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INTEGER PARTITIONS, TILINGS
OF 2D-GONS AND LATTICES

MATTHIEU LATAPY!

Abstract. In this paper, we study two kinds of combinatorial ob-
jects, generalized integer partitions and tilings of 2D-gons (hexagons,
octagons, decagons, etc.). We show that the sets of partitions, ordered
with a simple dynamics, have the distributive lattice structure. Like-
wise, we show that the set of tilings of a 2D-gon is the disjoint union of
distributive lattices which we describe. We also discuss the special case
of linear integer partitions, for which other dynamical models exist.
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1. PRELIMINARIES

A generalized integer partition problem, or simply a partition problem [8,17], is
defined by a (possibly infinite) Directed Acyclic Graph (DAG) G = (V, E) and a
positive integer h. A solution of such a problem, called a partition, is a function
a:V —{0,1,...,h} such that a(v) > a(w) for all v and w in V such that there is
an edge from v to w in G. The integer a(v) is usually denoted by a,, and the set
of all the solutions of a given partition problem (G, h) is P(G, h). The graph G is
called the base of the partition problem, and h is the height of the problem. We
extend here the usual definition by allowing h = oo, which means that the parts
may be unbounded.

A tiling problem is defined by a finite set of tiles T', called prototiles, and a poly-
gon P. A solution of the problem is a tiling: an arrangement of translated copies of
prototiles, called tiles, which covers exactly P with no gap and no overlap. We are
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concerned here with tilings of 2D-gons with parallelograms. A 2D-gon Z is defined
from a family of positive, plane, pairwise independent vectors {v1,vs,...,vp}, and
a set of positive integers {l1,l2,...,Ip} by:

D
= {Zaiviao <a; < Zi} .

i=1

When D = 2, one obtains parallelograms, when D = 3, one obtains hexagons,
when D = 4, one obtains octagons, etc. Each prototile is a parallelogram obtained
as the Minkowski sum of 2 vectors among the ones which generate the 2D-gon we
want to tile. A 2D-gon can be viewed as the projection onto the plane of a part of
a D-dimensional grid, and a tiling of this 2D-gon is nothing but the projection of a
particular set of faces of this part of grid [18]. Figure 1 shows a tiling of an hexagon
and one of an octagon. These tilings appear in various contexts. In particular,
they are one of the mains models used in physics to study quasicrystals [10].

7 P Wuﬁ/%

FiGure 1. Examples of tilings together with the vectors which
define the 2D-gons and the induced prototiles. Notice that remov-
ing the shaded tiles in the rightmost tiling gives back the leftmost
one.

In this paper, we will use dynamical models and order theory to prove some
strong structural properties of the set of tilings of a 2D-gon. In particular, some
special kinds of orders, namely distributive lattices, will appear. An order is a
lattice if any two elements have an infimum, i.e. a greatest lower element, and a
supremum, i.e. a lowest greater element. The infimum of two elements a and b in
a lattice L is denoted by infy (a,b) or a Ar b, and their supremum is denoted by
supy (a,b) or a Vp b. A lattice is distributive if for all a, b and ¢: (a AD)V (a Ac)
=aN(bVc)and (aVb) A(aVe)=aV (bAc). Lattices in general, and distribu-
tive lattices in particular, are strongly structured sets. Many general results and
algorithms are known about them. For more details, see [5].

2. THE LATTICES OF INTEGERS PARTITIONS

2.1. GENERALIZED INTEGER PARTITIONS

One can obtain all the solutions of a partition problem (G = (V, E), h) with
the following discrete dynamical model. We consider a partition a as a state of
the model, and a, as a number of grains stored at v € V. The initial state of the
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model is the empty one: a, = 0 for all v € V. Then, the following rule is iterated:
a grain can be added at v € V' if and only if the obtained configuration
18 a partition.
In other words, if a is the state of the model, then the transition a — b is possible
if there is a vertex v such that Vv # v, b, = a,, b, = a, + 1 and b is a partition.
The state b is then called a successor of a. See for example Figure 2.
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FIGURE 2.  The first partitions of the set P(G,2) for a given
graph G, with the possible transitions (not all the reachable par-
titions are displayed in this diagram).

