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Abstract. We answer to a question of De Luca and Restivo whether
there exists a circular code which is maximal as circular code and not
as code.
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Introduction

The theory of codes is closely concerned with the two notions of completeness
and maximality. From this point of view, the equivalence between completeness
and maximality has been established for famous families of codes as thin codes
([1], p. 67), thin circular codes [4], thin codes with finite deciphering delay [2] and
thin codes with finite synchronization delay [3]. Recently, we have established this
equivalence for the so-called class of code with finite interpreting delay [5, 7].

More precisely, let F be one of the previous families and let X ∈ F , then X is
complete if and only if X is maximal in F . These families of codes even satisfy a
stronger equivalence: X is maximal in F if and only if X is maximal in the general
family of codes. The proofs of this powerful result lead on the particular case of
thin codes.

In the case of dense codes, it is natural to wonder whether the equivalence still
holds. Of course, as any dense code is complete, the question of the equivalence
between completeness and maximality does not raise (for example, the restricted
Dyck code is dense but not maximal). But what about the equivalence between
the maximality in some family F and the maximality in the family of codes? When
F is the family of bifix, prefix or suffix codes, we know that this equivalence does
not obtain ([1], p. 145), but the question remains open for the other classes of
codes of the literature.

This paper answer to a question of De Luca and Restivo in [4] whether there
exists a circular code which is maximal as circular code and not as code. In fact
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we answer negatively by exhibiting a circular code which is maximal in the family
of circular code and not maximal in the family of codes.

This paper is organized as follow:
The Section 2 is devoted to the preliminaries and definitions.
In Section 3, we give the construction of a circular code which is maximal as

circular code but not maximal as code.

1. Definitions and preliminaries

We denote by A an alphabet, by A∗ the free monoid it generates and by ε the
empty word.

Given a word w ∈ Σ∗, the set of all factors (prefixes, suffixes) of w is denoted by
F(w) (P(w), S(w)). The set of the proper prefixes (proper suffixes) of w is equal
to P(w) \ {w} (S(X) \ {w}).

Two words u, v are P-comparable if they are comparable for the prefix order,
that is u ∈ P(v) or v ∈ P(u). Similarly, u and v are S-comparable if they are
comparable for the suffix order.

We denote by |w| the length of the word w.
Now, we recall the definitions of some well-known codes:
A non empty subset X ⊂ A+ is a code if for any n,m > 1 and for any

x1, . . . , xn ∈ X , y1, . . . ym ∈ X the following condition holds:

x1 . . . xn = y1 . . . ym ⇒ n = m, xi = yi i ∈ [1, n] .

A non-empty set X 6= {ε} is a prefix (suffix ) code if none of its elements is prefix
(suffix) of another one. A non-empty set X 6= {ε} is a bifix code if it is prefix and
suffix.

A code X is circular if for any n,m > 1, x1, . . . , xn ∈ X , y1, . . . , ym ∈ X ,
p ∈ Σ∗ and s ∈ Σ+ the equalities

sx2 . . . xnp = y1 . . . ym, x1 = ps

imply

n = m, p = ε and xi = yi for i = 1, . . . , n.

We denote by Fcode (Fcirc, Fbifix) the family of codes (circular codes, bifix codes).
A dense code X is a code such that F(X) = A∗. A thin code X is a code which

is not dense, that is A∗ \ F(X) 6= ∅. A code X is complete if X∗ is dense, that is
F(X∗) = A∗.

Let (F ,F ′) be a pair of the preceding families of codes such that F ⊂ F ′. Let
X ∈ F . We say that the set X is maximal in F ′ if it is not strictly included in an
another element of F ′.

In the case where F is equal to Fcirc and where F ′ is equal to Fcode, we have
the following result:
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Theorem 1.1. Let X be a thin code belonging to Fcirc. The three following prop-
erties are equivalent:

(i) X is complete;
(ii) X is maximal in Fcode;
(iii) X is maximal in Fcirc.

The part (i)⇐⇒ (ii) is due to Schützenberger [8]. The part (ii)⇐⇒ (iii) is shown
by De Luca and Restivo in [4].

The purpose of this paper is to show by an example that if we omit the hypoth-
esis “X thin” then the relation (ii)⇐⇒ (iii) is no more true in general.

