system is a variant of pre-
vious systems [4,6,11,12]. In particular, it shares with [4,6,11] the technique, first
proposed for the modal µ-calculus by Dam and Gurov [4], of introducing explicit
approximation ordinal variables and ordering constraints between them into the
proof system. Discharge conditions then rely on these ordering constraints. In the
presence of a Cut rule, the use of approximation ordinals considerably simplifies
earlier treatments (cf. [3]). Dam and Gurov proposed a simple semantic discharge
condition, which essentially requires that no infinite path in the proof structure can
be assigned a coherent infinite sequence of valuations. This condition expresses in
a natural way the requirement of well-foundedness of all inductive reasoning, but
due to its semantic nature it is not suitable for the purpose of practical proof. We
show that it is equivalent to our practically more useful syntactic condition, while
previous syntactic conditions [4, 6, 11] turn out to be strictly more restrictive.

Our new condition relies on the notion of traces, which are non-increasing chains
(w.r.t. the ordering constraints) of ordinal variables associated with a path of a
proof structure. They can be seen as a uniform generalization of the µ- and
ν-traces described by Niwiński and Walukiewicz [8] to systems with a Cut rule
and explicit approximants. We identify progress in a trace with positions where
a strict decrease with respect to the constraints occurs. The equivalence with
the semantic condition is then established by showing that a trace progressing
at infinitely many positions implies well-foundedness on the semantic side and,
conversely, the absence of such a trace gives rise to non-wellfoundedness. Based
on the observation that every trace can be transformed into a normal trace where
progress is made only at repeat nodes, we are able to give a compact automata-
theoretic characterization of our trace-based discharge condition in terms of an
inclusion of the languages recognized by two Büchi automata. This formulation
may serve as the basis of an implementation in a proof tool such as the Erlang
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Verification Tool. Being weaker than previously known conditions, the automata-
based criterion might be able to detect proofs where the others fail to do so, which
is an advantage for semi-automatic proof search.

For a detailed comparison of our new condition with previously published work,
we then turn our attention to two simpler discharge conditions. Common to both
of these is that they are based on progress and preservation properties of single
ordinal variables at the repeats of the proof structure. The first condition requires
that in each strongly connected subgraph of the proof structure there is a repeat
progressing on some ordinal variable, while all other repeats preserve that variable.
We show how this condition, which is similar to one proposed by Fredlund [6]
(and [12], though in a somewhat different setting), corresponds to a simplified, but
strictly stronger version of our automata-based condition. Secondly, we restrict
our attention to the special case of simple proof structures, where repeats loop
back to ancestral nodes (i.e. they point to a node on the path from the root to the
discharged leaf) and introduce a new alternative notion of discharge where repeats
are organized in a partial order, called induction order. Progress and preservation
properties imposed on each repeat then depend on its position in this order. For
simple proof structures this condition generalizes the one originally proposed by
Dam and Gurov [4] and is equivalent to both the previous one as well as to the
condition presented by Schöpp [11]. While drawing its inspiration from the latter,
it is more local in the sense that it avoids a quantification over strongly connected
subgraphs.

The outline of the rest of the paper is as follows. The next section introduces
the µ-calculus with explicit approximations. Section 3 presents the proof system,
using the semantic induction discharge condition in the basic notion of proof. In
Section 4 we first introduce our trace-based discharge condition and establish its
equivalence with the semantic one. Based on the notion of normal traces we then
propose an automata-theoretic characterization of this condition. Restricted forms
of syntactic discharge are discussed in Section 5 and compared to previous work.
Section 6 concludes the paper with a discussion of the results and an outlook on
future work.

2. µ-calculus with explicit approximations

2.1. Fixed points

We first briefly recall some basic facts from fixed point theory. Suppose A is an
arbitrary set. Let 2 = {0, 1} be the two-point lattice and let Pred(A) = 2A be the
lattice of predicates over A ordered pointwise.

Definition 2.1. Let Ψ: Pred(A) → Pred(A) be a monotone map on Pred(A). The
ordinal approximation µαΨ of the fixed point µΨ is defined by

µ0Ψ = λx.0
µα+1Ψ = Ψ(µαΨ)
µγΨ =

∨
α<γ µ

αΨ for a limit ordinal γ.
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Theorem 2.2. Let Ψ: Pred(A) → Pred(A) be a monotone map on Pred(A). Then
(1) µΨ =

∨
α µ

αΨ is the least fixed point of Ψ (Knaster-Tarski);
(2) µαΨ =

∨
β<α Ψ(µβΨ).

2.2. Syntax

We assume countably infinite sets of individual variables x, y, z, . . . ∈ VI , pred-
icate variables Xn, Y n, Zn, . . . ∈ V n

P of each arity n ≥ 0, and ordinal vari-
ables ι, κ, λ, . . . ∈ VO. We write v, v′, . . . for variables of any of the aforemen-
tioned types. Let t, t′, . . . range over the terms of some first-order signature Σ.
We write t for a vector t1, . . . , tn of terms, let |t| denote its length n and {t} the
set {t1, . . . , tn}.
Definition 2.3. The syntax of µ-calculus formulas φ and n-ary abstractions Φn

over signature Σ is inductively defined by

φ ::= t = t′ | ¬φ | φ1 ∨ φ2 | ∃x.φ | ∃κ.φ | ∃κ′<κ.φ | Φn(t)
Φn ::= Xn | µXn(x).φ | µκXn(x).φ

with the restriction that |x| = n in fixed point abstractions µXn(x).φ and approx-
imation abstractions µκXn(x).φ, and |t| = n in applications Φn(t). Furthermore,
fixed point and approximation abstraction formation are subject to the usual for-
mal monotonicity condition requiring that each occurrence of Xn in φ appears in
the scope of an even number of negation symbols.

We will henceforth omit the arity annotations from predicate variables and
assume that arities match as required by the previous definition. The sets of free
variables of formulas and abstractions are defined as expected. In particular, we
have

fv(∃κ′<κ.φ) = (fv(φ) − {κ′}) ∪ {κ}
fv(Φ(t)) = fv(Φ) ∪ fv(t)
fv(µX(x).φ) = fv(φ) − {X,x}
fv(µκX(x).φ) = (fv(φ) − {X,x}) ∪ {κ}·

This is extended to sets of formulas ∆ by defining fv(∆) =
⋃{fv(φ) | φ ∈ ∆}.

We identify formulas and abstractions that differ only by a renaming of their
bound variables. Dual connectives are defined from the primitive ones in the
usual way. The greatest fixed point νX(x).φ and the greatest fixed point approx-
imation νκX(x).φ are defined by

νX(x).φ = ¬µX(x).¬φ[¬X/X ]
νκX(x).φ = ¬µκX(x).¬φ[¬X/X ].

We assume that substitutions σ, σ′, . . .map term variables to terms, predicate vari-
ables to abstractions of the same arity and ordinal variables to ordinal variables.
We write φσ or σ(φ) to denote the formula obtained from φ by substituting each
occurrence of a variable v by σ(v), renaming bound variables as necessary to avoid
capture of free variables.
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2.3. Semantics

Let Σ be a first-order signature. A Σ-model M = (A, ρ) consists of a Σ-structure
A interpreting the symbols in Σ and an A-environment ρ interpreting each vari-
able in its respective domain. We write |A| for the support set of the structure A.
The semantics interprets a µ-calculus formula φ as an element ‖φ‖M ∈ 2 and a
n-ary abstraction Φ as an element ‖Φ‖M ∈ Pred(|A|n). We usually drop M and
write ‖φ‖ρ and ‖Φ‖ρ if the structure A is clear from the context. The semantics
‖t‖ρ ∈ |A| of a term t is defined as usual.

Definition 2.4. (Semantics) Given a signature Σ and a Σ-model (A, ρ) the
semantics of µ-calculus formulas φ and abstractions Φ over Σ is inductively de-
fined by

‖t = t′‖ρ = if ‖t‖ρ = ‖t′‖ρ then 1 else 0
‖¬φ‖ρ = 1 − ‖φ‖ρ

‖φ1 ∨ φ2‖ρ = max{‖φ1‖ρ, ‖φ2‖ρ}
‖∃x.φ‖ρ =

∨
a∈|A|‖φ‖ρ[a/x]

‖∃κ.φ‖ρ =
∨

β‖φ‖ρ[β/κ]

‖∃κ′<κ.φ‖ρ =
∨

β<ρ(κ)‖φ‖ρ[β/κ′]

‖Φ(t)‖ρ = ‖Φ‖ρ(‖t‖ρ)
‖X‖ρ = ρ(X)
‖µX(x).φ‖ρ = µΨ
‖µκX(x).φ‖ρ = µρ(κ)Ψ

where Ψ = λP.λa.‖φ‖ρ[P/X,a/x] in the clauses for fixed point and approximation
abstractions.

A model M = (A, ρ) satisfies a formula φ, written M |= φ if ‖φ‖ρ = 1. The
formula φ is called valid, written |= φ, if it is satisfied in all Σ-models. Given a
Σ-model M = (A, ρ) we extend ρ a posteriori to terms t and formulas φ other
than variables by defining ρ(t) = ‖t‖ρ and ρ(φ) = ‖φ‖ρ. This allows us to compose
substitutions σ and environments ρ as in ρ ◦ σ.

3. The proof system

The proof system we present in this section is an adaptation to the first-order
setting of the one proposed by Schöpp [11] for the modal µ-calculus. The main
difference with the original proposal [4] is the addition of ordinal quantification.
We would like to stress, however, that all results of this paper remain valid for
systems without ordinal quantification as well as for modal variants.

3.1. Ordinal constraints

Our proof system uses explicit ordinal approximations of fixed point formulas.
Constraints between ordinal variables will be recorded in strict partial
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orders O = (|O|, <O), where |O| is a finite set of ordinal variables from VO and <O
is a binary, irreflexive and transitive relation on |O|. We refer to O as a set of
ordinal constraints. We write ι ≤O κ if either ι <O κ or κ ∈ |O| and ι = κ (syn-
tactic identity). If O and O′ are two strict partial orders we write O ⊆ O′ to mean
that |O| ⊆ |O′| and <O ⊆<O′ . In sequents, we will write O, κ for (|O| ∪ {κ}, <O)
and O, κ′ < κ for O′ = (|O| ∪ {κ′, κ}, <O′), where <O′ is the transitive closure
of <O ∪{(κ′, κ)}. It is worth noting that the latter notation will only be used in
case O′ is indeed a strict partial order. Given a model M = (A, ρ) we say that ρ
respects O, if ρ(ι) < ρ(κ) whenever ι <O κ.

3.2. Sequents and proof rules

The sequents of the proof system are of the form Γ `O ∆, where Γ and ∆ are
finite sets of formulas and O = (|O|, <O) is a set of ordinal constraints. A sequent
is well-formed if all ordinal variables occurring free in Γ or ∆ are elements of |O|.
We restrict our attention to well-formed sequents without further mention. The
set of free variables of a sequent is defined by fv(Γ `O ∆) = fv(Γ∪∆)∪|O|. Given
a Σ-model M = (A, ρ) we say that M satisfies a sequent Γ `O ∆ whenever ρ
respects O and M |= φ for all φ ∈ Γ then M |= ψ for some ψ ∈ ∆. A model M
falsifies a sequent Γ `O ∆ if M does not satisfy Γ `O ∆. The sequent Γ `O ∆
is valid if it is satisfied in all models and invalid otherwise. The purpose of the
proof system is to establish the validity of sequents.

The rules of our proof system are displayed in Tables 1 and 2. They are pre-
sented in tableau style with the conclusion above the line and the premises below.
Table 1 shows standard rules of first-order logic with equality. The fixed point
rules of Table 2 are a direct application of Theorem 2.2. Note the asymmetry of
the rules (µ1-L) and (µ0-R). It is not difficult to show, once the notion of proof
has been introduced (see Def. 3.5), the derivability of the sequents

– Γ, (µX(x).φ)(t) `O φ[µX(x).φ/X, t/x],∆, and
– Γ, ∃κ.(µκX(x).φ)(t) `O (µX(x).φ)(t),∆

which is sufficient to derive the symmetric rules (µ0-L) and (µ1-R), respectively.
However, rule (µ0-R) is not derivable using (µ0-L), (µ1-L) and (µ1-R), essentially
because (µ0-R) is the only proof rule forcing µ-formulas to be interpreted as fixed
points. To see this we use a non-standard interpretation of fixed points1. Inter-
pret µX(x).φ as µωX(x).φ, and interpret ordinal variables as ranging over finite
ordinals. This interpretation validates all proof rules including (µ0-L), (µ1-L)
and (µ1-R), but not (µ0-R), which is seen by considering any model structure and
fixed point formula with closure ordinal ω+1. Likewise, rule (µ1-L) is not derivable
from the others. To show this interpret µX(x).φ as usual and interpret ordinal
variables in any fixed initial segment of the ordinals. This semantics validates all
proof rules including (µ1-R), (µ0-L) and (µ0-R), but not (µ1-L). The latter rule
is falsified by any model and fixed point formula with closure ordinal outside the

1This argument is contributed by one of the anonymous referees.
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Table 1. Proof rules of first-order logic with equality.

Structural rules

(Id)
Γ, φ `O φ,∆

· (Cut)
Γ `O ∆

Γ, φ `O ∆ Γ `O φ,∆

(W-L)
Γ, φ `O ∆
Γ `O ∆

(W-R)
Γ `O φ,∆
Γ `O ∆

Logical and equality rules

(¬-L)
Γ,¬φ `O ∆
Γ `O φ,∆

(¬-R)
Γ `O ¬φ,∆
Γ, φ `O ∆

(∨-L)
Γ, φ1 ∨ φ2 `O ∆

Γ, φ1 `O ∆ Γ, φ2 `O ∆
(∨-R)

Γ `O φ1 ∨ φ2,∆
Γ `O φ1, φ2,∆

(∃I -L)
Γ, ∃x.φ `O ∆

Γ, φ `O ∆
x 6∈ fv(Γ ∪ ∆) (∃I -R)

Γ `O ∃x.φ,∆
Γ `O φ[t/x],∆

(=-L)
Γ[t2/x], t1 = t2 `O ∆[t2/x]

Γ[t1/x] `O ∆[t1/x]
(=-R)

Γ `O t = t,∆
·

given initial segment. Thus, (µ1-L) is the only rule forcing the interpretation of
ordinal variables to range over all ordinals.

Rules (∃O-L) and (∃<
O-L) both introduce a fresh ordinal variable while the latter

rule additionally generates a new ordinal constraint. Their right hand side versions,
(∃O-R) and (∃<

O-R), respectively require an ordinal variable and a constraint as a
witness. Rule (OrdStr), originally proposed by Schöpp [11], allows us to strengthen
ordinal constraints in a controlled way. More precisely, we may add new ordinal
variables and constraints to the order O of a sequent Γ `O ∆ as long as no new
variable goes below a variable in |O|. This rule is sometimes helpful to find repeats
(see Def. 3.1 below) and seems to be required to prove some simple valid sequents
such as Γ, ∃κ.φ `O ∃κ.∃κ′<κ.φ[κ′/κ],∆.

3.3. Pre-proofs, runs and proofs

A derivation tree D = (N , E ,L) is a tree (N , E) with nodes N and edges E ⊆
N ×N together with a function L labelling each node of the tree with a sequent
in a way that is consistent with the application of the proof rules. We will often
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Table 2. Fixed point and ordinal proof rules.

Fixed point rules

(µ1-L)
Γ, (µX(x).φ)(t) `O ∆

Γ, ∃κ.(µκX(x).φ)(t) `O ∆
(µ0-R)

Γ `O (µX(x).φ)(t),∆
Γ `O φ[µX(x).φ/X, t/x],∆

(µκ-L)
Γ, (µκX(x).φ)(t) `O ∆

Γ, ∃κ′<κ.φ[µκ′X(x).φ/X, t/x] `O ∆

(µκ-R)
Γ `O (µκX(x).φ)(t),∆

Γ `O ∃κ′<κ.φ[µκ′X(x).φ/X, t/x],∆

Ordinal rules

(∃O-L)
Γ, ∃κ.φ `O ∆
Γ, φ `O,κ ∆

κ 6∈ |O| (∃O-R)
Γ `O ∃κ.φ,∆
Γ `O φ[ι/κ],∆

ι ∈ |O|

(∃<
O-L)

Γ, ∃κ′<κ.φ `O ∆
Γ, φ `O,κ′<κ ∆

κ′ 66∈ |O| (∃<
O-R)

Γ `O ∃κ′<κ.φ,∆
Γ `O φ[ι/κ′],∆

ι<O κ

(OrdStr)
Γ `O ∆
Γ `O′ ∆

O ⊆ O′ and ι<O′ κ, κ ∈ |O| ⇒ ι ∈ |O|

write N(Γ `O ∆) for L(N) = Γ `O ∆. The proof structures of our system are
essentially finite graphs, which are generated from a derivation tree by adding a
back edge from each non-axiom leaf to a node of which it is a repetition (up to
some substitution). Let us fix an arbitrary derivation tree D = (N , E ,L).

Definition 3.1 (Repeat). Let M(Γ `O ∆) and N(Γ′ `O′ ∆′) be nodes of D.
Then the triple (M,N, σ) is called a repeat of D, if N is a leaf of D and σ is a
substitution such that

(1) φ ∈ Γ implies σ(φ) ∈ Γ′;
(2) ψ ∈ ∆ implies σ(ψ) ∈ ∆′;
(3) κ ∈ |O| implies σ(κ) ∈ |O′|, and
(4) ι<O κ implies σ(ι)<O′ σ(κ).

The node N is called repeat node and M its companion node.

It is worth remarking that we do not require companions to be ancestors of
their corresponding repeat nodes in D.
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Definition 3.2 (Pre-proof). A pre-proof P = (D,R) for a sequent Γ `O ∆ consists
of a derivation tree D = (N , E ,L) with root node labelled by Γ `O ∆ and a
set of repeats R for D such that each non-axiom leaf appears in exactly one
repeat of R. The pre-proof graph of P is defined by G(P) = (N , E ′,L), where
E ′ = E ∪ {(N,M) | ∃σ.(M,N, σ) ∈ R}.

By a path of P we mean a path in G(P). A path π is called rooted if its first
node π(0) is the root of D. We write πi for the ith suffix of π, that is, the path
obtained by dropping the first i nodes of π. This yields the empty sequence in
case that i is greater or equal to the length of π. We say that π traverses a repeat
R = (M,N, σ) if π(i) = N and π(i+ 1) = M for some position i.

Example 3.3 (Lexicographic order). In order to illustrate the preceding defini-
tions, we now present a proof in our system showing that the lexicographic ordering
of two well-founded relations is again well-founded. We assume that our signature
includes the unary function symbols π1 and π2 (to be interpreted as the left and
right projections of a pair). In this example, we write t1 as a shorthand for π1(t)
and t2 for π2(t).

Well-foundedness can be defined in terms of the notion of accessibility of an
element x with respect to a binary relation X :

Acc(X,x) = (µZ(z).∀y.¬X(y, z) ∨ Z(y))(x)
Wf(X) = ∀x.Acc(X,x).

The least fixed point in the definition of accessibility forces the absence of infinitely
descending X-chains from a given element x of the domain. A binary relation X
is well-founded if all elements of the domain are accessible with respect to X . The
lexicographic ordering of two binary relations X and Y is defined by

Lex(X,Y )(u,w) = X(u1, w1) ∨ (u1 = w1 ∧ Y (u2, w2)).

With these definitions the sequent we would like to prove valid is

Γ0 ` Wf(Lex(X,Y )) (1)

where Γ0 = Wf(X),Wf(Y ). Before presenting a proof of this sequent, we need to
introduce some derived rules and abbreviations. The derivation uses the rules (∧-
L), (∀I -L) and (∀I -R) for conjunction and universal quantification:

(∧-L)
Γ, φ1 ∧ φ2 `O ∆
Γ, φ1, φ2 `O ∆

(∀I -L)
Γ, ∀x.φ `O ∆
Γ, φ[t/x] `O ∆

(∀I -R)
Γ `O ∀x.φ,∆

Γ `O φ,∆
C.

The side condition C of rule (∀I -R) requires that x 6∈ fv(Γ ∪ ∆). These rules are
easily derived from their duals (∨-R), (∃I -R) and (∃I -L), respectively. We also
introduce the following abbreviations:

Accκ(X,x) = (µκZ(z).∀y.¬X(y, z) ∨ Z(y))(x)
A(X,Y, z) = Acc(Lex(X,Y ), z).
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N0[Γ0 ` Wf(Lex(X, Y ))]
(∀I -R)

N1[Γ0 ` A(X,Y, w)]
(RS1)

N∗
2 [Γ0, Accκ(X, w1) `κ A(X,Y, w)]

(RS1)
N∗∗

3 [Γ0, Accκ(X, w1), Accλ(Y, w2) `κ,λ A(X,Y, w)]
(µ0-R, FO)

N4[Γ0, Accκ(X, w1), Accλ(Y, w2), Lex(X, Y )(u, w) `κ,λ A(X, Y, u)]
(FO)

DL DR

Figure 1. Derivation tree D for lexicographic order example.

N5[Γ0, Accκ(X, w1), X(u1, w1) `κ,λ A(X, Y, u)]
(RS2)

N6[Γ0,¬X(u1, w1) ∨ Accκ′
(X, u1), X(u1, w1) `λ

κ′<κ A(X, Y, u)]
(FO)

N∗
7 [Γ0, Accκ′

(X, u1) `λ
κ′<κ A(X,Y, u)] N8[X(u1, w1) `λ

κ′<κ X(u1, w1)]

Figure 2. Derivation DL.

N9[Γ0, Accκ(X, w1), Accλ(Y, w2), u1 = w1, Y (u2, w2) `κ,λ A(X, Y, u)]
(=-L)

N10[Γ0, Accκ(X, u1), Accλ(Y, w2), Y (u2, w2) `κ,λ A(X, Y, u)]
(RS2)

N11[Γ0, Accκ(X, u1),¬Y (u2, w2) ∨ Accλ′
(Y, u2), Y (u2, w2) `κ

λ′<λ A(X, Y, u)]

N∗∗
12 [Γ0, Accκ(X, u1), Accλ′

(Y, u2) `κ
λ′<λ A(X, Y, u)] N13[Y (u2, w2) `κ

λ′<λ Y (u2, w2)]

Figure 3. Derivation DR.

Figure 1 shows a derivation tree for sequent (1) which is continued in Figures 2
and 3. For brevity, we use a minimalistic notation for ordinal constraints. We write
for instance Γ `κ

λ′<λ ∆ for the sequent Γ `O ∆, where O = ({κ, λ, λ′}, {(λ′, λ)}).
This should not give rise to any confusion. We use the label (FO) to denote an
unspecified series of first-order logic rule applications.

Let us now look at the derivation in some detail. At the root nodeN0 we remove
the universal quantifier appearing in the definition of Wf on the right hand side
of the turnstile. Then we apply rule sequence (RS1)=(∀I -L, µ1-L, ∃O-L) twice to
approximate Acc(X,w1) to Accκ(X,w1) at node N1 and Acc(Y,w2) to Accλ(Y,w2)
atN2, introducing the fresh ordinal variables κ and λ, respectively. At node N3 the
formula A(X,Y,w) is unfolded using rule (µ0-R) followed by applications of first-
order logic rules. Next, at N4 we apply a series of boolean rules to Lex(X,Y )(u,w),
producing nodes N5 in Figure 2 and N9 in Figure 3, corresponding to the two
cases in the definition of the lexicographic ordering. From N5 to N7 we unfold and
instantiate the approximation Accκ(X,w1) using rule sequence (RS2)=(µκ-L, ∃<

O-
L, ∀I -L) and first-order logic rules. This yields a new ordinal constraint κ′ < κ

and approximation Accκ′
(X,u1) as well as the axiom node N7. In DR, after

rewriting the equation at node N9, we apply the same sequence of rules as in DL
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to Accλ(Y,w2), resulting in the ordinal constraint λ′ < λ and the approximation
Accλ′

(Y, u2) at node N12 and the axiom at N13.
Finally, we extend the derivation tree D with two repeats L and R (indicated

in the figures by ∗ and ∗∗) as follows:

L = (N2, N7, σL) where σL = [u/w, κ′/κ]
R = (N3, N12, σR) where σR = [u/w, λ′/λ].

This yields the pre-proof P = (D, {L,R}).
Not every pre-proof is a proof of the validity of its root sequent. The simplest

example of a pre-proof that is not a proof is given by the derivation that infers
the sequent ` µX.X from itself using rule (µ0-R). This two-node pre-proof clearly
uses circular reasoning and should therefore be rejected as a proof.

We now give a simple semantic induction discharge condition ensuring that all
inductive reasoning embodied in a pre-proof is well-founded.

Definition 3.4 (Run). Let P = (D,R) be a pre-proof, A a Σ-structure and
suppose Π = (N0, ρ0) · · · (Ni, ρi) · · · is a (finite or infinite) sequence of pairs of
nodes of D and A-environments. Suppose that Ni(Γi `Oi ∆i). Then Π is called a
run of the pre-proof P if

(1) N0 is the root of P , and
(2) ρi respects Oi for all i, and
(3) for all successive pairs (Ni, Ni+1) of nodes, either

(a) (Ni, Ni+1) ∈ E and ρi+1 agrees with ρi on all free variables common
to Ni and Ni+1, or

(b) (Ni+1, Ni, σ) ∈ R and ρi+1 = ρi ◦ σ.
Note that π = N0 · · ·Ni · · · is a rooted path of P . We say that the run Π follows
the path π.

Definition 3.5 (Proof). A pre-proof P for Γ `O ∆ satisfies discharge condi-
tion (rDC) if all runs of P are finite, in which case P is called a proof for Γ `O ∆.

Intuitively, the finiteness of runs in a proof rests on the well-foundedness of the
underlying interpretation of the ordinal variables and thus prevents unsound circu-
lar reasoning. Note that the finiteness of runs is independent of the interpretation
of non-ordinal variables. This intuition will be made explicit in Section 4.

Example 3.6. Consider again the pre-proof P from Example 3.3. Let πL =
N2 · · ·N7 and πR = N3N4N9 · · ·N12 be the simple cycles corresponding to re-
peats L and R, respectively. Suppose there is an infinite run r following a path
traversing the left loop indefinitely from some point on, that is, a path ending
in πω

L. By Definition 3.4 the interpretation of κ remains constant along πL, since κ
is free in all of these sequents. Now suppose r(i) = (N7, ρi) and r(i + 1) =
(N2, ρi+1). This step traverses the repeat L. In this case Definition 3.4 requires
that ρi+1(κ) = (ρi ◦ σL)(κ) = ρi(κ′). But since ρi respects κ′ < κ at N7, we have
ρi(κ′) < ρi(κ) and hence ρi+1(κ) < ρi(κ). Since the run r was assumed to be
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infinite and traverse L infinitely often, the interpretation of κ must decrease at
infinitely many positions. This contradicts the well-foundedness of the ordinals.
Hence, such a run does not exist. A similar argument shows that there is no infi-
nite run following a path ending in πω

R, since this implies that the interpretation
of λ decreases indefinitely.

By observing that the interpretation of κ remains constant along πR and when
traversing repeat R, we see that there is no infinite run following any path travers-
ing each of the loops πL and πR infinitely often. Thus, P is a proof. We conclude
this example by remarking that the syntactic discharge conditions introduced in
Sections 4 and 5 provide a much more convenient method to determine whether a
pre-proof is a proof.

3.4. Soundness

Lemma 3.7 (Local soundness). The proof rules of Tables 1 and 2 are sound. In
particular, if there is a Σ-model (A, ρ) falsifying the conclusion C of a rule then
there is an A-environment ρ′ such that (A, ρ′) falsifies some premise P of that
rule. Moreover, ρ and ρ′ agree on all free variables common to C and P .

Proof. By inspection of the proof rules. For the fixed point rules the claim follows
immediately from Theorem 2.2. The cases of the ordinal rules are straightforward
except for rule (OrdStr), which we discuss now. Suppose some model (A, ρ) falsifies
the sequent Γ `O ∆ in the conclusion. The sequent in the premise is Γ `O′ ∆ with
O ⊆ O′. Since <O′ is a finite strict partial order, we can define the environment ρ′

by well-founded induction on <O′ as follows

ρ′(v) =
{

max{ρ′(ι) | ι<O′ v} + 1 if v ∈ |O′| − |O|
ρ(v) otherwise.

It is sufficient to check that ρ′ respects O′ and thus falsifies the premise se-
quent Γ `O′ ∆. Consider some constraint ι <O′ κ. If κ ∈ |O| then also ι ∈ |O|
by the side condition of the rule. Hence, ρ′(ι) < ρ′(κ) is inherited from O. If
κ ∈ |O′| − |O| then we have ρ′(ι) < ρ′(ι) + 1 ≤ ρ′(κ) by the definition of ρ′. �
Lemma 3.8. Let (M,N, σ) be a repeat and let (A, ρ) be a model falsifying L(N).
Then (A, ρ ◦ σ) falsifies L(M).

Proof. By the definition of a repeat. �
Theorem 3.9 (Soundness). If there is a proof for Γ `O ∆, then Γ `O ∆ is valid.

Proof. Let P = (D,R) be a proof for Γ `O ∆ and suppose for a contradiction
that some model (A, ρ0) falsifies Γ `O ∆. We iteratively construct an infinite
run Π. The construction starts with Π0 = (N0, ρ0), where N0 is the root node
of P . Clearly, ρ0 respects O0 since (A, ρ0) falsifies L(N0). Hence, Π0 is a finite run.

Assume that we have already constructed the finite run Πi = (N0, ρ0) · · · (Ni, ρi)
for some i ≥ 0 such that (A, ρi) is a model falsifying L(Ni). Note that L(Ni)
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can not be an axiom. We show that Πi can be extended to a run Πi+1 =
Πi(Ni+1, ρi+1) such that (A, ρi+1) is a model falsifying L(Ni+1) = Γi+1 `Oi+1

∆i+1 (and hence ρi+1 respects Oi+1). We distinguish two cases. If Ni is a
non-leaf node then there is by Lemma 3.7 a successor node M of Ni and an
A-environment ρ such that (A, ρ) falsifies L(M) and ρ agrees with ρi on all free
variables common to L(Ni) and L(M). Then the sequence Πi+1 obtained by set-
ting Ni+1 = M and ρi+1 = ρ is again a run. If Ni is a repeat node then there is
a repeat (M,Ni, σ) ∈ R and we set Ni+1 = M and ρi+1 = ρi ◦ σ. By Lemma 3.8
(A, ρi+1) falsifies L(Ni+1), so Πi+1 is a run. The limit Π of the sequence Π0,Π1, . . .
is an infinite run of P , contradicting the assumption that P is a proof. �

4. Syntactic discharge conditions

As condition (rDC) captures the well-foundedness of the reasoning in a pre-
proof in a very natural way, it serves as our reference discharge condition. Due
to its semantic nature it is, however, hardly usable in practical proofs and we
therefore introduce two alternative, purely syntactical, discharge conditions and
show that they characterize condition (rDC). For the remainder of this section we
fix an arbitrary pre-proof P = (D,R) with D = (N , E ,L).

4.1. Traces and progress

A trace of P is a path of P labelled by ordinal constraints that are linked to
yield a non-increasing chain of ordinal dependencies.

Definition 4.1 (Trace). Let τ = (N0, (κ0, κ
′
0)) · · · (Ni, (κi, κ

′
i)) · · · be a (finite or

infinite) sequence of pairs consisting of a node of D and a pair of ordinal variables
of VO. Suppose that Ni(Γi `Oi ∆i). Then τ is a trace of P if

(1) κ′i ≤Oi κi for all i, and
(2) for all successive pairs (Ni, Ni+1) of nodes, either

(a) (Ni, Ni+1) ∈ E and κ′i = κi+1, or
(b) (Ni+1, Ni, σ) ∈ R and κ′i = σ(κi+1).

We say that the trace τ = (N0, (κ0, κ
′
0)) · · · (Ni, (κi, κ

′
i)) · · · follows the path π =

N0 · · ·Ni · · · .
Definition 4.2 (Progress). Let τ = (N0, (κ0, κ

′
0)) · · · (Ni, (κi, κ

′
i)) · · · and suppose

L(Ni) = Γi `Oi ∆i. Then
– τ progresses at position i if κ′i <Oi κi, and
– τ is progressive if there are infinitely many positions where τ progresses,

and
– a path π in G(P) is progressive if there is a progressive trace τ following a

suffix πi of π.

Example 4.3. Figure 4 represents the trace

τ = (N0, (δ, ε))(N1, (α, β))(N2, (β, γ))(N3, (γ, γ))(N4, (κ, κ)),
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σ1 σ2
α α

β

α

γ

κ

λ

δ

ε β

γ

β

Figure 4. Example of a trace.

where R1 = (N0, N1, σ1) and R2 = (N3, N4, σ2) are repeats with σ1(α) = ε and
σ2(κ) = γ. The trace follows the path N0N1N2N3N4 and progresses at positions 0,
1 and 2.

4.2. The trace-based discharge condition

Definition 4.4 (tDC). A pre-proof P satisfies discharge condition (tDC) if all
infinite paths of P are progressive.

Theorem 4.5. A pre-proof P is a proof if and only if it satisfies condition (tDC).

Proof. It is sufficient to show for any infinite rooted path π in P that there is no
infinite run following π if and only if there is a progressive trace following some
suffix of π. Let π = N0 · · ·Ni · · · be an infinite path in P and let Oj denote the
partial order appearing in sequent L(Nj).

“⇒” By contraposition. Suppose that there is no progressive trace following a
suffix of π. We will construct an infinite run Π following π. Define the height hi(κ)
of ordinal variable κ in the order Oi inductively as follows:

hi(κ) =
{

0 if κ is minimal in Oi

max{hi(ι) | ι<Oi κ} + 1 otherwise.

We obviously have hi(ι) < hi(κ) whenever ι <Oi κ. The height h(τ) of a non-
progressive trace τ = (M0, (κ0, κ

′
0)) · · · (Mi, (κi, κ

′
i)) · · · is then defined by

h(τ) =
∑

j

(
hj(κj) − hj(κ′j)

)

h(τ) is finite, because τ is non-progressive. Now we define d(i, κ) = max(H(i, κ)),
where

H(i, κ) = {h(τ) | τ is a trace following πi with τ(0) = (Ni, (κi, κ
′
i)) and κi = κ}.

In order to see that d is well-defined note that no non-progressive trace following πi

can have more than m = n · k2 progressing positions, where n = |N | is the
number of nodes of P and k is the number of distinct ordinal variables in P . Any
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trace τ with more than m progressing positions must repeat some pair τ(j) =
τ(k) = (N, (κ, κ′)) with j < k, N(Γ `O ∆) and κ′ <O κ. This implies that
τ ′ = (τ(j)τ(j+1) · · · τ(k−1))ω is a progressive trace following πi+j , contradicting
our assumption that no such trace exists. Hence, H(i, κ) is bounded by m·l, where
l = max{hj(κ′) | j ≥ i and κ′ ∈ Oj}, showing that d is well-defined.

Next, we show that d satisfies the following properties:
(i) d(i, κ) < d(i, λ) whenever κ<Oi λ;
(ii) d(i+ 1, κ) ≤ d(i, κ) whenever (Ni, Ni+1) ∈ E and κ ∈ |Oi|, and
(iii) d(i+ 1, κ) ≤ d(i, σ(κ)) whenever (Ni+1, Ni, σ) ∈ R and κ ∈ |Oi+1|.

To see (i) assume that τ = (Ni, (κ, κ′))τ ′ is a trace following πi such that h(τ) =
d(i, κ). Then τ ′′ = (Ni, (λ, κ′))τ ′ is a trace following πi with h(τ ′′) > h(τ),
hence d(i, λ) ≥ h(τ ′′) > d(i, κ). For (ii) suppose (Ni, Ni+1) ∈ E is an edge of D,
κ ∈ |Oi| and τ = (Ni+1, (κ, κ′))τ ′ is a trace following πi+1 such that h(τ) =
d(i+1, κ). Then τ ′′ = (Ni, (κ, κ))τ is a trace following πi with h(τ ′′) = h(τ), thus
d(i, κ) ≥ h(τ ′′) = d(i+ 1, κ). For (iii) suppose (Ni+1, Ni, σ) is a repeat in R and
that τ = (Ni+1, (κ, κ′))τ ′ is a trace following πi+1 such that h(τ) = d(i + 1, κ).
Then τ ′′ = (Ni, (σ(κ), σ(κ)))τ is a trace following πi with h(τ ′′) = h(τ), thus
d(i, σ(κ)) ≥ h(τ ′′) = d(i+ 1, κ).

We are now in a position to construct an infinite run Π = (N0, ρ0) · · · (Ni, ρi) · · ·
following π. The construction will satisfy the invariants

(J1) ρi(κ) ≥ d(i, κ) for all κ ∈ |Oi|
(J2) ρi respects Oi

at each position i ∈ N. We start by setting ρ0(κ) = d(0, κ) for each κ ∈ |O0|,
which trivially satisfies (J1). ρ0 also satisfies (J2) by (i) above.

Now suppose we have already constructed (N0, ρ0) · · · (Ni, ρi) such that (J1)
and (J2) hold for i. We define ρi+1 and show that it satisfies invariants (J1)
and (J2). We distinguish two cases:

Case 1. (Ni, Ni+1) is an edge of D. We proceed by a case analysis on the on the
rule applied at Ni. Common to all cases is that we define ρi+1(v) = ρi(v) for each
v ∈ fv(L(Ni)) (and, in particular, for κ ∈ |Oi|). This implies

(a) ρi+1(κ) ≥ d(i+ 1, κ) for all κ ∈ |Oi|, and
(b) ρi+1(ι) < ρi+1(κ) whenever ι <Oi κ

by the induction hypothesis and (ii). Since we haveOi ⊆ Oi+1, this establishes (J1)
and (J2) for all rules except (∃O-L), (∃<

O-L) and (OrdStr). For the latter rules it
remains to define ρi+1 on any freshly introduced ordinal variables and to check
invariants (J1) and (J2) for the additional cases concerning the fresh variables:

(∃O-L). We set ρi+1(ι) = d(i + 1, ι), where ι is the fresh ordinal variable
introduced by the rule. (J1) is satisfied by construction and (J2) is satisfied
vacuously, since there are no cases involving ι;

(∃<
O-L). We set ρi+1(ι) = d(i + 1, ι), where ι is the fresh ordinal variable
introduced by the rule. (J1) is satisfied by construction. For (J2) let
κ ∈ |Oi| such that ι <Oi+1 κ. By (i) we have d(i + 1, ι) < d(i + 1, κ) and
by (a) d(i+ 1, κ) ≤ ρi+1(κ), so ρi+1(ι) < ρi+1(κ) as required;



380 C. SPRENGER AND M. DAM

(OrdStr). Let m = max{ρi(λ) | λ ∈ |Oi|} and ρi+1(κ) = d(i+ 1, κ)+m+ 1
for κ ∈ |Oi+1| − |Oi|. Invariant (J1) is clearly satisfied by construction. It
remains to verify (J2). Suppose that ι <Oi+1 κ. Since the side condition
of the rule guarantees that ι ∈ |Oi| whenever ι <Oi+1 κ and κ ∈ |Oi|,
there are two cases not already covered by (a) and (b). In the first case,
where ι, κ ∈ |Oi+1| − |Oi|, the result follows from (i). For the second case,
where ι ∈ |Oi| and κ ∈ |Oi+1| − |Oi|, we have ρi+1(ι) ≤ m < ρi+1(κ) by
the definitions of m and ρi+1.

Case 2. (Ni+1, Ni, σ) is a repeat in R. We set ρi+1 = ρi ◦ σ. By induction
hypothesis we have ρi(σ(κ)) ≥ d(i, σ(κ)) and by (iii) d(i, σ(κ)) ≥ d(i + 1, κ),
hence (J1) holds. For (J2) suppose that ι <Oi+1 κ. Then σ(ι) <Oi σ(κ) by the
definition of a repeat, thus we get ρi+1(ι) = ρi(σ(ι)) < ρi(σ(κ)) = ρi+1(κ) from
the induction hypothesis.

Continuing this construction ad infinitum yields an infinite run Π following π.

“⇐” For the opposite direction suppose there is a progressive trace

τ = (Ni, (κi, κ
′
i))(Ni+1, (κi+1, κ

′
i+1)) · · ·

following the suffix πi of π. For a contradiction suppose further that there is an
infinite run Π = (N0, ρ0) · · · (Ni, ρi) · · · following π. Let j ≥ i. Then we have
ρj(κj) ≥ ρj(κ′j), since ρj respects Oj . We also have ρj(κ′j) = ρj+1(κj+1) by
the definition of a run, since κ′j = κj+1 whenever (Nj , Nj+1) ∈ E is a tree edge
and κ′j = σ(κj+1) whenever (Nj+1, Nj , σ) ∈ R is a repeat of P . Thus, there is
an infinite chain ρi(κi) ≥ ρi+1(κi+1) ≥ · · · of ordinals, which strictly decreases
at infinitely many positions, since τ is progressive. This contradicts the well-
foundedness of the ordinals. �

4.3. Automata-theoretic characterization

While the trace-based discharge condition is syntactic, it is – as it stands – still
not suitable for practical application in a proof tool, since it is defined in terms of
infinite objects. In order to obtain an implementable condition, we now turn to
an automata-theoretic reformulation of the trace-based discharge condition.

Technically, this new condition will be realized using Büchi automata for which
we introduce the following conventions. A Büchi automaton A = (A,Q,Q0, δ, F )
is composed of an alphabet A, a finite set of states Q, a set of initial states Q0 ⊆ Q,
a transition relation δ ⊆ Q×A×Q and a set of accepting states F ⊆ Q. An infinite
word σ ∈ Aω is accepted by A if there is a run r ∈ Qω over σ visiting F infinitely
often. We denote by L(A) the language accepted by A. For more details we refer
the reader to Thomas’ handbook chapter [15].

Essentially, the automata-theoretic characterization looks for the existence of
specific traces, which progress only at repeat nodes.
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Figure 5. Example of a normal trace.

Definition 4.6 (Normal trace). A trace τ = (N0, (κ0, κ
′
0)) · · · (Ni, (κi, κ

′
i)) · · · is

called normal if, for all i, node Ni is a repeat node whenever τ progresses at
position i. ♦
Example 4.7. Figure 5 shows the the trace

τ = (N0, (δ, ε))(N1, (α, β))(N2, (β, γ))(N3, (γ, γ))(N4, (κ, κ))

of the previous Example 4.3 using continuous lines. Replacing the continuous line
with the dashed lines between positions 1 and 3 yields the normal variant

τ ′ = (N0, (δ, ε))(N1, (α, α))(N2, (α, α))(N3, (α, γ))(N4, (κ, κ))

of τ , where progress of τ at positions 1 and 2 is deferred to the repeat node at
position 3 in τ ′.

Lemma 4.8. Every trace τ can be transformed into a normal trace τ ′ such that τ
is progressive if and only if τ ′ is progressive.

Proof. (Sketch) Since Oi ⊆ Oi+1 whenever (Ni, Ni+1) ∈ E , progress can be de-
ferred to repeat nodes in the manner suggested by Example 4.7. As progress is
only deferred to the next repeat but never lost, progressiveness is preserved by
this transformation. �

By Lemma 4.8 we may without loss of generality for condition (tDC) restrict
our attention to the normal traces of P . Based on this observation we construct
two Büchi automata, B1 and B2, over the alphabet R of repeats.

The path automaton B1. It recognizes those sequences of repeats that are
traversed by paths of P .

The progress automaton B2. It recognizes sequences of repeats that are
potentially connected through a normal trace; potentially, because this
automaton tracks ordinal variable dependencies as in a normal trace, but
completely ignores whether the sequence of repeats it accepts may be
traversed by some path of P .

The language inclusion L(B1) ⊆ L(B2) then holds precisely if there is a normal
trace along each infinite path of P . Some auxiliary definitions prepare the formal
definition of these two automata.
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Figure 6. Example transition of automaton B2.

Definition 4.9. The relation →⊆ R×R on the set of repeats of P is defined by
R→ R′ if there is a path in the derivation tree D of P from the companion node
of R to the repeat node of R′.

We also define Vo =
⋃{|O| | N(Γ `O ∆) ∈ N}, the set of free ordinal variables

of P , and let rπ be the sequence of repeats traversed by a path π of P .

Definition 4.10. The path automaton of P is the Büchi automaton

B1 = (R, Q1, Q
0
1, δ1, F1)

where Q1 = Q0
1 = F1 = R and the transition relation δ1 ⊆ Q1 ×R×Q1 is defined

by δ1 = {(R,R,R′) | R → R′}.
The following characterization of the language accepted by B1 follows immedi-

ately from the definitions.

Lemma 4.11. L(B1) = {rπ | π an infinite path of P}.

Definition 4.12. The progress automaton of P is the Büchi automaton

B2 = (R, Q2, Q
0
2, δ2, F2)

where Q2 = Q0
2 = (Vo × 2× Vo)∪ {♦}, F2 = Vo ×{1}× Vo and δ2 ⊆ Q2 ×R×Q2

is defined by δ2 = δ′2 ∪ ({♦} ×R×Q2) with

δ′2 = {((ι, a, κ), (M,N, σ), (κ, b, λ)) | σ(κ)≤ON ι and a = 0 ⇔ σ(κ) = ι}·

Note the presence of the state ♦ and the transitions from this state to any other
state (including itself). Its role is to ensure that the language accepted by B2

is closed under prefixing with finite words over R, reflecting the requirement in
condition (tDC) that each infinite rooted path π has a trace following some suffix
of π. Let us now illustrate these definitions with an example.

Example 4.13. The upper part of Figure 6 shows a simplified version of the
normal trace from Example 4.7. Since σ1(α) <O0 δ this trace gives rise to a
transition (δ, 1, α) R1→ (α, j, κ) of automaton B2 for each j ∈ 2.
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Definition 4.14 (aDC). A pre-proof P satisfies condition (aDC) if

L(B1) ⊆ L(B2).

Theorem 4.15. A pre-proof P satisfies condition (tDC) if and only if P satisfies
condition (aDC). The latter condition can be checked in time 2O(m2 log m), where
m = n + r is the sum of the number of nodes n of P and the number of ordinal
variables r occurring free in the root sequent of P.

Proof. By Lemmas 4.8 and 4.11, it is sufficient to show for all infinite paths π that
there is a progressive normal trace τ following a suffix of π if and only if there is
an accepting run r of B2 on rπ. Accordingly, let π = N0N1 · · · be an infinite path
of P with Ni(Γi `Oi ∆i).

“⇒” Consider a progressive normal trace

τ = (Nk, (κk, κ
′
k))(Nk+1, (κk+1, κ

′
k+1) · · · (2)

following πk for some k ≥ 0. Let i0, i1, . . . be the positions where a repeat node
appears on τ and let Rj = (Nij+1, Nij , σj) for j ≥ 0 be the corresponding repeats.
We construct the infinite sequence

r = ♦p(λ0, k0, λ1)(λ1, k1, λ2) · · · (3)

where p is the number of repeat nodes appearing before position k on π and
λj = κij for j ≥ 0. Since τ is a trace, we have λj = κij ≥Oij

σj(κij+1). We also
have κij+1 = κij+1 = λj+1, because τ is normal. We set kj = 0 if σ(λj+1) = λj

and kj = 1 otherwise. It is then not difficult to see that r is a run of B2 on rπ,
which is accepting since τ is progressive.

“⇐” Suppose r is an accepting run of B2 on rπ of the form (3) above, let
rp
π = R0R1 · · · and let ij be the position of repeat Rj = (Nij+1, Nij , σj) on π for

each j ≥ 0. We construct an infinite sequence τ of the shape 2 above by setting
k = i0 and

(κij , κ
′
ij

) = (λj , σj(λj+1))
(κl, κ

′
l) = (λj+1, λj+1) for ij + 1 ≤ l ≤ ij+1 − 1

for j ≥ 0. By the definition of B2 we know that σj(λj+1)≤Oij
λj for all j ≥ 0.

Because Ol ⊆ Ol+1 whenever (Nl, Nl+1) is a tree edge, it is then easy to see that τ
is a normal trace following πk, which is progressive since r is accepting.

It remains to justify the complexity claim. The standard way to check the
inclusion L(B1) ⊆ L(B2) is to complement B2 into B2 and check the product
B1 × B2 for emptiness. A pre-proof P with n = |N | nodes can have at most
n repeats. The number |Vo| of ordinal variables in P is bounded by m = n + r,
where r is the number of free ordinal variables of the root sequent. This yields O(n)
states for B1 and O(m2) states for B2. Complementing a Büchi automaton with n
states can be done in time 2O(n log n) [10]. Hence, the complementation of B2 takes
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time 2O(m2 log m), which does not increase by computing the product with B1 and
the subsequent linear time emptiness check. �

5. Restricted forms of syntactic discharge

In this section we present two more restrictive syntactic discharge conditions
and relate them to our new conditions as well as with those proposed in the
literature. Let us consider an arbitrary but fixed pre-proof P = (D,R).

5.1. Discharge based on strongly connected sets of repeats

Definition 5.1. Let R = (M,N, σ) be a repeat such that M(Γ′ `O′ ∆′) and
N(Γ `O ∆), and let κ ∈ |O′| be an ordinal variable. Then we say

(1) R preserves κ if σ(κ)≤O κ, and
(2) R progresses on κ if σ(κ)<O κ.

A set of repeats S ⊆ R is called strongly connected if (S,→∩ (S×S)), the subgraph
of (R,→) induced by S, is strongly connected. Equivalently, one can say that there
is a path π traversing exactly the repeats in S infinitely often.

Definition 5.2 (scDC). A pre-proof P = (D,R) satisfies condition (scDC) if for
each strongly connected S ⊆ R there is an ordinal variable κ such that

(1) some repeat R ∈ S progresses on κ, and
(2) each repeat R′ ∈ S preserves κ.

This condition is similar to the one described by Fredlund [6]. Schöpp and
Simpson [12] use essentially the same condition as well, although their proof system
is based on a different notion of approximation without ordinal variables.

Condition (scDC) can be reformulated automata-theoretically by replacing the
trivial Büchi acceptance condition of the path automaton B1 of Definition 4.10 by a
non-trivial Streett acceptance condition. A Streett automaton A = (Σ, Q,Q0, δ,Ω)
has the same components as Büchi automaton except that the acceptance condi-
tion is replaced by the Streett acceptance condition Ω = {(Li, Ui) | 1 ≤ i ≤ n}
consisting of a set of pairs of states. An infinite word σ is accepted by A if there is
a run r ∈ Qω such that, for all i, if r visits Li infinitely often then it also visits Ui

infinitely often. To capture condition (scDC) we define the Streett automaton
S = (Σ, Q,Q0, δ,Ω), where Σ = Q = Q0 = R and δ = {(R,R,R′) | R → R′}. The
acceptance condition is Ω = {(Lκ, Uκ) | κ ∈ Vo}, where Vo is the set of ordinal
variables occurring free in P and

Lκ = {R ∈ R | R progresses on κ}
Uκ = {R ∈ R | R does not preserve κ}.

Proposition 5.3. A pre-proof P satisfies condition (scDC) if and only if L(S)
is empty. The latter condition can be checked in time O(m3), where m = n + r
is the sum of the number of nodes n of P and the number of ordinal variables r
occurring free in the root sequent of P.
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Proof. The first part is not difficult to see from the definitions. The complexity of
checking the emptiness of a Streett automaton is O((n + k)2 min(n, k)), where n
is the number of states and k is the number of accepting pairs [5]. The result
follows, since in our case m is an upper bound of both the number of repeats and
the number of ordinal variables in P . �

For a comparison of condition (scDC) with our previous condition (aDC), we
define

B−
2 = (R, Q−

2 , Q
0
2 ∩Q−

2 , δ2 ∩Q−
2 ×R×Q−

2 , F2 ∩Q−
2 )

to be the Büchi automaton obtained from B2 = (R, Q2, Q
0
2, δ2, F2) by restrict-

ing the sets of states and transitions to the set Q−
2 = {(ι, j, κ) ∈ Q2 | ι = κ}.

Condition (aDC-) then requires that L(B1) ⊆ L(B−
2 ).

Proposition 5.4. A pre-proof P satisfies condition (scDC) if and only if it sat-
isfies condition (aDC-).

Proof. “⇒” Suppose P satisfies (scDC) and let r1 = R0 · · ·Ri · · · be an accepting
run of B1 on r1. We show that r1 is accepted by B2. Let S be the set of repeats
occurring infinitely often in r2. Since S is strongly connected, there is an ordinal
variable κ such that some R ∈ S progresses on κ and all R′ ∈ S preserve κ.
Since G(P) is finite there is a position k such that all Rj with j ≥ k belong
to S. Define r2 = ♦k(κ, ik, κ)(κ, ik+1, κ) · · · , where, for each j ≥ k, we set ij = 1
if Rj progresses on κ and ij = 0 otherwise. Then r2 is a run of B−

2 on r1, which
is accepting, since there are infinitely many j ≥ k such that Rj = R. Thus,
P satisfies condition (aDC-).

“⇐” Suppose P satisfies (aDC-) and let S ⊆ R be strongly connected. Then
there is an accepting run r1 = R0R1 · · · of B1 on r1 such that {Ri | i ≥ 0} =
S. By (aDC-) there is an accepting run r2 = (κ, i0, κ)(κ, i1, κ) · · · of B−

2 on r1,
implying that condition (scDC) holds for S and ordinal variable κ. �
Corollary 5.5. If a pre-proof P satisfies (scDC) then it satisfies condition (tDC).

Proof. By Theorem 4.15, since L(B−
2 ) ⊆ L(B2). �

The following example shows that the converse of Corollary 5.5 does not hold
in general.

Example 5.6. Let φ = µX(x).∃z.X(z). The derivation in Figure 7 shows a pre-
proof P for the sequent φ(x), φ(y) `. We write φκ for µκX(x).∃z.X(z). We have
named the nodes for reference and omitted some intermediate nodes for a more
compact presentation.

This pre-proof has one repeat R = (N2, N4, σ) with σ = [x′/y, κ′/ι′, κ/ι, ι′/κ].
Recall that we identify formulas up to renaming of bound variables. There is a
infinite normal trace τω , where

τ = (N2, (ι, ι))(N3, (ι, ι))(N4, (ι, ι′))(N2, (κ, κ))(N3, (κ, κ))(N4, (κ, κ)),

following the the suffix (N2N3N4)ω of the only infinite path of P . The trace τ
is progressive, since ι′ <O4 ι at node N4. Hence, P satisfies condition (tDC)
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N0[φ(x), φ(y) `]
(µ1-L, ∃O-L)

N1[φι(x), φκ(y) `ι,κ]
(µκ-L, ∃<

O-L)
N2[∃x′.φι′(x′), φκ(y) `ι′<ι,κ]

(µκ-L, ∃<
O-L)

N3[∃x′.φι′(x′), ∃y′.φκ′
(y′) `ι′<ι,κ′<κ]

(∃I -L)
N4[φι′(x′), ∃y′.φκ′

(y′) `ι′<ι,κ′<κ]

Figure 7. Pre-proof distinguishing (tDC) from (scDC).

and is thus a proof for φ(x), φ(y) `. On the other hand, repeat R does not
preserve any ordinal variable according to Definition 5.1. Hence, P fails to satisfy
condition (scDC).

5.2. Discharge using induction orders

We introduce an alternative discharge condition based on ordering the repeats
of a pre-proof. Here, we restrict our attention to simple pre-proofs P = (D,R),
where for each repeat (M,N, σ) ∈ R there is a path from M to N in D.

Definition 5.7. Let R = (M,N, σ) and R′ = (M ′, N ′, σ′) be two repeats in R.
The structural dependency relation ≤P on repeats is defined by R ≤P R′ if the
companion M of R lies on the path πR′ = M ′ · · ·N ′ from the companion M ′ to
the repeat node N ′ of R′. Let �P = ≤P ∪ ≤−1

P be the symmetric closure of ≤P .

The following two lemmas establish some useful connections between the rela-
tions �P , → and strong connectedness.

Lemma 5.8. R �P R′ if and only if R → R′ and R′ → R if and only if {R,R′}
is strongly connected.

Proof. Immediate from Definitions 4.9 and 5.7. �
Lemma 5.9. Let S ⊆ R be strongly connected and let R,R′ ∈ S. Then there is
a �P -chain of repeats in S from R to R′, that is, there is a sequence R0R1 · · ·Rn

of repeats in S such that R = R0, R′ = Rn and Ri �P Ri+1 for 0 ≤ i < n.

Proof. Suppose R = (M,N, σ) and R′ = (M ′, N ′, σ′) belong to the strongly con-
nected set S ⊆ R. It is sufficient to prove the conclusion under the additional
assumption R → R′. The general statement then follows by a routine induction.
We first establish the following auxiliary property:
(P) if R → R′ then either R �P R′ or there exists R′′ ∈ S such that R → R′′,

R′ ≤P R′′ and the companion M ′′ of R′′ is a proper ancestor of M ′ in the
derivation tree.

To see this, suppose that R → R′, but not R �P R′. Since P is assumed to be
simple, the companion M ′ lies on the path from M to N ′, but not on the path
from M to N . As R and R′ are in the same strongly connected set S, there is a
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path from R′ to R in (R,→), or equivalently, from M ′ back to M in P . Hence,
there must be some R′′ ∈ S such that R′ → R′′ and whose companion node M ′′

lies above M ′ in the derivation tree. This implies that R → R′′ and R′ ≤P R′′.
Now suppose R→ R′. We show the existence of a �P -chain from R to R′ in S

by induction on the length l(R,R′) = m of the path π from M to M ′ in P . This
is trivial for m = 0. For m > 0 we derive from property (P) that either R �P R′,
in which case we are done, or there is some R′′ ∈ S such that R→ R′′, R′′ �P R′

and l(R,R′′) < m. In the latter case, it follows from the induction hypothesis
that there is a �P -chain from R to R′′ in S , which we complete into a �P-chain
from R to R′ using R′′ �P R′. �

An induction order partially orders the repeats of a pre-proof. Repeats are
required to be comparable under certain conditions.

Definition 5.10 (Induction orders). A partial order (R,�) on the set of repeats
is called an induction order for P , if R � R′ or R′ � R whenever

(1) R′′ � R and R′′ � R′ for some R′′ (� is forest-like), or
(2) R �P R′ (� respects �P).

A labelled induction order (R,�, δ) is an induction order (R,�) together with a
map δ assigning an ordinal variable δR to each repeat R ∈ R.

Under the mild restriction that each companion belongs to a unique repeat,
the transitive closure of the structural dependency relation is an important special
case of an induction order.

Proposition 5.11. Let P = (D,R) be a simple pre-proof with unique companions,
that is, no pair of distinct repeats share the same companion. Then the transitive
closure of ≤P is an induction order for P.

Proof. It is not difficult to see that the transitive closure of the relation ≤P is
a partial order. In particular, its antisymmetry follows from the uniqueness of
companions. It is forest-like, because P is simple and it respects �P , since it
contains ≤P . �

Definition 5.12 (ioDC). Let P = (D,R) be a simple pre-proof. We say that a
labelled induction order (R,�, δ) discharges P if for all R ∈ R

(1) R progresses on δR, and
(2) R preserves δR′ whenever R � R′.

Pre-proof P satisfies condition (ioDC) if there is a labelled induction order dis-
charging P .

Since any partial order that linearly orders the repeats of each strongly con-
nected component of P is an induction order, condition (ioDC) subsumes the
original discharge condition (DC) proposed by Dam and Gurov [4]. For forest-
like induction orders condition (ioDC) is equivalent to the condition given by
Schöpp [11] as the following lemma will show. However, by relying on the
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structural dependency relation our new definition of induction order is more local
in the sense that it avoids the quantification over all strongly connected subsets of
repeats of a pre-proof. This makes it easier to check whether a given partial order
on the set of repeats is an induction order.

Lemma 5.13. A forest-like partial order (R,�) is an induction order if and only
if each strongly connected S ⊆ R has a �-greatest element.

Proof. “⇒” Suppose that (R,�) is an induction order. Let S ⊆ R be strongly
connected. In order to see that S has a �-greatest element, it is sufficient to show
that any two R,R′ ∈ S have an upper bound in S, that is, R � R̂ and R′ � R̂ for
some R̂ ∈ S. Suppose R,R′ ∈ S. By Lemma 5.9 there is a sequence R0R1 · · ·Rn

of repeats in S such that R = R0, R′ = Rn and Ri �P Ri+1 for 0 ≤ i < n.
As (R,�) respects �P we also have Ri � Ri+1 or Ri+1 � Ri for 0 ≤ i < n. Using
the fact that (R,�) is forest-like a routine induction on n shows that there is an
upper bound R̂ of R and R′ in S.

“⇐” Suppose that each strongly connected S ⊆ R has a �-greatest element
and let R and R′ be two repeats with R �P R′. Then R � R′ or R′ � R as
required, since S = {R,R′} is strongly connected by Lemma 5.8. �

The next result shows that for simple pre-proofs discharge based on induction
orders is equivalent to discharge based on strongly connected sets of repeats.

Theorem 5.14. Let P = (D,R) be a simple pre-proof. Then P satisfies condition
(ioDC) if and only if it satisfies condition (scDC).

Proof. “⇒” Suppose P = (D,R) satisfies (ioDC) witnessing the labelled induction
order (R,�, δ) and let S ⊆ R be strongly connected. Then S has a �-greatest
element R by Lemma 5.13. By the definition of discharge R progresses on δR and
all R′ ∈ S preserve δR. Hence, P satisfies condition (scDC).

“⇐” Suppose P = (D,R) satisfies (scDC). We iteratively construct a labelled
induction order (R,�, δ) as follows. We start with the set S0 partitioning R into
its strongly connected components. At step i we pick Si ∈ Si and then an Ri ∈ Si

such that Ri progresses on some ordinal variable κi and all R ∈ Si preserve κi.
Since P satisfies (scDC), such Ri and κi exist. Then we set Si+1 = (Si−{Si})∪D,
where D is obtained as the partitioning of Si − {Ri} into its strongly connected
components. This process terminates after n = |R| iterations, since at each step i
repeat Ri is removed from

⋃Si.
We define δ by δ(Ri) = κi and Ri � Rj if Si ⊆ Sj . By the hierarchical nature

of the construction (R,�) is certainly a forest-like partial order and, moreover, for
each strongly connected S ⊆ R there is a unique Sk such that Rk ∈ S ⊆ Sk. This
implies that Si ⊆ Sk for any Ri ∈ S and thus Rk is �-greatest in S. Hence, (R,�)
is an induction order for P by Lemma 5.13. Note that any repeat R progresses
on δR by construction. Also, for any Ri with Ri � Rj , we have Ri ∈ Si ⊆ Sj ,
so Ri preserves δRj . Thus, (R,�, δ) discharges P . �
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6. Conclusions

We have studied a Gentzen-style proof system for the µ-calculus which is based
on circular proofs. In particular, we have investigated several discharge conditions
which externally justify the well-foundedness of inductive reasoning embodied in
these proofs. Starting from the natural semantic condition proposed by Dam and
Gurov [4], we have, based on the notion of traces, given a syntactical condition
which characterizes the semantic one for any given pre-proof. While this condition
is purely syntactical, it is still not suitable for implementation as its definition
directly refers to infinite objects. Therefore, we have also elaborated an algorithmic
formulation in terms of a language inclusion between two Büchi automata.

Next, for a detailed comparison with previously known discharge conditions,
we have focused our attention on two simpler discharge criteria. In particular, we
have considered two levels of restrictions with respect to our general condition:

(1) Restrict to normal traces that track the behaviour of a single ordinal vari-
able, disallowing its renaming at repeats; this leads to condition (scDC),
similar to those in [6, 12], requiring that we find, for each strongly con-
nected subgraph, an ordinal variable and a repeat that progresses on this
variable while the other repeats preserve it. This condition can be formu-
lated as an emptiness problem of a Streett automaton;

(2) Additionally restrict the form of pre-proofs to simple ones, where each
repeat node is reachable in the proof tree from its companion node; this
allowed us to organize the repeats of a pre-proof into a partial order, called
induction order, and formulate a new condition, called (ioDC), which im-
poses progress and preservation conditions on each repeat according to its
position in the induction order. This condition is close to those in [4, 11],
but avoids a quantification over strongly connected subsets of repeats.

Our comparison showed that condition (scDC) and (ioDC) are equivalent for sim-
ple pre-proofs and condition (scDC) is in general strictly stronger than our trace-
based condition on a fixed pre-proof. However, an important open question con-
cerns the proof-theoretical strength of the different conditions. More precisely, it
is currently unclear to us whether there are sequents that can be proved using
the trace-based condition, but for which no proof exists if we restrict ourselves to
using a simpler discharge criterion. We are inclined to think that this is not the
case. But, while it might not be too difficult to show that any pre-proof can be
unfolded into a simple one (with a potentially exponential blow-up due to the loss
of sharing), the proof that we can dispense with renaming of ordinal variables at
repeats seems more involved.

We would like to add some remarks regarding the practical application of our
results. First, the exponential complexity of the general automata-based discharge
condition (aDC) seems to discourage its use in favour of the more tractable condi-
tion (scDC) based on strongly connected components. We do not currently know
whether there is a polynomial algorithm for the general condition, a question that
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is left for future work. Second, the general condition is weaker and thus qual-
ifies more pre-proofs as proofs, which can be an advantage in automatic proof
search. However, it is unclear whether this difference frequently shows up in prac-
tice. Some experimentation is needed in order to clarify these issues. Third, in a
tool implementation it is desirable to check discharge conditions incrementally in
order to detect failure to discharge as soon as possible. Although the automata-
based conditions (aDC) and (aDC-) can be used to this effect on the partially
constructed proof structure, the need to complement the second automaton each
time a new repeat is added does not support incremental checking very well. The
reformulation of condition (scDC) as an emptiness problem of a Streett automaton
is certainly easier to adapt for incremental verification.

Finally, it is important to observe that the dependency of our results on the
µ-calculus itself is very limited. The µ-calculus was chosen here as a suitable
minimal context in which to study global induction, but all that our induction
mechanisms rely on is that the object language includes a form of inductive defini-
tion, which can be augmented by a corresponding notion of approximation. Given
these ingredients it should, in principle, be possible to turn almost any deductive
system using local induction rules into one based on global induction by replac-
ing the local induction rules by appropriate versions of fixed point and ordinal
rules. Some examples that merit a closer inspection are the inclusion of regular
languages, inductive type theories and Hoare logics for recursive procedures. In a
related paper [13], we investigate the relation between a proof system based on a
local well-founded induction rule on the ordinals and one based on global induc-
tion as studied here. We establish their equivalence by giving proof translations
in each direction.
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