Since there can be no cycle in a sequence of states of the model, this transition
rule induces a partial order over the possible states, i.e. over the set of partitions
P(G,h). This definition generalizes the well known Young lattice, which is ob-
tained when G is a directed linear chain of vertices infinite on its right, and with
h = oo. We can now state the main result of this section, which will be useful
during the study of tiling problems in Section 3.

Theorem 1. Given a partition problem (G = (V, E),h), the set P(G,h) equipped
with the order induced by the transition rule is a distributive lattice. Moreover,
the infimum (resp. supremum) of two given partitions a and b in this set is the
partition ¢ (resp. d) defined by:

Yo € V, ¢, = max(ay,by),

Yo €V, d, = min(ay, by).

Proof. 1t is clear that c is a partition. Consider now a partition . If for one
vertex v € V, v, < ¢, = max(ay, b,) then « is clearly unreachable from a or b by
iteration of the transition rule. Likewise, if for all v € V', v, > ¢, then 7 is clearly
reachable from c. Therefore, ¢ = inf(a,b). The proof for d = sup(a,b) is similar.
Therefore, P(G, h) is a lattice. Now, it is easy from these formula to verify that
the properties required for a lattice to be distributive are fulfilled. 0
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If h = 0o, one obtains an infinite lattice which contains all the possible partitions
over the base graph of the problem. Moreover, it is easy to verify that the sets
P(G, h) with h < oo are sub-lattices of the infinite one.

We will now use Theorem 1 to study special classes of partition problems,
the linear partitions. The reader mostly interested in tilings may directly go to
Section 3.

2.2. LINEAR PARTITIONS

When one considers a partition problem defined over a linear directed graph
(V =N, E={(i,i+1)}), then the solutions are called linear partitions, and the
obtained distributive lattice is known as the Young lattice. A linear partition of
an integer n is nothing but a decreasing sequence of integers, called parts, such
that the sum of the parts is exactly n. The order induced by the transition rule
is nothing but the componentwise order: a < b if and only if a; < b; for all .
Moreover, the infimum ¢ of two partitions a and b is given by ¢; = max(a;, b;) for
all 7 (the supremum is defined dually). Linear partitions have been widely studied
as a fundamental combinatorial object [1]. A linear partition is usually represented
by its Ferrer’s diagram, a sequence of columns such that if the i-th part is equal
to k then the i-th column contains exactly k stacked squares, called grains.

In 1973, Brylawski proposed a dynamical model to study these partitions [4]:
given a partition a, a grain can fall from column ¢ to column ¢ + 1 if a; —a;41 > 2,
and a grain can slip from column 4 to column 57 > i+ 1 if for all ¢ < k < 7,
ar = a; — 1 = a; + 1. Brylawski showed that the iteration of these rules from the
partition (n) gives the lattice of all the linear partitions of n ordered with respect
to the dominance ordering, defined by:

J J
a > b if and only if Zai > Zbi for all j,

=1 =1

i.e. the prefix sums of a are greater than or equal to the prefix sums of b. This
lattice is denoted by Lp(n). See Figure 3 (left) for an example. If one iterates
only the first rule defined by Brylawski, one obtains the Sand Pile Model and the
set of linear partitions obtained from (n) is again a lattice, denoted by SPM (n),
with respect to the dominance ordering [12]. See Figure 3 (right) for an example.
In [16] and [14], it is proved that when these models are started with one infinite
first column the sets of reachable configurations are infinite lattices, denoted by
SPM(oc0) and Lp(c0). It is also shown in these papers that, if one considers a
and b in SPM (o0) or Lp(oo) then their infimum c is defined by:

¢; = max Zaj’zbj — ch for all 1. (1)

j2i Jj=i Jj>i
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The lattice Lp(00) contains all the linear partitions, just as the Young lattice Ly .
We will now study the connection between the dynamical model defined by Bry-
lawski and the one defined in Section 2.1.
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FIGURE 3. The lattices Lp(7) (left) and SPM(7) (right), to-
gether with the Ferrer’s diagrams representations.

Theorem 2. The application:
TLg LB(OO) — Ly

such that 71, (a); is equal to y .-, a; is an order embedding which preserves the
mnfimum.