Let X ⊂ A∗ and let w ∈ A∗. An X-interpretation of w is a (n+ 2)-tuple

(d0, d1, . . . , dn, dn+1)

such that d0 ∈ S(X) \ X , dn+1 ∈ P(X) \ X , di ∈ X for 1 6 i 6 n and w =
d0.d1 . . . dn+1.

If w = d1 . . . dn ∈ X∗, the X-interpretation (ε, d1, . . . , dn, ε) is a trivial inter-
pretation of w.

Let w ∈ A∗ and let u,w′, v ∈ A∗ such that w = uw′v. Let (d0, d1, . . . , dn, dn+1)
be an X-interpretation of w.

The X-interpretation (d0, d1, . . . , dn, dn+1) induces an X-interpretation for w′

iff there exist s ∈ S(X) \ X , p ∈ P(X) \ X and i, j ∈ N, 0 < i 6 j 6
n + 1 such that s ∈ S(di−1), p ∈ P(dj) and w′ = sdidi+1 . . . dj−1p (see Fig. 1).
The X-interpretation (s, di, . . . , dj−1, p) is the X-interpretation of w′ induced by
(d0, d1, . . . , dn, dn+1).

s

dn+1

w

p

d0

dj�1di

w0

dj�1di

Figure 1. Induced interpretation.

When X is a code, we shall say, for short, that the triple (s, d, p) is an X-
interpretation of w when s ∈ S(X) \X , d ∈ X∗, p ∈ P(X) \X and w = sdp (as X
is a code, d has a unique X-factorization).
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2. A maximal circular code which is not maximal as code

For any u ∈ A∗, we set

Lab(u) = b(ab)+u,

Rab(u) = u(ab)+a,

LRab(u) = b(ab)+u(ab)+a.

And finally we denote by Extendab(u) the set

Extendab(u) = LRab(u) ∪ Lab(u) ∪Rab(u) ∪ {u}·

The purpose of this section is the study of the set that is described below.

We set

U1 = {ab},
Un = Un−1 ∪{

b(ab)nu(ab)na
∣∣ u ∈ bA∗a ∩An, Extendab(u) ∩ U∗n−1 = ∅

}
, n > 2.

Let

U =
⋃
n>1

Un.

The following of this paper is devoted to the proof of the above theorem, which is
an answer to a question of De Luca and Restivo:

Theorem 2.1. The set U is a circular code, maximal in Fcirc but not maximal in
Fcode.

The proof of this result is divided in three part. First we prove that U is a bifix
code which is not maximal in Fbifix. This prove that U is not maximal. Then we
prove that U is a circular code. Finally we prove that U is maximal in Fcirc.

2.1. U is not a maximal code

In this section, we prove that U is a bifix code. The non-maximality of U will
follow directly. Afterwards we prove a lemma which will be helpful in the proofs
of the next sections.

Lemma 2.2. The set U is bifix.

Proof. We first prove that U is a prefix code. By definition, the word ab is not
prefix of another word in U (b is prefix of any word in Un, n > 2).

It remains to prove that U \U1 is a prefix code (U1 = {ab}). By contradiction,
we assume that there exist x, y ∈ U \ U1 such that y ∈ P(x), x 6= y. More
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precisely, let u, v ∈ A∗ and n,m be such that n = |u|, m = |v|, x = b(ab)nu(ab)na
and y = b(ab)mv(ab)ma. We have |x| > |y|, thus 5n+ 2 > 5m+ 2 that is n > m.
Since b(ab)mb ∈ P(y) (v ∈ bA∗), we have b(ab)mb ∈ P(x). Moreover, as n > m,
we have b(ab)mb ∈ P(b(ab)n). That contradicts the fact that bb is not a factor of
b(ab)n.

Hence, the set U is a prefix code. In a similar way, it may be proved that U is
suffix.

Therefore the set U is a bifix code.

Hence we have the first part of the proof of the Theorem 2.1.

Corollary 2.3. The set U is not maximal in Fcode.

Proof. Clearly U ∪ {bb} still remains a bifix code.

