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A PROBABILISTIC ANALYSIS
OF A NEW SATISFIABILITY ALGORITHM (*)

b y B . A P O L L O N I a n d S. D i G R E G O R I O (*)

Communicated by G. AUSIELLO

Résumé. — Un algorithme pour le problème de la satisfabïlitè a été développé et une analyse
probabilis tique montre que, dans Vhypo thèse de pleine randomicité sur les variables logiques, un temps
polynomial, mais non « presque partout », est demandé en moyenne par Valgorithme. Cet algorithme
est comparable avec celui qui descend de la méthode de V arbre de Galil, celui-là étant le plus rapide que
nous connaissons, celui que nous proposons est en moyenne encore plus rapide.

Abstract. — An algorithm has been developed for the satisfiability probtem, wher e probabilis tic
analysis shows average polynomial time cost, but not "almost everywhere", with respect to input
lenght for full randomness in the logical variables. The average running time of this algorithm compares
favourably with the Galil tree method which is the fastes t y et known.

1. INTRODUCTION

Satisfiability for conjunctive normal forms is the key problem in studying the
complexity of JVP-complete problems [4, 7, 8, 9]. Of the various algorithms
proposed for solving this problem, the enumeration tree procedure devised by
Galil [6] is considered the fastest yet known.

Although our algorithm has essentialy the same structure as that of Galil, the
particular représentation of the clauses not only makes probabilistic analyses
more manageable but also brings about improvements.

The main characteristic of both these algorithms is that they can detect and
reject in toto some groups of éléments in the search space which cannot be
solution: the wasteful running time involved in testing éléments one by one is
generally avoided.

The particular algorithm we propose uses ternary strings to represent both the
afore-mentioned groups and the femaining search space. A better séquence of
opérations takes place and the groups obtained can then be probabilistically
treated using the Markov process theory.

(*) Received in May 1981.
(1 j Dipartimento di Sistemi, Universita' della Calabria, Arcavacata (Cosenza) Italia.
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2 0 2 B. APOLLONI, S. Dl GREGORIO

When the n propositional variables constituting the input clauses are assumed
fully random, it is found that the expected running time of our algorithm is a
polynomial from the cardinality p of the input clauses indipendent of n.
Moreover the distribution law of this running time is such that the probability of
the time exceeding a polynomial of the input length decreases, but does not
vanish, as n increases.

Given a probability e arbitrarily small, it is at any rate possible to find a
polynomial g(n, /?), such that the probability that the running time is greater
than this polynomial, is less than e.

Classes of gênerai boolean formulae requiring a polynomial time for
satisfiability have been already identified [12, 14], but only simple cases are
evidentiated in our interest field.

The probabilistic results mentioned early indicate that, when our algorithm is
used, the bulk of the instances are included in the polynomial classes as n
increases.

2. PRELIMINARY DEFINITIONS AND NOTATIONS

The satisfiability problem, which arises in mathematical logic, consists in
verifying whether a formula in conjunctive normal form is contradictory.

It is usually defined in a short form [8] as follows:
LetL = {xl5 x2, . . . , xn, xl9 .. . x„} be a set of literals; any subset of L which

does not contain a complementary pair of literals, is said to be a clause; an
instance of the problem is a set of clauses { Fu F2 . . . Fp}; the property to be
verified is the existence of a solution clause F such than F n Ff ̂  Ç), z = 1, 2 .. . /?.

Example 1; An instance of the problem with solution is given by:

{( X l 5 X 2 , X3 , X6 j , | X 2 , X 3 , X4 j , ( X±, X2 , X$ ƒ> \ - ^ 1 J -̂ 5» %6 ƒ>

\x2, x3, x4 j , \Xi, x2 j , [ x2, x3, x4 | j ,
with solution:

{xl5 x2, x3 j .

We propose an alternative input représentation for the satisfiability problem.

DÉFINITION 1: Let L = {0, 1, *} be a set and #L = 2n; each clause F is
represented by a string s e 27 such that:

s(j) = * o Xj> *j$F> 7=1, 2 .. . n,
where s(j) is the y'-th element of s.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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In our représentation an instance of the problem is a set of strings
I = {5l5 s2i • . . , sp } £E". A string st is satisfied by s if there exists a j such that

A solution of the instance I is a string 5 such that all the strings in / are satisfied
by s.

Example 2: Example 1 in our représentation:

7 = 000**1, *111**, 00**0*, 1***10, *011**, 10****, *110**

with solution string 101***

The définitions and properties given to the strings are analogous to those of
the clauses they represent:

DÉFINITION 2: Star(s) = number of stars in s:

— s is complete if star (s) = 0, otherwise it is incomplete;
— - Cs is the set of complete strings obtained by substituting 0,1 for each star of

s in ail possible combinations;

— Cs is obviously logically equivalent to s.

PROPOSITION 1: Tvoo sets {sl9 s2 • . . sm), {s[, sf
2 . . . s'm.} are equivalent iff:

m m'

u cs = u c&

DÉFINITION 3: We call Ts the union of ail sets of strings equivalent to s. In other
words s' e Ts is either s itseîf or s with some stars replaced by 0 or 1.

