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FUNCTIONAL INEQUALITIES AND UNIQUENESS OF THE GIBBS MEASURE
— FROM LOG-SOBOLEV TO POINCARÉ

Pierre-André Zitt1

Abstract. In a statistical mechanics model with unbounded spins, we prove uniqueness of the Gibbs
measure under various assumptions on finite volume functional inequalities. We follow Royer’s ap-
proach (Royer, 1999) and obtain uniqueness by showing convergence properties of a Glauber-Langevin
dynamics. The result was known when the measures on the box [−n, n]d (with free boundary condi-
tions) satisfied the same logarithmic Sobolev inequality. We generalize this in two directions: either the
constants may be allowed to grow sub-linearly in the diameter, or we may suppose a weaker inequality
than log-Sobolev, but stronger than Poincaré. We conclude by giving a heuristic argument showing
that this could be the right inequalities to look at.
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Introduction

Questions of convergence of dynamical models of statistical physics (e.g. Glauber dynamics for the classical
Ising model) have prompted people to study functional inequalities for the equilibrium measures related to these
dynamics, i.e. for Gibbs states. These inequalities are indeed a good way to obtain convergence results for semi-
groups. Moreover, if the classical functional inequalities (Poincaré, logarithmic Sobolev) are known to tensorize
in a good way, studying them for non-product measures in large dimensions was much more challenging, and
Gibbs measures are a natural example of these non-product measures. Therefore, many authors (see e.g. [9,12]
for the bounded spins case, [3, 8, 14, 15] for the unbounded case) have investigated links between “uniform”
functional inequalities, convergence of associated dynamics and mixing properties of equilibrium measures.

In several cases, it was also proved that there is a regime in which all these “good” properties hold simulta-
neously.

The “uniformness” we alluded to is typically “uniform on all (regular) finite sets, and all boundary conditions”.
However, in his book [11], G. Royer shows that a logarithmic Sobolev inequality, uniform over the boxes [−n, n]d,
for a single boundary condition entails the uniqueness of the infinite volume Gibbs measure.

We show here that this assumption may be relaxed in two different ways. Firstly, we show that the constants
may be allowed to grow sublinearly in n (this kind of relaxed hypotheses have already appeared in different
contexts, see e.g. [13]). Secondly, we may replace logarithmic Sobolev inequalities by weaker inequalities, and
show the uniqueness when we only suppose uniform Beckner inequalities (cf. Th. 2.2 for a precise statement).
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After introducing notations and preliminary estimates (Sect. 1), we prove the result concerning logarithmic
Sobolev inequalities (Sect. 2). In the last section, we show the result on Beckner inequalities and indicate a
heuristic argument that they may be the critical scale for uniqueness.

1. Notations and preliminary estimates

1.1. The model: equilibrium and dynamics

1.1.1. The model — equilibrium
We consider a variant of the classical Ising model. To define it, we briefly introduce the following notions,

referring to [16] for details. A configuration is a map x : �d → �. We denote by xL the restriction of x to the
subset L ⊂ �

d. When L is a singleton, we will simply write xi; this is the spin at site i. To each finite subset
L of �d, and each configuration z (boundary condition), we associate a Hamiltonian

UL,z(x) =
∑
i∈L

V (xi) +
∑

i,j∈L,i∼j

J(i − j)xixj +
∑

i∈L,j /∈L

J(i − j)xizj

where V and J satisfy the following.

Hypothesis 1 (Self-interaction). The function V satisfies:
• Convexity at infinity — there exists V1, V2 such that V = V1 + V2, V2 is C2 and compactly supported,

inf V ′′
1 > 0.

• Polynomial growth — there exists constants aV , bV , and a dV > 0 such that for all x, |V (x)| ≤ aV |x|dV +
bV .

• There exists a a′
V ∈]0, 1[ such that x �→ a′

V V ′(x)2 − V ′′(x) is bounded from below.

Hypothesis 2. The interaction J : �d → � is a symmetric function with finite support. We also define
p(i) = |J(i)| and suppose that

σ
def=
∑
i∈�d

p(i) < inf V ′′
1 ,

where V1 is defined by the previous hypothesis.