The following lemma (see Fig. 2), which is quite technical, will be helpful in the
proof of Lemma 2.6.

b

u

a

y

w

ab a b b

a

bababa a

bababa

Figure 2. Lemma 2.4.

Lemma 2.4. Let x, y ∈ U \ U1. Let u, v ∈ bA∗a such that x = b(ab)|u|u(ab)|u|a
and y = b(ab)|v|v(ab)|v|a. Assume that there exists a proper prefix w of y that
satisfies the two following conditions:

(i) w ∈ S(u);
(ii) y and w.(ab)|u|a are P-comparable.

Then we have w = b(ab)|v|v.

Proof. Our proof will be done in two parts:
1. first, we prove that w ∈ P(b(ab)|v|v);
2. then we prove that b(ab)|v|v ∈ P(w).

The conclusion will follow directly.
1. First we shall prove that w ∈ P(b(ab)|v|v). By definition of u, a is suffix of
u, thus since w ∈ S(u), a is suffix of w.
We have that y and w.(ab)|u|a are P-comparable. Hence we must study the
two cases where y ∈ P(w.(ab)|u|a) and w.(ab)|u|a ∈ P(y). We shall prove
that in this two cases we have w.ab ∈ P(y).
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• Assume that y ∈ P(w.(ab)|u|a) (Fig. 3). By definition of y, aba is suffix
of y. Moreover w is a proper prefix of y thus wa is prefix of y. We have
seen that a is suffix of w, thus aa is suffix of wa. Since by definition of
y, aa is not suffix of y, the word wa is a proper prefix of y, hence we
have w.ab ∈ P(y).

a b bab

u

w

av

b a

y

a

baa b

a baba ab

Figure 3. Lemma 2.4, y ∈ P(w.(ab)|u|a).

• Trivially, if w.(ab)|u|a ∈ P(y) then w.ab ∈ P(y).
We have w.ab ∈ P(y) and aab is a suffix of w.ab. Then, since aab is not
a factor of (ab)|v|a, the word w.ab is a prefix of b(ab)|v|v.ab (it must be
remembered that y = b(ab)|v|v(ab)|v|a), that is w is a prefix of b(ab)|v|v.

2. Now, we shall prove that b(ab)|v|v ∈ P(w).
• Assume that y ∈ P(w.(ab)|u|a).

By definition of y, we have b.(ab)|v|.v.a ∈ P(w.(ab)|u|.a). Now a is a
suffix of v, thus aa is a suffix of b.(ab)|v|.v.a. As aa is not a factor of
(ab)|u|.a, we have b.(ab)|v|.v.a ∈ P(w.a), that is b.(ab)|v|.v ∈ P(w).
• Assume that w.(ab)|u|a ∈ P(y).

As b(ab)|v| ∈ P(y), we have b(ab)|v| ∈ P(w) or w ∈ P(b(ab)|v|) but, since
the word aa is a suffix of wa and aa is not a factor of b.(ab)|v|, we have
b.(ab)|v| ∈ P(w). Since w is a suffix of u, we have |w| 6 |u| and the
condition b.(ab)|v| ∈ P(w) implies |v| < |w|. We have |v| < |w| 6 |u| and
w.(ab)|u|a ∈ P(y), thus

b.(ab)|v|.v ∈ P(w.(ab)|u|).

Therefore there exists u′ ∈ A∗ such that w.(ab)|u| = b.(ab)|v|.v.u′. But
w.(ab)|u|.a ∈ P(y) and y = b(ab)|v|.v.(ab)|v|a, thus u′ ∈ P((ab)|v|a).
Hence, if u′ = ε then w.(ab)|u| = b.(ab)|v|.v and otherwise we have
b.(ab)|v|.v.a ∈ P(w.(ab)|u|). Therefore we have

b(ab)|v|v.a ∈ P(w.(ab)|u|.a).

Now aa is a suffix of b.(ab)|v|.v.a and aa is not a factor of (ab)|u|a,
thus b.(ab)|v|.v.a ∈ P(w.(ab)|u|.a) yields b(ab)|v|.v.a ∈ P(w.a), that is
b(ab)|v|.v ∈ P(w).
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Consequently, we have w prefix of b(ab)|v|.v and b(ab)|v|v prefix of w, thus we have
w = b(ab)|v|.v.

By considering the reversed words, similar arguments lead to the following
lemma:

Lemma 2.5. Let x, y ∈ U \ U1. Let u, v ∈ bA∗a such that x = b(ab)|u|u(ab)|u|a
and y = b(ab)|v|v(ab)|v|a. Assume that there exists a proper suffix w of y that
satisfies the two following conditions:

(i) w ∈ P(u);
(ii) y and b(ab)|u|.w are S-comparable.

Then we have w = v(ab)|v|a.

2.2. A property of the U-interpretations

The following lemma gives a powerful property that must be satisfied by any
word in U \ U1. This is the sinews of our main result.

Lemma 2.6. Any word in U \ U1 has no non-trivial U -interpretations.

Proof. Let x ∈ U \ U1. By definition of U , there exists u ∈ A∗, such that x =
b(ab)|u|u(ab)|u|a (we have x ∈ U|u|). We set n = |u|.

By contradiction, we consider a non-trivial U -interpretation of x, namely I =
(d0, d1, . . . , dk, dk+1), k > 0.

First, we assume that I does not induce a U -interpretation for the factor ab.u.ab
of x, that is ab.u.ab is a factor of a word in U .

More precisely, let w ∈ U be the word equal to b(ab)|v|.v.(ab)|v|a such that w ∈
{d1 . . . dk} or d0 ∈ S(w) or dk+1 ∈ P(w) and such that ab.u.ab is a factor of w.

Since aa is suffix of bua and aa is not a factor of b(ab)|v| and since bb is prefix
of bua and bb is not a factor of (ab)|v|a, we have u ∈ F(v). Moreover this implies
|u| 6 |v|, hence, by definition of w and x, we have x ∈ F(w). But, as I is a non
trivial interpretation, this case can not appear.

Now, we assume that I induces a U -interpretation (s′, di+1, . . . , dj , p
′), 0 6 i 6

j 6 k, s′ ∈ S(di), p′ ∈ P(dj+1), for the factor ab.u.ab of x. We set d′ = di+1 . . . dj
(see Fig. 4) and we deal with the length of s′.

• |s′| = 0. In this case, if p′ = ε then we have ab.u.ab ∈ U∗. Hence u ∈ U∗
since ab is not a proper prefix nor a proper suffix of a word in U . Moreover,
the words in U \ Un−1 are of length greater than n (indeed they are of
length greater than or equal to 5n+ 2), therefore u ∈ U∗ and |u| = n yields
u ∈ U∗n−1. Hence, since x = b(ab)|u|u(ab)|u|a ∈ Un, this contradicts the
definition of Un.
We have also p′ 6= b. Indeed, otherwise the word aa is suffix of d′. Now, as
the words in U are of length at least 2 and as no word in U has such a suffix,
this case can not appear.
Finally, p′ 6= ab. Indeed, otherwise we have ab.u ∈ U∗, hence u ∈ U∗.
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b a b aabbab b

dk+1did1d0 dj+1 = w

aa

s0 d0 p0

a

u

b

Figure 4. I induces a U -interpretation for the factor ab.u.ab.

As for the case where p′ = ε, we have u ∈ U∗n−1, which contradicts the
definition of Un.
Consequently, we have |p′| > 2, thus p′ ∈ P(U \U1). Hence, if j 6= k (j = k),
there exists v ∈ A+ such that the word dj+1 is equal to (is a prefix of)
b(ab)|v|.v.(ab)|v|a. We set w = b(ab)|v|.v.(ab)|v|a. It must be remembered
that p′ is a prefix of dj+1.
Since s′ = ε, the prefix ab of ab.u.ab is factor of d′ (a is not in U), thus
p′ ∈ S(u.ab).
More precisely p′ is a prefix of dj+1, thus we have

p′(ab)−1.(ab)|u|a = dj+1 . . . dk+1.

Therefore, if j + 1 6= k + 1 then, since in this case we have dj+1 = w, we
have w ∈ P(p′(ab)−1.(ab)|u|a), otherwise if j + 1 = k + 1 then we have
dj+1 = p′(ab)−1.(ab)|u|a, thus, since in this case we have dj+1 ∈ P(w), we
have p′(ab)−1.(ab)|u|a ∈ P(w).
Hence w and p′(ab)−1.(ab)|u|a are P-comparable. Moreover, we have p′.(ab)−1 ∈
P(w)\w, p′.(ab)−1 ∈ S(u) thus, by Lemma 2.4, we have p′.(ab)−1 = b(ab)|v|.v.
That is p′ = b(ab)|v|.v.ab.
Therefore, u.(ab)|v|−1.a = d′.w ∈ U∗n−1 (we have d′ ∈ U∗n−1 since |d′| 6 |u|
and w ∈ Un−1 since |v| < |u|). This contradicts the definition of u (we have
Rab(u) ∩ U∗n−1 = ∅).
• |s′| = 1. With this condition, the word bb is a prefix of d′. By definition of
U , this case cannot occur.
• |s′| = 2. As for the case |s′| = 0, by substituting u for ab.u, similar argument

yields the similar contradiction.
• |s′| > 2. In this case s′ ∈ U \ U1. Thus, if i 6= 0 (i = 0), there exists v ∈ A+

such that the word di is equal to (is a suffix of) b(ab)|v|.v.(ab)|v|a. We set w =
b(ab)|v|.v.(ab)|v|a. Thus we have (ab)−1.s′ ∈ S(w) \ {w}, (ab)−1.s′ ∈ S(u),
w ∈ S(b(ab)|u|.(ab)−1.s′) or b(ab)|u|.(ab)−1.s′ ∈ S(w) hence, by Lemma 2.5,
we have s′ = ab.v.(ab)|v|a.
By considering the length of the corresponding word p′, exactly one of the
four following cases occurs.
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– If |p′| = 0 then we have ab.u.ab = ab.v.(ab)|v|a.d′, thus b(ab)|v|.u.ab =
w.d′. Hence we have

b.(ab)+.u.ab ∩ U∗n−1 6= ∅,

since ab ∈ U is not a suffix of words in U \ U1, we have

b.(ab)+.u ∩ U∗n−1 6= ∅.

This contradicts the definition of u.
– If |p′| = 1 then we have

b.(ab)+.u.a ∩ U∗n−1 6= ∅.

As aa is not suffix of words in U , this case can not appear.
– If |p′| = 2 then we have

b.(ab)+.u ∩ U∗n−1 6= ∅.

This contradicts the definition of u.
– If |p′| > 2, by a similar argument to the one in the case |s′| = ε, |p′| > 2,

Lemma 2.4 yields

p′.(ab)+.a ∩ Un−1 6= ∅.

Therefore we have b.(ab)+.u.(ab)+.a ∩ U∗n−1 6= ∅, this contradicts the
definition of u.

Thus the interpretation I of x can not induces a U -interpretation for the word
ab.u.ab.

Therefore, the words of U \ U1 has no non trivial U -interpretation.

2.3. U is a circular code

The following sections are dedicated to the proof of the Theorem 2.1. Before
all it must be proved that U is circular. This is done by Proposition 2.7.

Proposition 2.7. The set U is a circular code.

Proof. Let x1, . . . , xn, x
′
1, . . . x

′
m ∈ U , s ∈ A+, p ∈ A∗ be such that

x′1 . . . x
′
m = sx2 . . . xnp and x1 = ps.

Without loss of generality, we can assume that |s| 6 |x′1| (otherwise we consider
the equation x′2. . . . .x′m.x′1 = (x′1

−1
.s).x2 . . . xn.(p.x′1)).

If x′1 ∈ U \ U1, then, by Lemma 2.6, we have s = x′1. Thus, by Lemma 2.2, we
have p = ε, n = m, xi = x′i for 1 6 i 6 n.
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It remains to study the case where x′1 = ab. Since s ∈ P(x′1), exactly one of the
two following cases occur:
• s = a. In this case, we have m > 2 (m = 1 implies p = b, now ba /∈ U).

If n = 1, since we have x1 = ps = a−1.x′1 . . . x
′
m.a, we have x1 ∈ U \ U1.

The word x1 has a non trivial U -interpretation (b, x′2 . . . x
′
m, a), Lemma 2.6

assures that this case can not appear. If n > 2 then x2 ∈ U \ U1 and x2 has
a non trivial U -interpretation (b, x′2 . . . x

′
k, p
′), with k < m, p′ ∈ P(xk+1).

With such a condition, according to Lemma 2.6 this case can not occurs.
• s = ab. In this case p = ε (ab is not suffix of words in U \ {ab} and we have
ps ∈ U), hence by Lemma 2.2, we have p = ε, n = m, xi = x′i for 1 6 i 6 n.

As a consequence, only the trivial interpretation holds. In other words, U is a
circular code.

2.4. Some properties of U

The three following lemmas give us some properties that we hold when we add
an element to U . They will be helpful to prove the maximality of U in Fcirc.

Lemma 2.8. Let y ∈ A+ \ U+ and z ∈ U∗.{y}.U∗. If the following condition
holds: ∃k > 1, LRab(z) ∩ U+

k 6= ∅,

then U ∪ {y} is not a circular code.

Proof. We have LRab(z) ∩ U+
k 6= ∅ thus, by definition of LRab(z), there exist

n,m > 0 such that
b.(ab)n.z.(ab)m.a ∈ U+

k .

Let w = b.(ab)n.z.(ab)m.a. Since ab ∈ U , the tuple (b, (ab)n, z, (ab)m, a) induces a
(U ∪ {z})-interpretation (b, ab, . . . , ab, z, ab, . . . , ab, a) of w.

By definition, we have z ∈ U∗.y.U∗. Let u1, . . . , ui, u
′
1, . . . , u

′
j ∈ U with i, j > 0

such that z = u1 . . . ui.y.u
′
1 . . . u

′
j. The interpretation (b, ab, . . . , ab, z, ab, . . . , ab, a)

of w induces a U ∪ {y}-interpretation of w which is equal to

(b, ab, . . . , ab, u1, . . . , ui, y, u
′
1, . . . , u

′
j, ab, . . . , ab, a).

Consequently the word w has a U ∪ {y}-interpretation (s, d, p) with ps ∈ U (we
have ps = ab) and p 6= ε. By definition of U , we have Uk ⊂ U , thus Uk ⊂ U ∪{y}.
Therefore we have w ∈ (U ∪ {y})∗ and we have proved that this word has a non
trivial circular (U ∪{y})-factorization. Consequently we have proved that U ∪{y}
is not a circular code.

Lemma 2.9. Let y ∈ A+ \ U+ and z ∈ U+.{y}.U+. If the following condition
holds:

∃k > 1, z ∈ U+
k ,

then U ∪ {y} is not a circular code.



MAXIMAL CIRCULAR CODES VERSUS MAXIMAL CODES 361

Proof. We shall prove that U ∪ {y} is not a code. Let z1, z2 ∈ U+ such that
z = z1.y.z2. Since z ∈ U∗k , we have z1.y.z2 ∈ U∗k (it must be remembered that
z ∈ U+.{y}.U+). By definition, we have y /∈ U∗, thus the word z has two distinct
U ∪ {y}-factorizations: one U -factorization induces by the condition z ∈ U∗k (by
definition of U , we have Uk ⊂ U) and one U ∪ {y}-factorization induces by the
three U ∪ {y}-factorizations of z1, y and z2. This proves that U ∪ {y} is not a
code, hence it is not a circular code.

Lemma 2.10. Let y ∈ A+ \U+ and z ∈ (U \U1)+.{y}.(U \U1)+. If the following
condition holds:

Extendab(z) ∩ U∗|z|−1 = ∅,

then U ∪ {y} is not a circular code.

Proof. By definition of U , the words of U \ U1 belongs to bA∗a. Hence, we have
z ∈ bA∗a. It follows that if Extendab(z)∩U∗|z|−1 = ∅ then, by definition of U|z|, we
have b(ab)|z|.z.(ab)|z|a ∈ U|z|. By Lemma 2.8, the code U ∪ {y} is not a circular
code.

2.5. U is maximal in Fcirc

We are now able to establish the main result of the paper. As a matter of fact,
it remains to prove that U is maximal in Fcirc. Indeed Corollary 2.3 stands that
U is not a maximal code.

Proposition 2.11. The set U is maximal in Fcirc.