PROPOSITION 2: CS^TS, TS^TS, CS,^CS with s'eTr

Example 3; *ll*01 is equivalent to 011*01, 111*01; note that for

DÉFINITION 4: A function - : S -• S is defined such that —(0) = l , —(l) = 0,

- ( * )=* ;
- a string s such tha t s(J)= —s(j) anc* 7 = 1, 2 . . . n will be called the

opposite string to s;

— I = {sl912> • • • » S
P} is called the set of non solutions {cf. Prop. 3) of the

instance with su s2, ..., sp respectively opposite to slt s29 • • ., sp of / .

( - 1

_ _ p

PROPOSITION 3: st e / , s' e T- cannot be a solution of I by définition 1. U Q, is
: 1

therefore the set of all complete strings which are not solutions;

— s'eTs satisfies si9 if s satisfies st;

— s'ç Ts is a solution if s is also a solution.

vol. 16, n° 3, 1982



204 B. APOLLONI, S. Dl GREGORIO

DÉFINITION 5: The Galil algorithm used in our représentation develops a
binary tree level by level from the root until a solution node is reached. The
required steps are as follows:

(1) the root is labelled with all the strings in ƒ;
(2) each left (right) node at the level v is labelled with the strings of the parent

node with the v-th element equal to 1 or * (0 or *);
(3) a left (right) node at level v is a solution node, if it cannot be labelled, i. e.

when the parent node lacks strings with the v-th element equal to 1 or * (0 or *).
The path from the root to a node générâtes a séquence of 0,1 (go left, go right),
which, when padded at the end with enough stars to obtain a string of length n,
represents a string, the node-string. The node-stririg of a solution node is a
solution string;

(4) if in a node label at level v there is a string s such that s{j) = *9

j = v H-1, . . ., n, then such a node is a leaf. Nodes at level n must necessarily also
be leaf s.

PROPOSITION 4: The Galil tree has the following proper ties which can be directly
deduced from the above rules and previous définitions:

— if s is a node-string of any one node and s' is a node string of its successor
then s' e Ts,

— the strings in the label of a node are all those strings in the input which are
not satisfied by lts node-string, p

— a node is a leaf if its node-string s is such that se U Tjt, thus neither the

node itself nor its successors can be solution nodes.

Example 4: An example of Galil's algorithm is given in figure 1, the instance of
satisfiability problem is the same instance of Examples 1 and 2, the solution
string is 101***, the node string of the leaf node is 01**** the opposite of the
input string 10****

A "reasonable" measure of the algorithmic complexity of Galil's algorithm is
the number of strings in the Galil tree. Of course values of the measurements on
both our représentation and that of Galil are the same.

3. THE SUBSTRACTION ALGORITHM

Given an instance of the satisfiability problem, suppose that we seek solutions
in 5, i. e. we seek solutions in the " search space" Ts; if Jk is some non-solution and

>, then it is possible (according our rules) to break s into the

R.A.LR.O. Informatique théorique/Theoretical Informaties
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* 1 1 1 * *
000**1
0 0 * * 0 *
1***10
* 0 1 1 * *
1 0 * * * *
*110* *

* 1 1 1 * *

1 * * * 1 0

* 1 1 0 * *

*01 1 * *

1 0 * * * *

1 * * * 1 0

leaf node

1 * * * 1 0 1 * * * 1 0

* 1

* 1

1

1

1 * *

0 * *

* 1 1 1 * * * 0 1 1 * *

* 1 1 0 * * 0 0 0 * * 1

00**0*

/ \

* 1 1 1 * * s o l u t i o n

* 1 1 0 * * n o d e

Figure 1. - The Galil tree.

equivalent set {s0, s1 . .. sm} such that TSo=TsnT7k and U TStnTJk = Ç). A

search for a solution will then be continued in sl9 s2, . . . , sm.
The gênerai intuitive idea of the subtraction algorithm is that a solution is

obtained by subtracting the non-solution space from the search space.

DÉFINITION 6: comp : S " x I " ^ { true, false } is so defined:

comp(5f, sk) is true if

PROPOSITION 5: If comp(si9 sk) is true andseTs then compas1, sk) is true.

vol. 16, n° 3, 1982



206 B. APOLLONI, S. Dl GREGORIO

DÉFINITION 7: If c o m p ^ , sk) is true, s% is a string so defined:

otherwise:

sïkU) = sk(j)> 7 = 1 , 2 . . . » ;

cost Csi; 5fc) = star (st) — star (j9fc).

Example 5; j £ = **l l*01, j k = * l l l l * l , c o m p t a sfc) is true, ^ = *111101.

PROPOSITION 6: 7 ^ = TS(n TSk# 0 , C& = Cs nCSk^0 if comp(si9 sk) is true.