Proof. To clarify the notations, let us denote by 7 the application 7, , in this proof.
Let a and b be two elements of Lp(00). We must show that w(a) and 7(b) belong
to Ly, that a >, (o) b is equivalent to 7(a) >r, 7(b) and that infr, (7(a), (b))
= 7m(inf,, (o0)(a, b)). The two first points are easy: m(x) is obviously a decreasing
sequence of integers for any x, and the order is preserved. Now, let u = inf(a, b).
Then,

(Wi = XU

= max (ijiaj;ZjZibj) from (1)
max(m(a);, m(b);)
= inf(n(a), 7(b));

which proves the claim. 0

Notice that if one considers the restriction of 7z, to SPM(c0), denoted by
mspM, & similar proof shows that wspyr is an order embedding which preserves the
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infimum. However, these orders embeddings are not lattices embeddings, since

they do not preserve the supremum: if a = (2,2) and b = (1,1,1), then 71, (a)

= (4,2), mr5(b) = (3,2,1), ¢ = supp ,(5)(a;b) = (2,1) but 71, (c) = (3,1) and

supy, ((4,2),(3,2,1)) = (3,2). Actually, there can be no lattice embedding from

(c0) to Ly since the fact that Ly is a distributive lattice would imply that
)

Lp
Lp(co) would be distributive, which is not true.

3. TILINGS OF 2D-GONS

A dynamical transformation is usually defined over tilings of 2D-gons: when
three tiles form a small hexagon in a tiling ¢, then one can locally rearrange them
in order to obtain a new tiling ¢’ of the same 2D-gon. We then write t — ', and
t’ is said to be obtained from ¢ by a flip. The fact that we start with a given tiling
gives an (arbitrary) orientation to the notion of flips: the transformation of ¢’ into
t is called an inverse flip. In the following we will only be concerned with flips
(not inverse ones), unless explicitly specified. See Figure 5 for some examples.

Integer partitions and tilings of 2D-gons have been brought together in [9,10].
Some special cases were already known from [2,3,8] but the correlations between
partitions and tilings are treated in general for the first time in [10]. We will now
describe this correspondence shortly, since we will widely use it in the following.
For more details, we refer to the original papers.

Let us first recall the classical notions of de Bruijn lines and families [6,7]. Given
a 2D-gon tiling ¢ and a vector v used in the definition of the 2D-gon, the i-th family
of tiles of t is the set of all tiles defined using v. A line of this family is a subset
of this family obtained as the set of tiles crossed when one goes from one side
of the 2D-gon to the opposite side crossing only edges of tiles which correspond
to v. Each tile is crossed by exactly 2 de Bruijn lines, and there is no intersection
of 3 lines. On the other hand, the lines in a given family can never intersect.
For example, in Figure 1 (right) the tiles which belong to the third family of the
rightmost tiling are shaded. It contains two lines. Notice that removing the D-th
family of tiles in a 2D-gon tiling ¢ gives a 2(D — 1)-gon tiling, which we will denote
by t.

Given a 2D-gon tiling, one can always [10] give an orientation to the de Bruijn
lines such that for all family, each line in this family have the same orientation
and one can not go from a tile back to itself by following lines with respect to
this orientation. In the following, we will always suppose that such an orientation
is given. This leads to the definition of the graph of a tiling t: the vertices of
this graph are the tiles of ¢, and there is an edge between two vertices if the
corresponding tiles are adjacent, if they are in the same line, and if the orientation
of the line is the same as the orientation of the edge. See Figure 4 (left) for an
example.

First, let us see how one can associate a partition to a tiling ¢ of a 2D-gon Z.
For any tile 7 which is not in the D-th family (i.e. any tile in £), and any de Bruijn
line [ which is not in the D-th family, let w,; be the number of de Bruijn lines of
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FIGURE 4. From left to right: a partition which is solution of
a partition problem over the graph of a hexagon tiling (dotted),
the tiles of this tiling translated with respect to the values of the
corresponding parts and the vector vp, and the obtained octagon
tiling after completion. This gives an example of the function 7.
Notice that one can do the way back from right to left and obtain
this way an example for P.

the D-th family crossed when one goes from the tile 7 to the end of [ (following the
de Bruijn line). One can always choose the orientations to have wr;, = w,, where
l1 and [y are the two de Bruijn lines which cross 7. Therefore, one can denote this
value by w,. Now, consider the graph of ¢, G = (V, E), and the function p defined
for all v in V' by p(v) = w,, where 7 is the tile associated to the vertex v. This
function is a solution to the partition problem (G, h) where h is the total number
of de Bruijn lines in the D-th family in ¢. In the following, given a tiling ¢, we will
denote by P(t) the partition associated this way to ¢.