Proof. Let y be a word in A∗ \ U∗. In order to prove that U is maximal in Fcirc,
we shall prove that U ∪ {y} is no more a circular code.

If LRab(y)∩U+ 6= ∅ then let z ∈ U+ such that z ∈ LRab(y). Let z1, . . . , zn ∈ U ,
n > 0 such that z = z1 . . . zn. By definition of U , we have

zi ∈ U
max

n
|zj |
∣∣16j6no, 0 < i 6 n.

Let k = max
{
|zj|

∣∣ 1 6 j 6 n
}

. We have LRab(y) ∩U+
k 6= ∅. By Lemma 2.8, the

set U ∪ {y} is not a circular code.
Therefore we shall assume that LRab(y) ∩ U∗ = ∅.
Let x be a word in U \ U1 and let z = xyx. We are now yield to examine the

set U ∪ {z} in order to prove that the set U ∪ {y} is not circular.
By Lemma 2.10, if Extendab(z) ∩ U∗|z|−1 = ∅ then U ∪ {y} is not circular.

It remains to study the case where Extendab(z) ∩ U∗|z|−1 6= ∅. By definition of
Extendab(z), this implies that at least one of the four following conditions is
satisfied:

(i) LRab(z) ∩ U∗|z|−1 6= ∅;
(ii) z ∩ U∗|z|−1 6= ∅;
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(iii) Rab(z) ∩ U∗|z|−1 6= ∅;
(iv) Lab(z) ∩ U∗|z|−1 6= ∅.

In the sequel, we shall prove that, in each case, the set U ∪ {y} is not circular.
(i) If LRab(z)∩U∗|z|−1 6= ∅ then, by Lemma 2.8, the set U ∪{y} is not circular.
(ii) In a similar way, if z ∩ U∗|z|−1 6= ∅ then, by Lemma 2.9, the set U ∪ {y} is

not circular.
(iii) Assume that Rab(z) ∩ U∗|z|−1 6= ∅. By definition of Rab, there exist n > 0,

h > 0 and u0, u1, . . . , uh ∈ U|z|−1 such that xyx(ab)na = u0.u1 . . . uh.
First, since U is bifix, we have u0 = x, that is

yx(ab)na = u1 . . . uh and h > 1. (1)

Let 0 6 k < h be such that y = u1 . . . uku
′, u′ ∈ P(uk+1) \ uk+1. Notice

that the definition of u′ is unique (k is the greatest integer satisfying the
condition y = u1 . . . uku

′ with u′ ∈ P(uk+1)).
By Lemma 2.6, the word x ∈ U \ U1 has no non trivial U -interpretation,
thus we have x ∈ F(uk+1). Hence, we have uk+1 ∈ U \ U1 (U1 = {ab}).
More precisely we have u′x ∈ P(U). By equation (1) and since uk+1 ∈ A∗a,
there exists m such that uk+1 = u′x(ab)ma.
Since uk+1 ∈ U \ U1, there exist w ∈ bA∗a such that

uk+1 = b(ab)|w|w(ab)|w|a.

Since x ∈ A∗a, we have |w| = m and u′x = b(ab)mw.
In order to prove that U∪{y} is not circular, we consider the word z′ = xzx.
We shall prove that we have (Lab(z′)∪Rab(z′))∩U∗|z′|−1 = ∅. Indeed, if this
condition is satisfied, at least one of the two following situations occurs:
• Either

(LRab(z′) ∪ Lab(z′) ∪Rab(z′) ∪ z′) ∩ U∗|z′|−1 = ∅

and then by Lemma 2.10, the set U ∪ {y} is not circular.
• Or

(LRab(z′) ∪ z′) ∩ U∗|z′|−1 6= ∅.

Once again, by Lemma 2.8, the set U ∪ {y} is not circular.
We prove that (Lab(z′) ∪ Rab(z′)) ∩ U∗|z′|−1 = ∅ by considering the two
following cases:
• We shall prove that Rab(z′) ∩ U∗|z′|−1 = ∅. By contradiction, assume

that Rab(z′) ∩ U∗|z′|−1 6= ∅.
Let u′′ = u′xx, by definition of z, we have z′ = xxyxx, thus since
y = u1 . . . uku

′, we have z′ = xxu1 . . . uku
′′ (see Fig. 5).