THEOREM 1: If comp (su sk) is true and m = cost (sti sk), there is a set:

such that:

(1) Csu nCsv = 0 where u^v and u, v range 0 to m, i. e.;

comp(j"k J jVfc) is false;
m

(2) U Csm = CSi i. e. the set {s®k, s]k, . . . , s™k} is equivalent to st.

w — 0

Proof: If m = 0 ; then s^k — Si and steTSt.

If m>0 then l g r l 5 r2, . . . , rm^m are such that 5i(rh) = *:

t A = l , 2 m.

A spécification of s]k, s2
ik . . . s^ can then be given by the foliowing rules:

(ö) sUikU)^Si(J)> w=l» 2, . . . , m, 7 ^ r l s r2, . . . , rm

with 7 ranging from 1 to n\

(b) J?ii(r l l)=-J? J k(r l l)=-j J k(rJ, « = l , 2 . . . m ;

(c) ^ ( r > 4 ( r ( ) = 5fe(rt), « = 2. . .m, r = l, 2, . . u - 1 ;

(df) J"fc(rf) = *9 M = 1, 2. . . m - 1 , f = M + l, u + 2, ... ., m.

Assertion 1 can be proved for w = 0 or v~0 by considering property (è) and
that ^ k (ru) # *, u = 1, 2. . . . m. It can be proved for M 7e 0 and D # 0 by considering
properties (b) and (c): suppose u<v then:

^ ( O = 4 (O and ^ ( O = - 4 K ) 5

thus comp(5"k5 s
v
ik) is false since ^k(rw)=^*.

For assertion 2 let 5CGC5 . beconsidered: ^sc(rh) — s^k(rh) and/i — 1 , 2, . . . , m,
then sceCso, otherwise there is l^h'^m such that $c(7v)?^°k(?v) and
5c(rA<A') = *?fc(rh)» i n which case sceC^'by properties (à), (è), (c), (rf). D

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Example 6;

sk = 000**0
4=0000*0 *jk=i**o*o

4 = 01*0*0
4-0010*0

sc =000010 e C5o sc -011000 e Q
C l ik 2 ik

Theorem 2 follows directly from Theorem 1 and Définition 7:

THEOREM 2:

DÉFINITION 8: The substitution of sf by s\k, 4 . . . s™k is called the subtraction of
sk from j ; involving the positions ru r2 . . . rm: sub(5^ ^k) = {̂ >̂ slk • • - s?u}-

Note that when comp (st, sk)is false then sub (st, sk) — Si and the subtraction is
said not effective; if s% — st sub (si,sk) = 0 and the subtraction is said total

L E M M A 1: If comp(si9 sk) is true, sub{si9sk) in ru r2 . . . r m = { 4 , 4 . . . 5 ^ }
5fe 7 .̂, ^en comp^-, 5k) is true,

Sj, sk) in r'l9 r'2 . . . r'm = {s)k9 s)k. . . j ^ }

PROPOSITION 7: Supposing comp($$, $k) ÏÖ è
^ q ^ n , we can o b t a i n s u b ( s i s sk) — s \ k , s 2

i k . . :s™k w i t h s f k ( q ) ^ ^ , w = 1 , 2 . . . m

LEMMA 2: Given an instance of the satisfiability problem I = {s1, s2 . . . ^p} a
( v \

string is a solution if Csn I U Q. ) =Ç)i.e*comip(s, si)isfalseandi=l, 2 . . . u.
\t-i 7

Proof: By Proposition 3. D

DÉFINITION 9: If 5 e sub (5', 5"), then s is a son of s' and 5' is the father of s.
The définitions of successor, ancestor and brother are immediately obvious.

vol. 16, n° 3, 1982



208 B. APOLLONI, S. Dl GREGORIO

DÉFINITION 10: Let s be a string and T= {sl9 s2 . •. sq} a set of strings, then
G* T is defined as follows:

Glr- U

where:

must be such that comp (5(v_1)i, jr.) is tme; if such r< doesn't exist, then it is
indifferent which rt must be taken.

Note that in this définition particular strings to be substracted are not specified
as long an effective substraction can be be made.

LEMMA 3: C q n U Cs 1 = 0 where T={sl9 s2.. .sq).

Proof: Suppose that s' e CGg , steT and comp (s\ s) is true, considering
that s' was obtained after q subtractions and that no subtraction of st was
performed, then a string sr^st in T was subtracted twice.

The second substraction of st, was not effective against the définition of

Lemma 2 and 3 enables us to develope an algorithm which has been intuitively
sketched at beginning of section 3. Let 5 be the set of all the complete solutions

_ p

and S = (J C^ the set of all the complete strings which are not solutions for some
i = 1

instance of the satisfiability problem / = { sx, s2, . • •, sp }, then CS = SKJ S where s
is the string with all stars. If 7 l s J2 • • -~sP

 a r e subtracted from s and Gfj, Gjj...
are generated, in the positive case we obtain a string s such that comp (s, lt) is
false and i =• 1, 2} . . . , / ? , i. e. s is a solution by Lemma 2; in the négative case
GsJ^fö is obtained since CÇ = S and no solution can be found.