Conversely, given a partition p solution of the partition problem (G, h) where G
is the graph of a tiling ¢, one wants to define a tiling ¢ associated to p. Let Z
be the 2D-gon tiled by t. Let Z’' be the 2D-gon generated by the same family
of vectors than Z with an additional one: vp with Ip = h. Let us consider
the following partition of the set of vertices of G (and dually of the tiles of ¢):
Vi = {v € V such that p, = i}. One can now construct ¢ by insertion of a line of
the D-th family in ¢ between the tiles corresponding to the sets V; and V;4; for
all i. One obtains this way #’, the tiling of Z’ associated to p. In the following,
given a partition p, we will denote by 7 (p) the tiling associated this way to p. See
Figure 4 for an example.

This process gives a method to generate all the tilings of a given 2D-gon Z. One
starts from an hexagon tiling, which is nothing but the projection of the Ferrer’s
diagram of a planar partition [8]. See Figure 1 (left) for an example. From the
graph of this tiling, one defines a partition problem, the solutions of which are
equivalent to octagon tilings, as explained above. Likewise, one can construct
a 2(D + 1)-gon tiling from a 2D-gon tiling for any D, and so obtains a way to
generate 2D-gon tilings for any D. It is shown in [9,10] that the application 7,
which generate the tiling associated to a partition, is a bijection between the set
of the partitions solutions to (G, h) for all graph G; of a 2D-gon tiling and the
set of tilings of a 2(D + 1)-gon. Moreover, it is shown in these papers that this
bijection is an order isomorphism.

As already mentionned, it was shown in [13] and [11] that one can obtain all the
tilings of a 2D-gon from a given one by iterating the flip operation. A sequence
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of such transformations is denoted by —, which is equivalent to the transitive and
reflexive closure of —, also denoted by >, depending on the emphasis given to
the dynamical aspect or to the order theoretical approach. We denote by T(Z, D)
the set of all the tilings of the 2D-gon Z ordered by >. An example is given in
Figure 5. Notice that all sequences of flips (with no inverse flips) from a tiling to
another one have the same length [9], which will be useful in the following;:

Theorem 3. The set T(Z, D) is the disjoint union of distributive lattices L; such
that a flip transforms a tiling in L; into another one in L; if and only if it in-
volves at least one tile of the D-th family. Moreover, for allt € L; and v € Lj,
l=usi=j.

Proof. Let us consider the maximal subsets L; of T(Z, D) such that a flip goes
from a tiling in L; to another one in L; if and only if it involves at least one tile
of the D-th family. It is shown in [10] and [9] that such a set, equipped with the
transition rule described above (flip), is isomorphic to the set of the solutions of
a partition problem, depending on Z and D, equipped with the transition rule
described in Section 2 (addition of one grain). We know from Theorem 1 that this
set is a distributive lattice. Therefore, we obtain the first part of the claim.

It is then clear that if s and ¢ are in L; then 5§ = ¢: it suffices to notice that if
t — ¢’ such that this flip involves at least one tile in the D-th family then ¢ = ¢'.
Moreover if 5 = ¢ then s can not be obtained from ¢ with a flip involving three tiles
with none of them belonging to the D-th family: such a flip changes the position
of the tiles in 5 and #. This ends the proof. 0

Theorem 4. Let a, b and ¢ be in a L; (L; being one of the sets partitioning
T(Z, D) defined in Th. 3) such that a is the unique maximal element of L; and b
1s its unique minimal element. If a flip involving three tiles none of them belonging
to the D-th family is possible from c then it is possible from a and b.

Proof. First notice that, since a flip inside L; involves tiles which are in the D-
th family, @ = b = & Therefore, the flip from ¢ is possible from a and b if
the three tiles it involves are neighbours in a and b. From Theorem 3, P(a)
and P(b), the partitions which correspond to the tilings a and b, are respectively
the maximal and minimal elements of the set P(G,h) of solutions to a partition
problem (G, h). Therefore, from Theorem 1, P(a) and P(b) have all their parts
equal to respectively 0 and h. Then, from the definition of 7 = P~1, all the tiles
which do not belong to the D-th family tile an hexagon included in Z, and so all
the flips involving three such tiles are possible from a and b. O

We can now define the order T'(Z, D) as the quotient of T'(Z, D) with respect
to the equivalence relation s ~ t & 5§ = t, i.e. defined by the lattices L;. In
other words, we consider the set of the lattices L; as the set of vertices of T'(Z, D),
and there is one edge from L; to L; in T'(Z, D) if and only if there is at least a
transition from one element of L; to one element of L; in T(Z, D). Also notice
that if, given a tiling of a 2D-gon Z, we delete the tiles in the D-th family, we

obtain a new tiling of a 2(D — 1)-gon. This 2(D — 1)-gon only depends on Z and
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FIGURE 5. T(Z,4) for a given octagon Z. The possible tran-
sitions (flips) are represented. The shaded tiles show the 4-th
family, and the dotted sets are the distributive lattices Ly, Lo
and Ls, as stated by Theorem 3.

does not depend of the considered tiling, since, as one can easily verify, if t — t/
then ¢ and ¢’ tile the same 2(D — 1)-gon. Let us denote by Z this 2(D — 1)-gon.

Theorem 5. The order T(Z, D) is isomorphic to the order T(Z,D — 1).

Proof. From Theorem 3, one can associate to each L; € T(Z, D) a tiling ¢; such
that for all @ in L;, @ = t;. It is clear that t; is in T(Z, D — 1). Conversely, if
one has a tiling of Z, then one can use the construction of a 2(D + 1)-gon tiling
from a 2D-gon tiling described above to obtain a tiling ¢ of Z. Therefore, there
is a bijection between T(Z, D) and T(Z,D — 1). We will now see that it is an
order isomorphism. From Theorem 3, if there exists a flip a — b between two
tilings a € L; and b € L; with i # j, then it does not involve any tile of the D-th
family, and so there exists a flip t; — ¢; in T(Z,D —1). Conversly, if there is a
flip t; = ¢; in T(Z,D — 1), then there exists a € L; and b € L; such that a — b:
from Theorem 4, it suffices for example to take the maximal elements of L; and
L; respectively for a and b. Therefore, T(Z, D) is isomorphic to T(Z, D — 1). 0

With these theorems, one has much information about any set 7'(Z, D): it is
the disjoint union of distributive lattices, and its quotient with respect to these
lattices has itself the same structure, since it is isomorphic to T'(Z, D — 1). This
shows that the sets T'(Z, D) are strongly structured, and makes it possible to write
efficient algorithms based on this structure.
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4. CONCLUSION AND PERSPECTIVES

We gave structural results on generalized integer partitions and tilings of
2D-gons. Our main tools were dynamical models and order theory, which allows
a simple presentation of the topic.

There are two immediate directions in which it seems promising to extend the
results presented here. The first one is to study generalizations of 2D-gon tilings in
higher dimensions, namely zonotope tilings. In dimension 3, it is not even known
wether all the tilings of a given zonotope can be obtained from a particular one
by flipping tiles. The introduction of a new definition of the tilings of zonotopes,
based on the notions of orders and lattices, may help in understanding this. The
other important remark is that the choice of the D-th family all along our work is
arbitrary. This means that one could choose any family in place of the D-th, and
so there are many ways to decompose T'(Z, D) into a disjoint union of distributive
lattices. This is a strong and surprinsing fact, which has to be fully explored.

Finally, one may wonder if the results presented here always stands when the
support of the tiling is not a 2D-gon. It would be interesting to know the limits
of our structural results. They may be very general, and lead to sub-lattices
properties of the obtained sets of tilings. Likewise, it would be useful to study
what happens when the size of the 2D-gon grows to infinity. Some results about
that are presented in [10] and [9] but a lot of work remains to be done.
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