We have Rab(z′) ∩ U∗|z′|−1 6= ∅, thus there exist h′ > 0, m′ > 1,

α0, . . . , αh′ ∈ U|z′|−1 such that z′.(ab)m
′
a = α0 . . . αh′ . Since U is
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abaab
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u00

yx x x x

Figure 5. Rab(z′) ∩ U∗|z′|−1 6= ∅.

prefix, the equation

xxu1 . . . uku
′′ = α0 . . . αh′ .((ab)m

′
a)−1

yields u′′ ∈ U∗P(U) (we have α0 = α1 = x, ui = αi+1 for 1 6 i 6 k).
Let h′′ > 0, β1, . . . , βh′′ ∈ U , β ∈ P(U) such that

u′′ = β1 . . . βh′′β = u′xx.

Assume that h′′ > 0. By definition of U , since u′ = b(ab)|w|w, we have
β1 ∈ U \ U1 and there exists r > 0 such that β1 ∈ b(ab)rbAr−2a(ab)ra.
Since w ∈ bA∗a, we have r = |w| and u′ ∈ P(β1). Moreover, if
|u′| < |β1| < |u′xx| then, since U is bifix, x has a U -interpretation (see
Fig. 6), Lemma 2.6 states that this can not appear. Hence |β1| = |u′xx|.
However U is suffix, thus x can not be suffix of β1. Hence we have
h′′ = 0, that is

u′′ ∈ P(U).

As u′x = b(ab)mw and u′xx = u′′ ∈ P(U), the word b(ab)mwb (we
have x ∈ U \U1, thus b is prefix of x) is a proper prefix of a word in U .
Hence, by definition of U , there exists w′ ∈ bA∗a such that

b(ab)mwb ∈ P(b(ab)|w
′|w′(ab)|w

′|a).

As w ∈ bA∗, we have |w′| = m, thus w = w′. This implies b(ab)mwb =
b(ab)mwa which can not appear.
Thus we have Rab(z′) ∩ U∗|z′|−1 = ∅.

• Now, we prove that Lab(z′)∩U∗|z′|−1 = ∅. By contradiction, we assume
that Lab(z′) ∩ U∗|z′|−1 6= ∅. With this condition, there exist u′′ ∈ S(U),
k′ > 0 and u′i ∈ U , 1 6 i 6 k′ such that z′ = u′′u′1 . . . u

′
k′ . Since U is

suffix, we have u′k′ = u′k′−1 = x. Now z′ = x.x.u1 . . . uku
′.x.x, therefore

we have x.x.u1 . . . uku
′ = u′′u′1 . . . u

′
k′−2. Hence, we have u′ ∈ S(U+).
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x x
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Figure 6. h′′ > 0 induces a U -interpretation for x.

Let s ∈ S(U) and let t ∈ U∗ such that u′ = st. The word u′.x.(ab)ma
has a U -interpretation (s, t.x.(ab)m, a).
We have seen that u′.x.(ab)ma ∈ U , thus by Lemma 2.6, this case can
not appear.

We have proved that (Lab(z′)∩U∗|z′|−1)∪ (Rab(z′)∩U∗|z′|−1) = ∅, that is

(Lab(z′) ∪Rab(z′)) ∩ U∗|z′|−1 = ∅.

Hence U ∪ {y} is not circular.
(iv) In a similar way, when Lab(z)∩U∗|z|−1 6= ∅, we hold that the word z′ = xzx

satisfies (Lab(z′) ∪Rab(z′)) ∩ U∗|z′|−1 = ∅. Hence U ∪ {y} is not circular.

Consequently, the code U is maximal in Fcirc.

Therefore we have proved the Theorem 2.1: U is a circular code, maximal in
Fcirc and not maximal in Fcode.

Actually, there are only two families for which we know that the equivalence
between the maximality in the family and the maximality in the family of codes
is hold. This is the family of synchronous codes [6] and the family of uniformly
synchronous codes [3]. However, these families are included in the family of thin
codes. It is natural to wonder if there exists a family of codes, which intersects
the family of dense codes, such that the two notions of maximality are equivalent.
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