THEOREM 3: The following subtraction algorithm holds for the satisfiability
problem:

1. v = 0;

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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- 12. generate G-Sj, such that between possible sub tractions from s^^^eG*.
v - 1 ' •*> I

i = l, 2, . . . , #G5,7 priority is given in order: (1) to total subtractions,
(2) to subtractions învolving only a position;

3. if there is sVi e Gj y such that comp (sv., ïj ) isfalse andj —1,2, . . ., p, //zen sVt is

a solution string. Stop;

4. ifG~j = Ç), there is no solution string. Stop;

5. v <- v + 1 , go to step 2.

Note that the spécification of priority in step 2 for minimizing the cost of the
algorithm is trivial

Example 7 : We apply the subtraction algorithm for that instance of Example 4
where the Galil algorithm was used.

Ji —111**0 J5 = *001**

. J7 =0***01

;F4=OI****

GSJ= {******}

G.1y={0*****9 10****, 11**0*}

because sub (******, n**i*) j s performed:

* * * * * *

11**1*

10****
11**0*

G?7={00****, 101***, 1001**, 110*0*, 111*01}

because sub (0*****, 01****),

sub(10****, *000**), sub (11**0*, 111**0) are performed:

vol. 16, n° 3, 1982



210 B. APOLLONI, S. Dl GREGORIO

01**** *ooo** 111**0

00**** 101*** 110*0*
1001** 111*01

101*** is the solution string.
Analogously to the Galil algorithm a "reasonable" measure of algorithmic

p

complexity in the subtraction algorithm is £ # Gi -, where/?' is such that there

is s e Gi y solution string, or G~ y = Ç).

In order to compare our algorithm with that of Galil one we must specify
which subtraction has to be performed and which order must be given to
position r1,r2, .. ., rm involved in the subtraction.

Although such a spécification brings about an increase in the cost of the
subtraction algorithm it is essential so that comparison can be made.

DÉFINITION 11: For each possible subtraction we put r1 <r2... <rm, and we
chose from the various subtractions possible that which has a minimum value ru
r2> - - • > rm when the lexicographie order for such séquences is considered.

LEMMA 3: Such spécifications enable two goals to be obtained in order:
(1) total sub tractions are performed\ when possible;

(2) strings in Gl-have thev—th element different from *, if possible. When for

seG?~ s(v) = *, then for s' successor of s in G!yV, 1y
/(v) = *, i.e. there is no

sub traction for the sons of s in the position v.

Proof: The démonstration of property 1 is trivial. Suppose, for demonstrating
property 2, that for a string saeG~- there is no sub traction involving the
position v, then the same holds for all the successors of sa by Lemma 1. This
property guarantees that if a subtraction is performed for a string 5eG.Vy , then
the first position involved in this subtraction is r1 ̂  v, if r x = v then all the strings
obtained by subtracting s have, by Prop. 7, a different symbol from * in
position v. D

A binary tree —the subtraction tree— will now be developed from the root,
level by level and from left to right. lts nodes at level v will be labelled by the
éléments of Gjy with the following rules, until a solution node is found:

(1) the root is labelled with the element of G- -\

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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(2) at each level each left (right) node is labelled with strings obtained by
subtraction from strings of parent node and having at the v-th position 0 or * (1 ).
Note that in the Galil algorithm we have the contrary rule, because opposite
strings are used.

If a node is labelled by a string which cannot be subtracted, it is a solution node
and the string s is a solution string.

Example 8: The subtraction tree is built for the same instance of Examples 4
and 7. The numbers in parentheses identify subtractions strings carried out
below the tree.

It will be shown in the appendix that, in the worst case, the number of strings
present in a subtraction tree is of the same order of the magnitude as the number
of the strings in the Galil tree for the same instance of the satisfiability problem.

Fundament ally, in both trees string multiplication occurs in correspondence
with the input strings stars in the Galil tree and with the stars of Gj - strings in our
case,

Except for particular distribution of the input strings stars, the Galil tree has a
far wider span than that of the subtraction tree.

o o * * * * ( 2 ) 1 * * * * * ( 3 )

0 0 1 * * * ( 5 ) leaf 1 0 * * * * 1 1 0 * * *

0 0 0 0 * * ( 4 ) 1 1

*

0

1

0

*

1

*

0

leaf

0)
* * * ** * * *
* * * *
* * * *
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001*00

sol u tion string

( 2 )
0 0 * * * *

* 0 0 1 * *
0 01 * * *

0000**

Figure 2.

1

1

1

1

1

-

( 3 )
* * * * *

1

0

1
1

1 * * 0
* * * *

0 * * *
1 * * 1

(M
0000**
*000* *

0

The subtraction tree.

(5)
0 0 1 * * *

0***01
001*1 *

001* 00
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4. PROBABILISTIC ANALYSIS OF THE SUBTRACTION ALGORITHM

p

In this section the probabilistie analysis of the variable LSot r # U Gjo T will be

performed, where s0 is a generic string such that wt = «-star (s), n being the string
length and OiZ^^n, T= {su s2.. .sp}, such that star (s1 ) = star {s2). .. = star
(sp) and u2=n-stsiT (s) and Og:w2^«.