These hypotheses are satisfied for the usual models, namely the Gaussian case and the double well potential:

V (x) = ax4 − bx2.

We then define the finite volume Gibbs measure on �
L by:

dµL,z(dxL) =
1

ZL,z
exp (−2UL,z(xL)) ,

where the factor 2 appears for cosmetic reasons, and ZL,z =
∫

exp(−2UL,x)dxL is a normalizing constant (note
that we may abuse notations and speak of UL,z(xL), since UL,z only depends on the spins in L).

Note that µL,z(dx), while it is originally defined as a measure on �L, may be extended to ��
d

by fixing x = z
outside L. This enables us to define a kernel µL:

µL : z �→ µL,z.

An infinite volume Gibbs measure is a measure on �
�

d

that satisfies the DLR equations:

∀L, L finite, µµL = µ.



260 P.-A. ZITT

For technical and physical reasons, we will only consider tempered configurations and measures. For every d,
let P(d) be defined by

x ∈ P(d) ⇐⇒ ∃cx, ∀i, xi ≤ cx(1 + |i|)d.

A configuration is called tempered if it is in P(d), for some d. A tempered measure is one that satisfies:

∃Cµ, ∀i ∈ �
d, µ(|xi|) ≤ Cµ.

It may be shown ([16], Sect. 2.2) that this is equivalent to other standard definitions of temperedness, and that
there exists a dtmp, depending only on the dimension d, such that every tempered measure µ satisfies:

µ (P(dtmp)) = 1. (1)

We will call elements of P(dtmp) well-tempered configurations.

1.1.2. A weight for tempered configurations
It will be convenient to compare two different configurations, especially in the dynamical setting we will see

in the next section. To this end, we introduce (following Royer [11]) the following weight:

α(i) =
∑ p�n

σ′n (i), (2)

where p�n is the convolution product p � p · · · � p, σ′ satisfies σ < σ′ < inf V ′′
1 , and we recall that p(i) = |J(i)|.

Proposition 1.1. The weight α decays exponentially:

∃cα, dα, α(i) ≤ cα exp (−dα |i|) . (3)

Moreover, it satisfies the following:
α � p ≤ σα.

The proof is easy, and we refer to [16] for details.
The exponential decay of α shows that the tempered configurations x have a finite �2(α)-norm:

∑
α(i)x2

i < ∞.

1.1.3. The Glauber–Langevin dynamics
It may be shown (cf.[11]), using standard tools, that in a finite volume L, the following SDE in �

L has a
strong solution:

dXs = dBs −∇UL,z(Xs)ds, (4)
where Bs is a standard Card(L)-dimensional brownian motion.

Using the �2(α) norm (where α is defined by (2)) and Gronwall-like arguments, it is possible to compare the
processes in different boxes, or starting from different points. We denote by XL,z,x

t the process starting from
x, in the box L with boundary condition z.

Proposition 1.2. For every set L, let βL(j) =
∑

i �i/∈Lα(i)α(j − i). Then, for all L ⊂ M , and every tempered
configuration x,

α(0)E

[∑
i

α(i) sup
[0,t]

(
XL,0,x − XM,0,x

)2] ≤ ek′t

⎛
⎝‖x‖2

l2(βL) + c |α|
∑

j∈M\L

α(j)

⎞
⎠ . (5)

Moreover, for every tempered x, ‖x‖l2(βLn) → 0.
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The proof, inspired by [11], may be found in [16] (Lems. 36 and 38). These comparisons enable us to build
an infinite volume dynamics. Moreover, we may let M go to �d in (5) to get the following:

Proposition 1.3. Let X0,x be the infinite-volume process starting from x. Then:

E

[∑
i

α(i) sup
[0,t]

(
XL,0,x − X0,x

)2] ≤ ek′t

⎛
⎝‖x‖2

l2(βL) + c |α|
∑
j /∈\L

α(j)

⎞
⎠ . (6)

This gives an explicit estimate of the error made when we approximate the infinite volume dynamics by the
finite volume one. This estimate can be made even more explicit if we use the decay properties of α (Eq. (3),
cf. Lem. 38 and Prop. 39 of [16]).

Proposition 1.4. There is a dα such that:

∀x ∈ S′, ