Theoretical Informatics and Applications
Theoret. Informatics Appl. 37 (2003) 159-176
DOI: 10.1051/ita:2003012

THE COMMUNICATION HIERARCHY
OF TIME AND SPACE BOUNDED PARALLEL
MACHINES *

NORBERT POPELY!

Abstract. We describe the communicating alternating machines and
their simulation. We show that, in the case of communicating alternat-
ing machines which are bounded, simultaneously, by polynomial time
and logarithmic space, the use of three communication levels instead of
two does not increase computational power of communicating alternat-
ing machines. This resolves an open problem [2] concerning the exact
position of machines with three communication levels in the hierarchy.

Mathematics Subject Classification. 03D15.

1. INTRODUCTION AND PRELIMINARIES

Besides sequential computational models, a number of parallel models have
been studied. According to van Emde Boas’ classification [6], machine models
with time complexity polynomially related to the space complexity of sequential
devices form the second machine class of parallel models.

A typical example of such model is an alternating Turing machine [1], which
is, at the same time, a generalization of nondeterminism and parallelism. This
model is related to the fundamental complexity hierarchy of sequential classes by
the equalities ALOGSPACE = P and APTIME = PSPACE [1].

Recall that the idea for ordinary alternating machines (ATM) is to partition the
finite control states into existential and universal [1]. If, at the given moment, the
program of the machine admits to execute several different instructions in the next

Keywords and phrases. Computational complexity, synchronized alternation.

* This work was supported by the Slovak Grant Agency for Science (VEGA) under contract
#1/7465/20 “Combinatorial Structures and Complexity of Algorithms”.
! Department of Computer Science, P. J. Safarik University, Jesennd 5, 04154 Kosice, Slovakia;
e-mail: popely@mail.com

© EDP Sciences 2003

160 N. POPELY

computation step, the machine (a) nondeterministically chooses one legal compu-
tation step, if it is in an existential state, but (b) follows, in parallel, all possible
computation paths, if the current state is universal. By nondeterminism of (a),
there may exist several different computations for the same input. By (b), the
computation forks into parallel processes, each of them “inherits” its own private
copy of all information stored on the work tapes. That is, the nondeterministically
chosen computation forms a computation tree of parallel branches, embedded in
the full configuration tree of all reachable configurations, with root corresponding
to the initial configuration.

The notion of alternation has been generalized to a synchronized alternating
machine (SATM) to study the power of communication among parallel processes
of an alternating device [3,5,7]. Roughly speaking, the synchronized alternation
captures the fact that, in a typical parallel computation, the information flows not
only between parents and their offsprings, as in the case of an ordinary alternating
device, but also among parallel processes active at the moment.

The synchronized alternating machines still belong to the second machine class,
since SAPTIME = APTIME = PSPACE, i.e., with respect to time, they are
not more powerful than the ordinary alternating devices [4]. However, these
two models differ significantly in space, since SALOGSPACE = PSPACE |[3,7].
Imposing both bounds simultaneously, we get SAPTIME - LOGSPACE = NP [2].

Although synchronizing alternating machines allow exchange of information
between parallel working processes, the broadcasted signals does not have any
structure: Each message broadcasted, by each process, is received by all oth-
ers [3]. Therefore, a new model of communicating alternating machine [2] was
established in which the processes are organized into hierarchically ordered com-
munication groups, and information is exchanged within the given groups by local
communication signals.

There was another important motivation for introducing the new machine model.
Though the underlying machine for the synchronized alternation is alternating,
the nature of broadcasting itself is actually nondeterministic. This is supported
already by the simulation proving the inclusion SAPTIME C APTIME [4].

Thus, it is quite natural, besides an existential communication, to consider
another level of universal communication that does not trigger communication
conflicts but rather forks the communication, if two different symbols are broad-
casted. The “fork” follows the rules of universal branching, i.e., both branches
proceed further. The active processes running in parallel are divided into two sep-
arate communication groups; the first group consists of the processes broadcasting
zeros, the second one of those broadcasting ones. From now on, the processes in
either group communicate separately. Thus, the universal broadcasting of sev-
eral bits prevents from communication interference between two processes having
dialed different “phone” numbers.

This gives a new computational model, with the underlying machine alternating
again, but the nature of broadcasting is not nondeterministic but rather alternat-
ing. More precisely, it uses two levels of communication; existential and universal.

THE COMMUNICATION HIERARCHY OF ATIME—SPACE MACHINES 161

TN
[¢
e o o e o
[R
S WA
R B S

FIGURE 1. Dividing of parallel working processes (dots), into the
communication groups (ovals).

The relation between the synchronized alternation and the new model of commu-
nicating alternation is the same as between nondeterminism and alternation.

Now we describe this new model, a communicating alternating Turing machine
(CATM). In addition to the standard model, the execution of some computation
steps may also depend on communication symbols.

The exchange of information is performed by broadcasting binary encoded mes-
sages, using a communication alphabet {01,11,...,0,,1,}. Symbols 0; and 1; are
used for the ith level broadcasting, thus system has r broadcasting levels available
(so called “channels”), for some r € N.

For better understanding we first describe the communication of CA;TM, with
the communication alphabet {01, 11, 02, 12}, using two communication levels. Fig-
ure 1 shows an example of a typical situation which may occur during the compu-
tation. The communication is restricted to the processes working in parallel within
the same communication group (existential communication). The distribution into
groups is organized by the processes themselves (universal communication):

— The active processes not sending any communication signals run indepen-
dently in parallel.

— Each time one of the processes working in parallel tries to execute an
instruction that broadcasts a communication signal it must wait until all
other processes, within the same communication group, either halt or try
to execute instructions that also broadcast some communication signals.

— When this happens, the process trying to execute an instruction broad-
casting the existential signal 0; is allowed to proceed further only if all
other processes, within the same group, broadcast the same signal 0; as
well. Otherwise, the process is aborted by the communication conflict.

— Similarly, if the process broadcasts 17, all other processes must broad-
cast 1; as well.

— Finally, the processes running within the same group may also broadcast
universal signals 05 or 15. In this case, the communication group is divided
into two separate communication groups; the first group consists of the
processes broadcasting 02, the second one of those broadcasting 15. From
now on, the processes of the two offspring groups communicate separately.

Since the synchronized alternation, studied in the literature, represents ordinary
alternating devices equipped with a nondeterministic communication and the new
computational model, alternating machines with an alternating communication,

162 N. POPELY

TN

ol T

RS B U
‘ol S A
R RS

FiGURE 2. Communication groups for the level four. The first
level signals are blocked by the second level boundaries (dashed
ovals). These can be overcome by even higher levels.

a question arises if we can proceed further and, for example, equip alternating
machines with a synchronized alternating communication. Such generalization is
possible and can be iterated uniformly arbitrarily many times. This is represented
by a model with r communication levels, with the existential and universal levels
intertwined.

Thus, the third level communication is existential again, using the symbols Os,
13. This level allows to exchange information globally, among all processes active
at the moment, across the boundaries of communication groups organized by the
second level signals. That is,

— each time a process working in parallel tries to execute an instruction that
broadcast a signal from {03, 13}, it must wait until all other processes, in
all communication groups (organized by the second level communication),
either halt or try to execute instructions that also broadcast some third
level signals.

— When this happens, the process trying to broadcast O3 is allowed to pro-
ceed further only if all other processes, in all groups, broadcast the same
signal 03 as well. Otherwise, the process is aborted by the communication
conflict.

— Similarly, if the process broadcast 13, all other processes, in all groups,
must broadcast 15 as well.

It should be obvious how the fourth level of communication is introduced. It is
universal, and, similarly to the second level, it groups the third level communica-
tion into communication groups. These higher level groups are subdivided by the
second level communication into nested communication subgroups of lower rank.
(Fig. 2).

In general, an r-level communicating alternation machine uses the communi-
cation alphabet {01, 11,02, 12,...,0,,1,}. The existential and universal levels are
intertwined, beginning with the existential pair of signals. The parallel processes
are distributed into nested communication groups, the depth of nesting is [r/2].
A signal 0; or 1; can be used to interact with processes within the same group of
rank at most [i/2]. An informal description of the communication is the following.

— A process trying to execute an instruction that broadcasts a communica-
tion signal of level ¢ must wait until all other processes, within the same

THE COMMUNICATION HIERARCHY OF ATIME—SPACE MACHINES 163

group of rank [i/2], either halt or try to broadcast signals of level i or
higher.

— When this happens, the process trying to broadcast an existential signal
0; is allowed to proceed further only if all other processes, within the same
group of rank [i/2], broadcast the same signal 0; as well. The same holds,
respectively, for an existential 1;.

— If the level 4 is universal, the communication group of rank [i/2] is divided.
The first and second offspring groups consist of the processes broadcast-
ing 0; and 1;, respectively. In addition, possible idle processes (in any),
waiting for a communication by higher level signals, are expelled to a sep-
arate offspring group, where they wait for their turns. The group division
applies to all nested subgroups of lower ranks as well.

Note that there can exist some processes broadcasting on different levels at the
same time within the same group. The situation for the existential level is obvious:
Once there is a process broadcasting, say 1;, all other interacting processes must
broadcast 1; or else a conflict arises. Since the universal level does not trigger
conflicts but rather forks communication, and since a higher level communication
should not block the lower levels but rather be delayed, a higher level process is
not “aborted”, as in the existential case, but rather “expelled”. This interference
about processes communicating on different levels can be avoided, as presented in
Lemma 2.1 (for details, see [2, Lem. 4.2]).
We can now present a formal definition, introduced in [2].

Definition 1.1. A program of k-tape r-level communicating alternating Turing
machine (CA, TM) isaset I C Qx X x AFx AFx {—1,0,1}*1xQx{e,01,14,...,
0y, 1.}, where @ = EUU is a finite set of states, consisting of two disjoint subsets
of existential an universal states, X is a finite input alphabet and A is a finite work
tape alphabet.

An instruction <gq; a; bi,...,bg; by,..., 05 d; di, ..., di; ¢',¢> € I is inter-
preted as follows: if the machine is in the state ¢ and scans the symbol a from
the input tape and the symbols by, ...,b; from the work tapes, then it rewrites
{b1,...,bi} by bi,..., b}, respectively, moves the corresponding tape heads in the
directions d; di,...,d; and change its state from ¢ to ¢’, broadcasting the com-
munication signal ¢. (If ¢ = ¢, no signal is broadcasted). Such action is called a
computation step.

A configuration is an element of Q x N x (A* x N)¥ | representing the (current)
finite control state, the non blank contents of all tapes, together with all tape head
positions.

Definition 1.2. A full configuration tree of the machine for an input w is a (possi-
bly infinite) tree the nodes of which represent configurations, with root correspond-
ing to the initial configuration. The edges correspond to single computation steps
and are labeled by the broadcasted communication signals {01, 11, ...,0,, 1.}, with
no labels for transitions not broadcasting any signals.

164 N. POPELY

The communication history of a node v in a full configuration tree T is the
sequence of edge labels (communication symbols) along the path from the root to
v. It will be denoted by hy(v).

For i € {1,...,r+1}, an ith level of the communication history of a node v is
the string h;(v), obtained from hi(v) by a homomorphism that erases all lower
level communication, i.e., that maps 0p—¢ and 1li+—e, for k<i, but 0f+— 0O
and 1 — 1y, for k > 3.

A computation tree is a subtree T of the full configuration tree T satisfying the
following:

(a) A node v isin T only if it is a root or if its father is also in 7”.

(b) If a node v in T labeled by an existential configuration has a son which is
also in 1", then no other son of v in T is in T".

(¢) If a node v in T” labeled by a universal configuration has a son which is also
in 7", then all other sons of v in T are in T’ as well.

(d) If, for any odd i < r, and any pair of nodes v and v in T”,

hi(u)| = |hi(v)], but hi(u) # hi(v),

then, for some nodes «, and «, along the paths from the root to u and v,
respectively,

|Riv1(ow)| = |[hiy1(ow)], but hipi(ow) # hivi(ow).

(e) T’ is maximal with respect to (a)—(d), i.e., adding any additional node of T'
to T' violates at least one of the above conditions.
The input w is accepted, if there exists a computation tree such that all its branches
are terminated in accepting configurations.

Note that a higher rank division applies to all nested subgroups of lower ranks as
well, since h;(x) # h;(y) implies h;—1(x) # h;—1(y). The reader may easily verify
that all other details correspond to the informal presentation above.

The above computational model is a natural generalization of a synchronized
alternating machine (SATM) [3,5,7], which in turn is a generalization of the
standard alternating machines (ATM) [1].

Definition 1.3. A synchronized alternating machine is a communicating alterna-
tion machine using only the existential communication signals 0; and 1;.

A (standard) alternating machine is a communicating alternation machine using
no communication signals, i.e., the empty communication alphabet, with » = 0.

Definition 1.4. The machine is t(n) time bounded, if, for each input of length n,
no computation tree has a branch longer than t(n) computation steps.

The machine is s(n) space bounded, if, for each input of length n, no computation
tree has a node corresponding to a configuration that uses more than s(n) space
on any of its work tapes (not taking into account the length of the read-only input
tape).

THE COMMUNICATION HIERARCHY OF ATIME—SPACE MACHINES 165

The classes of languages recognizable by communicating alternation machines
in O(t(n)) time or O(s(n)) space with r communication levels will be denoted by
CA,TIME(t(n)) or CA,SPACE(s(n)), respectively. The class of languages recog-
nizable by such machines in O(t(n)) time and O(s(n)) space simultaneously will be
denoted by CA,TIME-SPACE(t(n), s(n)), CA,PTIME-LOGSPACE is a short-
hand notation for classes of languages recognized by such machines in polynomial
time an logarithmic space.

SATIME(t(n)) = CA;TIME(t(n)) and ATIME(t(n)) = CA(TIME(t(n))
denote the classes of languages recognizable by O(t(n)) time bounded synchro-
nized alternating and alternating machines, respectively. The corresponding nota-
tion XSPACE(s(n)), XTIME-SPACE(t(n), s(n)), and XPTIME - LOGSPACE,
for X € {SA, A}, will be used for space and time-and-space bounded machines.

Now we show the relation between time bounded alternating and synchronized
alternating machines. This result was originally proved in [7], but we will inves-
tigate the size of the used space, too.

Theorem 1.5. For each function t(n), constructible in time O(t(n)) and in space
O(t(n)), and for each function s(n),

SATIME -SPACE(t(n), s(n)) € ATIME - SPACE(t(n), s(n) + t(n)).

Proof. (Sketch) Let L(M)e SATIME-SPACE(t(n), s(n)). Now we describe sim-
ulation of machine M by M’, where L(M')e ATIME-SPACE(t(n), s(n) + t(n)):
The machine M’ has an auxiliary pushdown store and one more work tape.
The initial process, on the auxiliary work tape, deterministically computes the
value of the function t(n). This is possible in time O(t(n)) and space O(t(n)),
by the assumption. After computing the value of ¢(n), M’ nondeterministically
generates the number of broadcasted synchronizing signals ¢/, for some nondeter-
ministically chosen ¢’ < t(n), in time O(logt(n)). After that, M’ generates a
synchronizing sequence of length ¢’ to the auxiliary pushdown store. This can be
done in time O(¢(n)) and in space O(t(n)). Then M’ simulates M as follows:

— If the machine M does not communicate, then M’ executes the same
instructions which were executed by a machine M, including correspond-
ing existential/universal branchings. (If the branching is universal, then
all descendants of the process inherit the same content of the pushdown
store.)

— If some process x of M tries to communicate, broadcasting some synchro-
nizing signal ¢, then:

— If the auxiliary pushdown store is not empty, then the corresponding
process ' of M’ pops one pushdown symbol from top and compares
it with the synchronizing signal c. If they are equal, then 2’ continues
on the simulation. Otherwise (in case they are different) 2’ rejects
the input (HALT for wrong synchronizing sequence).

— If the auxiliary pushdown store of z’/ is empty, then x’ rejects the
input (HALT for wrong number of synchronizing signals).

166 N. POPELY

In the case the machine M accepts the input, the machine M’ accepts, because
there exists a sequence of synchronizing signals of length ¢’ < ¢(n), which is broad-
casted by each process of M, such that each process of M stops in an accepting
configuration. For this nondeterministically generated synchronizing sequence in
the auxiliary pushdown store, all processes x’ of M’ finish in accepting configura-
tions, for the right sequence of nondeterministic choices.

In the case the machine M rejects the input, then for each sequence of nonde-
terministic choices, each process x of M:

— is either aborted by a communication conflict, with some other processes
trying to broadcast a different synchronizing signals at the same time, (in
this case the corresponding process ' of M’ must stop and reject because
its “broadcasted” signal and the top of the pushdown store are different),

— or, without a communication conflict, stops in a rejecting configuration.
(In this case the corresponding process z’ of M’ stops and rejects, too.)

Thus the machine M’ accepts the input if an only if M accepts. In addition,
M’ works in time O(¢(n)) and in space O(s(n) + t(n)). Since M’ does not broad-
casts any synchronizing signals (the broadcasting is simulated by the pushdown
store), M’ is a classical alternating machine. a

We see that the synchronizing alternating machines are not more powerful than
the classical alternating machines, with respect to time. However, there is the
fundamental difference in the used memory.

Quite surprisingly, using more communication levels than two does not increase
the power of time bounded machines; for each r > 2, CA,PTIME = CA;PTIME =
NEXPTIME. The situation changes very dramatically for space bounds. The
communication hierarchy of space bounded CA,-machines is infinite, since, for
each r € N, CA, ,LOGSPACE = CA,PSPACE. Thus, CA5.LOGSPACE =
D(EXP)"TIME and CAs,;LOGSPACE = (EXP)"SPACE, for each r > 0. (Here
“(EXP)"™ represents an r times iterated exponential function. For example,
EXPEXPSPACE is denoted by (EXP)?SPACE.) This indicates that we can
solve very complex problems on parallel devices keeping the size of elements very
“small”, but the possibility to speed up the computation time is limited, even if
a parallel system can grow exponentially and reconfigure its topology during the
computation.

This extends the well-known characterization of DLOGSPACE, NLOGSPACE,
P, and PSPACE by deterministic, nondeterministic, alternating, and synchro-
nized alternating two-way multihead finite automata. The above characteriza-
tion represents just the first four members of an infinite hierarchy of multihead
automata, representing the entire fundamental complexity hierarchy. The first
“new” class added, is DEXPTIME, corresponding to the two-level communicating
alternation [2].

Since already the communication hierarchy of time bounded machines is finite,
it is not very surprising that the same holds for machines with simultaneous bounds

THE COMMUNICATION HIERARCHY OF ATIME—-SPACE MACHINES 167

on both time and space. However, this hierarchy is not equal to a time hierarchy.
The following corollary summarizes the known results [2]:

Corollary 1.6.

DLOGSPACE = DPTIME -LOGSPACE,
NLOGSPACE = NPTIME-LOGSPACE,

P = APTIME -LOGSPACE (CAy),
NP = SAPTIME-LOGSPACE (CA;),
PSPACE = CA,PTIME -LOGSPACE,
? — CA3PTIME -LOGSPACE,
NEXPTIME = CA,PTIME-LOGSPACE, for eachr > 4.

(Formally, nondeterministic and deterministic machines may be viewed as the
minus first and minus second levels of the hierarchy.)

The exact characterization of the class CAsPTIME - LOGSPACE in the hi-
erarchy was the open problem. In the following section, we shall give the ex-
act position of this class in the hierarchy, by showing that it is equivalent to
CALPTIME - LOGSPACE, which in turn is equal to PSPACE. Thus, adding the
third, global, level of communication to machines with two levels, that can ex-
change information locally within communication groups, does not increase the
computational power, if the machines are simultaneously bounded by polynomial
time and logarithmic space.

2. THE SIMULATION OF CA3 TM BY CAy; TM

As an initial point of this simulation, the construction presented in Theorem 1.5
is used (originally published in [7]). It describes a simulation of a synchronized
alternating ¢(n) time bounded machine by an equivalent O(#(n)) time bounded
machine without synchronization. The construction is based on the use of an
auxiliary pushdown store, in which the alternating machine nondeterministically
generates the entire sequence of synchronization signals of length O(t(n)) in the
initial phase. Further, the simulation proceeds “straightforwardly” but one dif-
ference; every time the simulating machine must execute a computation step in
which the process of the original machine tries to communicate with other pro-
cesses, the simulating machine pops the corresponding sequence of signals from
the additional pushdown store. Since the pushdown store was filled in the initial
existential phase, all processes running in parallel “inherit” its content, and hence
all processes proceed according to the same sequence of signals. Thus, the need of
a communication is avoided.

Our simulation of three communication levels by two is based on the same idea:
In the initial phase, a sequence of third level communication signals is nonde-
terministically generated, and it is “inherited” in the computation that follows.
Thus, there is no need to use more than two levels of communication. However,
the whole construction is much more complex than that in [7] for the following

168 N. POPELY

reasons: (a) To store the third level communication history, we can not use a sin-
gle pushdown store (neither some other sequential memory as, for example, tape),
because this increases the used memory from s(n) to O(s(n) + t(n)). Therefore,
the information must be distributed over the blocks, stored in O(t(n)) parallel
auxiliary processes. (b) To “reconstruct” the information about the third level
communication from these separate O(t(n)) processes, active processes exchange
information using only the first two communication levels. However, the simulated
original machine also uses the first two levels of communication. To avoid an in-
terference between the original messages broadcasted on the first two levels and
the imitated third level, we have to encode all signals by a suitable binary code
and to alternate transmission between the “original” first two and the third levels.

Before passing further, we need to avoid some technical problems by putting
the original machine into a “normal form”: we first avoid an interference among
processes broadcasting at different communication levels, at the same time. This
normal form was proved in [2].

Lemma 2.1. (First normal form): For each CA,-machine A, there exists an
equivalent machine A’ such that no pair of processes will ever interact using dif-
ferent communication levels. In addition, a process in a configuration broadcasting
a communication signal has a unique direct descendant.

Next, we show how we can construct a machine that broadcasts always exactly
2Mogt(m)] third level communication signals, instead of some ¢’ < t(n).

Lemma 2.2. (Second normal form): Let the function t(n) is constructible in
time O(t(n)) and in space O(logt(n)). Then, for each function s(n) and for each
machine M, where L(M)€ CA3TIME -SPACE(t(n), s(n)), there exist an equiva-
lent machine M’, such that L(M’)e CA3TIME -SPACE(t(n), s(n)+logt(n)) and
M’ broadcasts exactly 21811 third level communication signals, for each input
of the length n, and by each process running in parallel.

Proof. We describe the simulation of the original machine M by the machine
M’ with the above properties. Initially, M’ deterministically computes the value
of t(n), on an additional auxiliary work tape. This is possible in time O(t(n))
and in space O(logt(n)). To store value of the function t(n), M’ uses [logt(n)]
bits. After computing t(n), M’ sets all used bits to 1. Thus, we have stored a
binary code of the number 2U°gt(™)J+1 _ 1 Then M’ simulates the machine M
but, every time some process x of M broadcasts a third level communication
signal ¢ € {03, 13}, the corresponding process ' of M’ first decrements a value
of the counter containing initially 21°8*(™)1 on the auxiliary work tape, and then
it simulates the corresponding computation step of M. If some process x of M
accepts the input, then:
— If the counter for the third level signals is empty (i.e. it contains only
zero), then the corresponding process z’ of M’ accepts the input.
— If the counter is not empty, then 2’ repeatly broadcasts existentially (non-
deterministically) chosen communication signals O3 or 13 and it decrements
the value in the counter until its value is zero.

THE COMMUNICATION HIERARCHY OF ATIME—SPACE MACHINES 169

Hence, the whole computation runs on M’ in the same way as on M, with the
following difference: if, in the original machine M, processes broadcasted k third
level communication signals, where k < 2M1°8*(™)1 then the original sequence of
the third level signals will be completed with some signals to the length 28 ¢(")1,
Thus, M’ works in time O(t(n)) and space O(s(n) + logt(n)). O

Now we are ready for the main theorem.

Theorem 2.3. For each function t(n), constructible in time O(t(n)) and in
space O(logt(n)), and for each function s(n),
CA3TIME -SPACE(t(n), s(n)) C CA;TIME -SPACE(t(n), s(n) + logt(n)).

Proof. Let language £(M1) € CA3TIME-SPACE(¢(n),s(n)). By Lemma 2.2
(second normal form) we can replace M; by a machine My, where £L(Ms)€
CA3TIME-SPACE(t(n), s(n) + logt(n)), such that machine My broadcasts
exactly 21°8*(")1 third level communication signals. Using Lemma 2.1 (first nor-
mal form), it is possible to replace Ms by a machine M, such that £(M)e
CA3TIME - SPACE(¢(n), s(n) 4+ logt(n)) and no pair of processes of machine M
will ever interact using different communication levels, and broadcasting exactly
2-2M10gt (™)1 third level communication signals. (From the simulation of Lem. 2.1
(first normal form), it follows that each third level signal ¢5 € {0, 1} is encoded by
the sequence of communication signals 111503¢3, i.e., the number of broadcasted
third level communication signals will ezactly duplicate.) Moreover, each process
of the machine M, which is in a broadcasting state and broadcasts a communica-
tion signal, has exactly one direct descendant. Now, we describe simulation of M
by a machine M’, where L(M’)e CA2TIME-SPACE(¢(n), s(n) 4 logt(n)):

First, the initial process of M’ is universally branched into two processes x
and y. The process = and all its descendants provide the simulation of the ma-
chine M. (These processes will be called X-processes). The process y and all its
descendants, which are called Y-processes, first generate, nondeterministically, a
sequence of third level communication signals, and keep this sequence distributed
in their finite control states. Every time when X-processes need to communicate
on the third communication level, Y-processes will pass the corresponding third
level signal to X-processes, suitably encoded by a message in the first two levels of
communication.

Taking into account that the sequence of third level signals is generated in the
initial phase, before any splitting of processes into communications groups, all third
level signals broadcasted by Y-processes will be same in every communications
group. This can be done because, before the splitting some communication group
into two communication subgroups, each of Y-processes splits itself into the two
identical descendants so that third level communication information comes into
each subgroup.

In the initial phase, the initial Y-process on the first track of its auxiliary work
tape deterministically computes the value of ¢(n) (using some additional work
tapes, if necessary). Because the number of broadcasted third level signals will
be 2.2Mlogt(n)] storage of the whole sequence by one process would have required

170 N. POPELY

Y1 Yoo log t(n)]

FIGURE 3. Y-processes, initial branching.

too big space (more precisely 2-2M°8*M)1 ¢ ©(t(n)) bits). Therefore, the initial
Y-process universally splits 1 + [log t(n)]-times, which creates 22921 processes
working in parallel (Fig. 3). Each time the process branches universally, it stores a
bit 0 or 1 to the second track of its work tape. Hence, after 1+ [logt(n)] branch-
ings, 220t parallel working Y-processes will arise from the initial Y-process,
and each of them has the value t(n) on the fist track of its work tape and one bi-
nary encoded number i € {0,1,2,..., 2.2Mlogt(n)] _ 1} on the second track. These
numbers correspond to the chosen computational way in the computation tree.
Then each Y-process increments the second track value by 1. Hence, particular
Y-processes are assigned by values i € {1,2,3,...,2-2Mlgt(m)1}

FT1].. J1J1]1]1]1]¢ t(n)
Flol...[1]1]of[1]1]¢ ie{l,...,2-2Metml}

Finally, each Y-process nondeterministically chooses one bit — a third level
communication signal — and stores it into the control state. Thereby, we have
nondeterministically generated a sequence of the third level signals of the original
machine M. This procedure requires time O(log¢(n)) and no Y-process uses space
greater than O(logt(n)), since each process remembers only one communication
signal and its position in the sequence (i.e., some i € {1,2,3,...,2-2/legt()1}),
which is binary coded. Then the machine M’ simulates M with the following
differences:

Whenever processes of M do not communicate, the corresponding X-processes
of M’ execute the same instructions, and Y-processes of M’ are in the wait-
ing state. If some process x of M broadcasts a communication signals w €
{01,141,09, 15,03, 13}, then the corresponding process =’ of M’ broadcasts signals
encoded as follows:

Xk 01 14 0 1o 03 I; |
Xi(011101 011111 110102 110112 111101 111111 |

THE COMMUNICATION HIERARCHY OF ATIME—-SPACE MACHINES 171

031 @
QOOO L 0,
O

1

011,09 .3 O

OQOQ

FIGURE 4. First level communication (for ¢; = 01). Full circles
represent Y-processes, empty cycles X-processes.

In every case, before the signal w itself, it broadcasts the encoded number of
communication level using the first level signals (i.e., 0111, 1;01, or 1317). This
information is unnecessary for the X-processes, but, on its base, Y-processes will
“know”, whether they have to ignore the third broadcasted bit in waiting state
(for the communication on the first and the second levels), or to supply the third
bit to X-processes from the initially guessed third level communication history.
More detailed description of particular cases is the following.

— If some process = broadcasts a communication signal ¢; € {01,11}, then
the corresponding process x’ of machine M’ first broadcasts the binary
code of the communication level (i.e., 011;) and after it, it broadcasts
the signal c¢;. If some other processes within the same communication
group would try to broadcast communication signals of different level,
second or third, then a communication conflict would occur, because these
processes in M’ encode their communication signals b € {02,152} or b €
{03,153} by 1101b (or, respectively, 1111b...). If some processes, within the
same group, would try to broadcast signals of the same level (i.e., first),
but different from c¢;, we would also have the communication conflict,
since these signals are encoded by 0111¢], with ¢| # ¢;. In any case, the
computation will not be aborted only if all other X-processes, within the
same communication group, broadcast the same signal ¢; as well.

Concerning Y-processes of M’ present in the same communication
group, they all branch existentially in the next two steps, broadcasting
two nondeterministically chosen bits from {01,11}. Since we have an
X-processes broadcasting 0111¢1, only the branches of Y-processes, that
broadcast 011; will proceed further. As Y-processes were forced to pro-
ceed along the branch broadcasting the sequence 0;1;, they all “know”
that they must ignore the third broadcasted signal. Thus each Y-process
is branched once more, existentially for the third time, such that signals

172

N. POPELY

02/12
O
FIGURE 5. Second level communication — splitting the group.

0; or 1; are broadcasted. This allows them to skip and ignore the broad-
casted signal ¢;. As a result, Y-processes ignore the communication signal
on the first level, waiting for the next communication (Fig. 4).