This analysis can, whithout any loss of generality, be applied to our algorithm
in the regular case of 3-satisfiability problem [4, 8, 9, 7].

In this section we shall be concerned with evaluating the expected value
E [LSQ T], the variance V[LSo T] and the limiting distribution law of LSot T, where
mathematical expectation is performed with respect to the statistical population
of strings in T, for given values both of the string length and # r(respectively n
and/?). The results obtained hold when Tis assumedfull random, i. e. when the
positions of the n — u2 stars in each string of T are a random sample from the n
variables positions assumed to be equiprobable, and the values of the u2

literals are a randon sample from a Bernoulli population with parameter
PB = 0,5.

LEMMA 4: IfsveG^T9 then star (s)^n-v~u1.

THEOREM 4: When full randomness is assumed, there exist a polynomial g such
that E[LSo T]^g(p) and a polynomial g' such that V[LSQ T]<gf(p, n).

Proof: Let us cohsider a string Sj with star (sj) S « - ux - v, which itself verified
hypothesis of full randomness. If st e T, and we assume Sj e G*o Tr the probability
that comp (si9 Sj) is true and that the cost (st!) Sj) = m is given by:

P (m, j \ i | v, sp st) = P {[comp (sj9 st)]

n [cost {sj9 st) = m] \ Sje G^ ^s^T}

where the term in square parentheses in (1 ) refers to the probability that m stars of
Sj match with m nonstars of st and the right hand term is the probability that the
remaining nonstars of st are equal to the corresponding éléments of Sj. Equality
in (1 ) is obtained when plus {Sj) = n-v — u1. But sincenot all the strings Sj thus
defined belong to G*o>r, it is necessary, when Computing the réduction cost
inducted by si9 to consider the joint event that SjE G^ r, comp (sj9 st) is true and
costCsj, s^^m.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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The resulting probability is conditioned only by v, by the membership of st to
T and by the particular string s0 and is given by:

P(mJ, U Sj\v, si9 s0) = P{[comp(sj9 st) is true]

n [cost (Sj, st) - m] n 3 Sj \

plus {sj)^n-v-uu steT, s0}

Taking into account the fact that the éléments in GJo T are obtained by v
successive subtractions of éléments in T starting from s0 and that the hypothesis
of full randomness holds, so we have that:

# C « > # C G i > . . . # C v > - . -
sOi T s0, T s0, 1

until effective subtraction can be performed. On an average

#C

P(mJ. U Sj\v, si9 so) = P{mJy i\v9 su sp

P(mJ, i\v9 s(, Sp so) = P(m9j, z|v, sti Sj)/P(s0)

G,o, r 2 %, T
This explains why the probability that two corresponding nonstars of st and Sj

are equal is less than 1/2.
To be précise, if we partition the sample space in the subregion such that

SjG GJo T and its complementary, by using the Bayes theorem [5] probability (2)
can be written as:

(3)

So(2)followsfrom(3).

The subtraction algorithm seeks to identify a str ings (eT(#T-p), such that
comp {sti st) is true where Sj€G^T. Considering those subtraction terms
connected with the joint probability that more than one string in T is available
for the subtraction of Sj e GJ T and the fact that at the level v, at least v strings in T
have been already used, we can write:

P{m,j\ sj\v, T, so) = P(3seT: [comp(5^ s) is true]

n[cost(j,-, s) = m]\plus(sj)£n, v, ul9 T, s0)

<p.P{m9 iJ,Sj\v9si9 s0). (4)
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Therefore:

E[cost(sj, s, |sjeGiy )]=f,t.P(t,j, Sj| v, T, s0)

t t.P(t,j, i|v, s}, st)<u2p/2\ (5)

From stochastic branching-process theory (3, 11, 15) we have:

lT}= f ] E [costisj, 5i|^eG;o^)]<(u2jp)v/2v(v + 1>/2
) (6)

i

£[0081(80,5,)] J

<((u2/2)2/(£[cost(50s ^)])2).(£[#G;ojr])2+£[#G;o,r]), (7)

where a2 ranges in the interval F[cost(s0, st)], Ftcost^-, jJ^eG^j .)] , and
this quantity, decreasing with v increasing, is less than the square of the half
range of cos t{sp ^ ) , i. e. (u2/2)2.

Therefore the expected value and the variance of LSQI T are less than following
functions:

1J2lg2{u2p)+ï_ 1 ,

K " 2 H

2 ( 2

U 2 - l

x(l+D(n,u2,p)). (9)

where a 2 is a weighted mean of av, D is a polynomial function of/?, u2
 a nd w>

which decreases with n and converges to O as n tends to infinity. In fact two steps
may be required to obtain the sum of the expected values of L5o rin (8), which can
be partitioned into the sum of terms greater than 1/2 and the sum of those
remaining.

The quantity (u2, /?)V/2V(V+1)/2 decreases as v increases. Moreover if
v> v0 = 2 lg2 (u2p) + 1 , then E [ # GJo T] < 1 /2. Thus, at the end of the first step,
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the sum may be bounded by u2(u2
lg2{U2P)+1 -l)/u2 — 1), where this term

corresponds to the hypothesis that at each réduction the maximum cost u2 has
been obtained. In the second step, since the sériai addend decreases by a factor
less than l /2a term less than 1 is added.

The second inequality follows from the considération that in the expression
V\-Lso> T\ ail those terms relative to the covariance of pairs # G£ T9 # G£ T can be
expressed in function of the term relative to the variance of # GJo T:

2 Y Y cov(#G;o,r, #Glr) <D(n,u2ip)Yn#GlT}. (10)

v = l t-v+1 v = 1

In fact from linear process theory [1], we have:

cov(#G5; r , #Gîo,r) =V[#G;ojr] H ElœsKsj^AsjeGlr)].
i = v

Thus, with a reasoning similar to that used in proving (8), we have:

L ^ 2 i f v < v = 2 1 g ( u / > ) + 2 (11)
P(v) =

Since as v increases, V[# GJo P] increases and the percentage of terms in the
sum in the right hand of (11) whose v>v0 increases correspondingly, from (11)
we obtain (9). D

Because of the intriguing expression of P (m,y, Sj | v, t, s0) it is not possible to
take an analytical form of the distribution law of Ls^ T.

Moreover, due to the corrélations between the # GJo T the central limit
theorem cannot be exploited. It is however possible to guess at the form this
distribution will take since the empty cells theory [11] gives Gaussian-and
Poisson -like distributions of G^T for large n-small v, and large «-large V,
respectively; so we must therefore consider a résultant sum distribution obtained
by the addition of a gaussian and many correlated Poisson laws.

From the multiplicative process theory [13] we have that as m tends to infinity
the probability function P (m) = P { LSo T = m}, for p fmite approachs zero faster
than exponentially, since we can write:
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Thus the product m P (m) has the least weight on the value of E [LSo r] when n is
large.

An analysis of the behaviour of V[LSQJ T] gives interesting informations
concerning the frequency of cases where the subtraction algorithm runs in a non
polynomial time as can be seen from the following theorem:

THEOREM 5: The probability that the subtraction algorithm runs in a non
polynomial time decreases as n increases, but is never 0.

Proof: We can write (9) as:

where K2, X 3 > 1 multiply respectively E [LSo T] and V [LSQ T] in order to
transform inequalities (8) and (9) into equalities. By construction rules the ratio
K\/K3 tends to 1 very fast for large n.K1 takes into account the multiplicative
factor [a2/(£[cost(50, s'i)]

2u2)} and the additive factor:

2 u2-\

Like K1 itself, the first factor decreases with n.

Therefore the ratio between the standard déviation and the mean of L5o T

ensures that the probability of LSo>Tbeing greater than hxE[LSot T]for h large, is
decreasing with n increasing.

Since the mean value of the run time is polynomial in the input length, the first
part of theorem is proved.

Moreover, for any n, it is always possible to find a worst case running in a non
polynomial time, given by the following properties of T:

Therefore the above-mentioned probability is never 0. •
At any rate since Kly K2, K3 are bounded by polinomials in n and p, the

following theorem holds:

THEOREM 6: For each e>Oit is possible tofind a polinomial g (p, ri) such that:

P(LSQ^g(p,n))<E. (12)
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Proof: By Tchebichev's inequality:

where g'(p, n) = (K1 xKl/K3)
1/2 is bounded by a polinomial in p and n.

Thus (12) holds for:

g (P, n) = (g' (p, n) y i / e + l ) . £ [LSQtT]). D

THEOREM 7: LSo T is not "almost everywherepolinomial" {after Karp's définition
[10]) in p and n.

Proof: The proof follows from the last part of proof of Theorem 5. D
The following theorem can be used to make probabilistic comparisons

between the proposed algorithm and the Galil one:

THEOREM 8: The expected value ofthe running time of the Galil algorithm, in the
hypotesis offull randomness, is polynomial in p and n and is greater than the
expected value of the subtraction algorithm.

Proof: In accordance with the comparison between the two algorithms
performed in section 3 we assume that the subtraction tree and the Galil tree
have essentially the same complexity. So we will compare the times of the
subtraction tree with those ofthe subtraction algorithm, i. e. with the algorithm
obtainedfrom the subtraction tree when the constraints on the subtraction order
in définition [11] are removed.

The removal of such constraints allows to recognize a leaf or a solution node as
soon as the subset of strings labelling them is generated, while no effective
variation occurs in the génération of the other nodes.

Let P° (v) be the probability that no string is generated from a string of G^ T

and P°'(v) (an apex occurs in symbols referring to the subtraction tree) the
probability that a leaf or a solution node can befound at Ie vel v ofthe subtraction
tree, we have:

P°'(v) = (l/(n-v))P°(v), (13)

where, for semplicity's sake we put u1 =0.

The expected value of the running time at level v is greater therefore in the
Galil algorithm than in the subtraction one.

Moreover, if we eut the sum ofthe expected values of G^ T as in the proof of (8)
the sum of the terms from v > v0 to n is less than «£ v0 lg2 (n). In fact, since for
such values of v, E[#G^T)] is less than 1/2, we can disregard P{m' = 2}
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Therefore, assigning to the réduction at level v>v0 the cost u2 we have:

E [LI T] < u2 "
2 ( " l J > ) i W (1 + (2 lg2 (u2p) + l)lg2 (»))•

U-y — 1

and so:

E[L^T]<E[LSoiT](l+(2lg2(u2p)+l)lg2(n)), (14)

where the second inequality results from the construction of (8).

CONCLUSIONS

An exact algorithm, in accordance with the probabilistic criteria of
computational complexity outlined by KarpflO], was developed for the
satisfiability problem, where the expected value of the running time for a fully
random input is a polynomial of input length.

In the probabilistic frame, the problem of having non-polynomial running
time is of no particular significance if the probability of its occurring cannot
be specified.

The understanding of exponential cases from a deterministic viewpoint
constitutes an ever-challenging topic. In our opinion such cases only occur when
it is impossible to fmd an appropriate représentation of binary sub trees by means
of bounded strings of symbols.

Our key objective then is to represent some combinatorial schemes on logical
variables by special operational symbols and design a formai algebra for these
symbols.

Such an approach enables the structure of such trees to be put into focus and
some of their special characteristics identified such as invariances in the order of
the propositional variables, exponential growth sources, and so on.

We started with simple représentation of combinatorial schemes, but more
complex ones are under study, our aim being to identify the relationship between
the characteristics of the input clauses and the structure of the corresponding
tree, so that the probability of non-polynomial cases occurring is further
minimized.
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APPENDIX

LEMMA 5: If a string s labels a node of the subtraction tree, and s' is its node
string, then comp (s, s') is true.

Proof: By construction rules. D

LEMMA 6: Given an instance of the satisfiability problem, a node in the
sub traction tree is a leqf, when the corr esponding node of the Galil tree is also a
leaf

Proof: Let such a node be at level v, st is a string in its label and sn its node
string. By Lemma 5 comp (sti sn) is true, by Property 4 we have Ju e I, such that
sneTs^ then by lemma 1 comp (sv ~su) is true. By Property 2 of Lemma 3,
sub (st, li) involves positions r l s r2...rm>v and being £;(v'>v) = * (by
définition sn(v '>v) = * and sneT-J, the subtraction is total. •

LEMMA 7: Given an instance of the satisfiability problem, a node in the
subtraction tree is a solution node, if the corresponding node of the Galil tree is a
solution node.

Proof: Let such a node be at the level v, st a string in its label and sn, its node
string. By Lemma 5 comp (sv sn) is true and by Proposition 3 s®n is too a
solution.

Suppose that st is a not solution string, in this case there is s^I such
that comp {sv 1^ is true.

Consider that by Lemma 3 (see the proof) sub {st, Jf) involves only positions
ri> r2> • • -9 r m >v, for position-l^fc^v $t(k) = * implies Jt(fc) = *, st{k)&* and

imply st{k) = Ji {k) = s°tn(k)\ by définition of sn, 5B(_/) = * v<j^n, then

We thus obtain so the contradictory result that comp (s?n, st) is true and
s®n is not a solution string; then st is a solution. D

THEOREM 9: Given an instance of the satisfiability problem, the subtraction tree
is a sub tree of the Galil tree.

Proof: By Lemmata 6 and 7 and the gênerai rules for building both trees. D

Note that the number of strings labelling a Galil tree node is less than or equal
to p. Though a limit for the number of strings labelling nodes in the subtraction
tree cannot be given, we will later prove that relationships exist which bind this
number of strings in the Galil tree.

In order to simplify proofs, the more regular case of the 3-satisfiability is tiow
considered without loss of generality.
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Let s be a string at the level v' of a subtraction tree, successors of s at level v"
can be exponential in v" — v' only when certain types of subtractions must be
exclusively used in order to generate successors of s.

According to the results of Section 4, such cases are exceedingly rare.

DÉFINITION 12: The following properties identify the six fundamental types of
generic subtraction sub (si5 sk)eG^j for the 3-satisfiability problem:

(1) # sub (si9 sk) = 3 and s\k (v)=j?k (v) = s?k (v);
(2) # sub (st, sk) = 3 and sjk (v)^s?fc (v) and/or s]k (v)/sfk (v) (note that by

Lemma 3, s\k (v) = * => j?k (v) = j?k (v) = ̂ k(v));
(3) # sub (si9 sk) = 2 and s\k (v) = *?k (v);
(4) # sub {si9 sk) = 2 and s}k (v)^J?k (v).
(5) #sub(j£,jk) = l;

(6) # sub(^,5k) = 0.

Example 9: In figure 3 examples of types 1, 2 and 3 are given:

t y p e 1 t y pe 2 type 3

lev. 2 Sj= 1 1 0 * * * Sj= 1 1*#*# Sj = 001*#*

( Sk= * # * 0 0 0 ) (Sk=**0 0 0*) (Sk=**11 1 * )

lev 3 5 ^ = 1 1 0 1 * * s ) k = 1 1 0 1 * * S j k = 1 1 1 * * * Sjk= 0 0 1 0 * *

S j k=1100 1 * S^= 1 10 0 1 * S f k = 0 ° 1 1 ° *

S^=1 1 0 0 0 1

Figure 3. - Examples of subtraction types 1, 2 and 3.

We will now consider only those cases where all the successors of string s at the
level v' are generated up to level v" by the same type of subtraction.

Where further comparison analysis is concerned no loss of generality occurs
since (1) the successors of two strings labelling the same node are mutually
independent, (2) numerical camparison is made between the s-successors and
those strings labelling the Galil tree, whose opposite strings are subtracted
during a successor génération in the subtraction tree; nodes labelled by such
strings in the Galil tree are strictly correlated to nodes labelled and s-successors
in the subtraction tree.
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THEOREM 10: Let an instance of 3-satisfiability problem be such that the
subtractions to be performedfor s e G.- and ail its successors up to level v">v'
must be exclusively of type 1 (2, 3,4);/ef/'<=ƒ be the set ofstrings subtracted by s
and successors, I'^I the set ofstrings whose opposite strings are in I ' and T\ the
subtree of the subtraction tree having root nr labbelled s; then (1) the number of
strings labelling nodes of T' is exponential in v" — v' in the non-restrictive
hypotesis that only s labels the root of such a subtree; (2) in the Galil tree the
number of nodes labelled by strings in V is exponential in v" —v' at least.

Proof for type 1: (1) All the successors of s at level v of the subtraction tree
v '<v^v" label ail unique node and their cardinality is 3V~V', thus those strings
labelling nodes in T up to level v " - v ' are (3v"-v '-l)/2. (2)#7' has the least
value v" — v' when only one string of / is subtracted at each level of T'. Je I ' ifif
s(i) = *, z = l, 2, . . . , v", otherwise subtractions of type 1 up to level v" could
take no place; then strings of V label all the nodes of the Galil tree from the
root to level v" and the nodes of the subtree TG having root node corresponding
to nr up to level v" + 3(v" — v') at least, if we consider the extreme case where
the first positions of non-star simbols in strings of J' are v" + l,
v" + 2 . . . v"+(v" —v'): this implies both that there is no leaf in T'G and that
there are 2V"~V'+1 — 1 nodes labelled by strings of I'. If it is assumed that leaves are
to be found in TG before level v" —v', then'the Galil tree proves much more
extended with a number of nodes in TG greater than 2V"~V+1 — 1.

Proof for type 2: (1 ) The subtree T is complete up to level v" and is labelled for
each level by the strings in G?-j9 G--, . . . , G~ y in this order. Considering that
# G-Vy = 3v and that onlv subtractions of types 2 are performed, there are
(3v"-*'+1 -1) /2 strings labelling nodes in T. (2) By Theorem 9 the subtree T'G of
the Galil tree corresponding to T is complete, then the number of nodes is
2v"-v'+i _ i w * t j 1 ^ ç k n o ( j e labelled by strings of I ' in accordance with the rules
for its construction.

Proof for type 3: (1) All the successors of s at level v of the subtraction tree
v' ̂  v S v" label an unique node and their cardinality is 2V""V', thus the number of
strings labelling nodes in T up to level v " - v ' is 2V""V+1 - 1 . (2) Consider that s
was obtained after v' subtractions and that, in order to have a séquence of v" — v'
sub tractions of types 3 starting from s, such subtractions must in volve positions
greater than v''.

The Galil tree is extended by Theorem 9 up to level v" at least; consider the
path from the root to the node with node-string sn at level v" such that
comp (s, sn) is true (we can find more such nodes); the brother nodes of
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nodes in the path identified by sn are roots of subtrees which are labelled by
strings in I' and are equal to those having root at the brother nodes, except
for cases when either the roots or their successors are leaves.

Suppose that there is no exponential growth of nodes in no subtree having
root at the brothér nodes of nodes in sn9 a set I"g J at least of v" strings must
exist, which is the minimum number of strings allowed if exponential growth in
v"~v ' is to be avoided with a sufficient number of leaves; but there is a
contradiction here since the set I" of strings opposite to strings of I" can be
subtracted by ancestors of s and strings of/ " have lexicographie order priority,
thus subtraction of type 3 cannot be performed. There are at most v' such strings
and a number of nodes exponential in v" — v' are labelled by strings in V. D

Prooffor type 4: Trivial.
Theorems 9, 10 show that the subtraction tree algorithm is no less efficient

than the Galil algorithm, if we think that a generic case can be broken in more
considered cases.

It is easy to construct very particular instances of the satisfiability problem
where the Galil algorithm runs exponentially and the subtraction algorithm runs
polynomially, consider e. g. Galil trees where all the leaves areformed after level
\n/2\\ for some such case the sub traction tree is such that positions greater than
|n/2] are involved early in the subtraction and a solution string is immediatily
obtained.
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