If some processes broadcast communication signals co € {03,152}, then
the corresponding processes of M’ first broadcast the binary code of the
communication level (i.e., 1101) and, after it, they broadcast their sig-
nals co. If some processes within the same communication group would
try to broadcast communication signal of different level, first or third,
then a communication conflict would occur, because these processes en-
code their signals b € {01,11} or b € {03,135} by 0111b (or, respectively,
1114b...). If all processes within the group broadcast the second level
signals ¢y € {02, 12}, the corresponding X-processes of M’ broadcast mes-
sages of the form 1701ce. As a result, no conflict arises in the first two
steps, but, in the third step, the group is divided into two separate commu-
nication groups, the first communication group consists of all X-processes
broadcasting co = 02, the second one of those broadcasting co = 15. From
then on, X-processes within the separate offspring groups communicate
separately by the first level signals.

Concerning Y-processes in the group, since they nondeterministically
broadcast the two bits from {01,11}, they are forced to follow the path
along 110 in this case. Hence, they “know” that the next signal belongs
to the second level. Therefore, in third step, Y-processes split universally,
broadcasting 0 and 1,. That ensures that both offspring communication
groups will contain all Y-processes after the splitting (Fig. 5).

If some process x broadcasts a communication signal ¢z € {03,135}, then
the corresponding process x’ of M’ first broadcasts the binary code of
the communication level (i.e., 1117) and, after it, it broadcasts the cor-
responding first level signal ¢; € {01,11}. If some processes within the
same communication group would try to broadcast communication sig-
nals of different level, first or second, then a communication conflict would

THE COMMUNICATION HIERARCHY OF ATIME—-SPACE MACHINES 173

(@0 @ 0O) (000 000 (00 @ O

111101 111161 111161
(eec0)(@@ 000 (@@ O
Ifi=0: If i > 0:
3 3 Q
3 \ 3
° ® ¢
01 11 01 11 1
o
1 C1
o ¢ O
Halt &
Accept

F1GURE 6. Third level communication. Ovals represent particu-
lar communication groups.

occur, because these processes in M’ encode their signals b € {01,1;} or
b € {02,125} by 0111b (or, respectively, 1101b).

Similarly as in previous cases, Y-processes are, due to existentially broad-
casted signals 0; and 1y, forced to pass along the path 1711 in the first
two steps. Thereby, all Y-processes will “know” that the third level broad-
casting of M is simulated. According to this, each Y-process of M’ decre-
ments the value of its counter ¢ on its work tape. Recall that, in the ini-
tial phase, Y-processes were numbered by values i € {1,..., 2.2[logt(n)] 1,
where Y-process with number ¢ stores the ith third level communication
bit in its control state. (After the broadcasting of the first & third level
signals has been simulated, the first k& Y-processes (in each communica-
tion group) are already terminated in a halting and accepting state, the
remaining Y-processes are numbered by values i decremented by k.) After
decrementing of its counter ¢, each Y-process is testing whether ¢ = 0.

— If i = 0 (Fig. 6), then the Y-process deterministically broadcasts its
stored third level communication bit ¢ € {0,1}, encoded by {01, 11},
and stops in an accepting state. Thereby, it is guaranteed that each
X-process will “survive” the third step of its broadcasting 111;¢1, only
if ¢; is identical with the bit broadcasted by the ith Y-process. (Oth-
erwise, a communication conflict occurs and the whole computation

174 N. POPELY

is halted.) Since, in all communication groups, we have the same
Y-processes after the branching, all X-processes in all communication
groups must simulate the broadcasting of the same sequence of the
third level communication signals. (The sequence of the third level
signals — of length 2-2M°8*(")1 __ \ag generated by Y-processes in
the initial phase, before any splitting into groups.)

— If 4 > 0, then the ith Y-process knows that the time to broadcast “its”
stored signal has not come yet. Hence, it “ignores” the third level
signal of the encoded message 1111c¢1, i.e., it branches existentially,
where the particular branches broadcast signals 0; and 1;. (Fig. 6.)

For the simulation of the machine M, X-processes do not need time longer than
O(t(n)) and space bigger than O(s(n)). The only slow-down of X-processes is
due to the encoding of each communication signal by three signals. Y-processes
need, in addition, to decrement gradually the value of their counters from i to zero
using the operation i«—:¢—1. Since the value of each counter ¢ is not greater than
2.2Mogt(")1 1o Yoprocess neither uses time longer than O(t(n)), nor space bigger
than O(logt(n)).

Thus, the machine M’ works in time O(¢(n)) and in space O(s(n) + logt(n)). O

Since CAs-machines are special cases of CAs-machines, we get:

Corollary 2.4. For each function t(n), constructible in time O(t(n)) and in space
O(logt(n)), and for each function s(n) > logt(n),
CA3TIME - SPACE(t(n), s(n)) = CA,TIME - SPACE(t(n), s(n)).

3. CONCLUSIONS

It should be obvious that polynomials (i.e., functions ¢(n) = n*, for some k > 1)
can be constructed in polynomial time and logarithmic space, simultaneously. This
gives:

Corollary 3.1. CA3PTIME -LOGSPACE = CA;PTIME - LOGSPACE.

From Corollary 3.1, we obtain the complete characterization of hierarchy of
communicating alternating machines, which are both time and space bounded.
This completes the table presented in Corollary 1.6:

DLOGSPACE = DPTIME-LOGSPACE (CA_,),
NLOGSPACE = NPTIME-LOGSPACE (CA_y),
P = APTIME-LOGSPACE (CAy),
NP = SAPTIME-LOGSPACE (CA,),
PSPACE = CA,PTIME-LOGSPACE,
PSPACE = CA3PTIME-LOGSPACE,

NEXPTIME = CA,PTIME-LOGSPACE, for each r > 4.

THE COMMUNICATION HIERARCHY OF ATIME—-SPACE MACHINES 175

In other words, the standard alternating machines with polynomial time bounds
and simultaneous logarithmic space bounds represent an alternative characteriza-
tion of the class P. Adding the power of communication among processes running
in parallel (one level of communication) raises the power of such machines from P
to NP. By allowing, in addition, a second universal level of communication, that
enables the local exchange of information within dynamically organized commu-
nication groups, makes the class of such machines equivalent to PSPACE. The
contribution of this paper is that adding the third level of communication, that
provides, besides the local exchange of information within the groups, also the
global communication among all active processes, does not increase the computa-
tion power. Such machines still correspond to PSPACE. This resolves an open
problem stated in [2]. Adding one more level, the fourth, that groups the third
level communication into groups of higher rank (containing nested groups for the
first level communication), shifts the power from PSPACE to NEXPTIME. Fi-
nally, any additional number of levels can be simulated by four levels.

Open problem: Does Corollary 2.4 hold also in the case of s(n) # logt(n), or
if t(n) is not constructible?

It is possible to discard the assumption about constructibility of ¢(n), if we
consider the weak complexity measures. The machine is weakly t(n) time bounded
if, for each accepted input of length n, there exists at least one accepting computa-
tion tree the branches of which never execute more than ¢(n) computation steps.
Compare with Definition 1.4, where it is required that no computation uses more
time than ¢(n), no matter whether the input is accepted or rejected. The same
difference is between the strong (classical) and weak definition of space complexity.
We shall denote the corresponding weak complexity classes by adding the prefix
“weak—".

Theorem 3.2. For all functions t(n) and s(n):
weak-CA3TIME - SPACE(t(n), s(n)) C

weak-CAoTIME - SPACE(t(n), s(n) + logt(n)).

Proof. We can use the simulation described in Theorem 2.3. However, if we
want to leave out the assumption about constructibility, we need to do some
modifications.

Instead of computing t(n) on auxiliary work tape, the initial process of M’
nondeterministically generates the value ¢ = 2P, where p € N. For computing of
this value, time O(logt’) and space O(logt’) is sufficient. Then M’ works in the
same way as in Theorem 2.3, i.e., the initial process is universally branched into
two processes x and y. Descendants of the process x provide the simulation of M
and descendants of y the simulation of the third level communication.

Since the original machine M is weakly ¢(n) time bounded, for each accepted
input of length n there exists at least one accepting computation, whose time does
not exceed some value t” < t(n). But then there exists ¢’ = 2P (the power of two),
satisfying ¢/ < ¢’ < 2" < 2¢(n), such that M has an accepting computation whose
time does not exceed the value of #. (Among others, the number of broadcasted

176 N. POPELY

third level signals does not exceed t'.) For ¢’ nondeterministically chosen in such a
way (and a “correct” sequence of additional nondeterministic decisions), M’ will
have accepting computation, too, and its time does not exceed the value O(¢(n)).
It should also be obvious that X-processes do not use more space than O(s(n)), the
space used by processes of the original machine M. The space used by Y-processes
is, on the other hand, bounded by O(logt’) < O(logt(n)).

Thus, for weak time bound, we do not need any assumption about constructibil-
ity of t(n). The disadvantage of this machine is that the machine has, besides the
computation of length ¢, many additional computations (according to “incor-
rectly” generated values of ¢’ in the initial phase), with time greater than t(n).
One branch is even infinite (permanently increasing the value of ¢/, and allocating
more and more space for it). |

Corollary 3.3. For all functions t(n) and s(n), such that s(n) > logt(n):
weak-CA3TIME - SPACE(t(n), s(n)) = weak-CATIME - SPACE(t(n), s(n)).

REFERENCES

[1] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation. J. ACM 28 (1981) 114-33.

[2] V. Geffert, A communication hierarchy of parallel computations, Elsevier Science. Theoret.
Comput. Sci. 198 (1998) 99-130.

[3] J. Hromkovi¢, J. Karhumaki, B. Rovan and A. Slobodové, On the power of synchronization
in parallel computations. Discrete Appl. Math. 32 (1991) 155-82.

[4] A. Slobodovd, Communication for alternating machines. Acta Inform. 29 (1992) 425-41.

[5] A. Slobodova, Some properties of space-bounded synchronized alternating Turing machines
with universal states only. Theoret. Comput. Sci. 96 (1992) 411-19.

[6] P. van Emde Boas, Machine models and simulations, in Handbook of Theoretical Computer
Science, edited by J. van Leeuwen. Elsevier Science (1989).

[7] J. Wiedermann, On the power of synchronization. J. Inf. Process. Cybern. (EIK) 25 (1989)
499-506.

Communicated by J. Hromkovic.
Received June, 2001. Accepted August, 2003.

To access this journal online:
www.edpsciences.org

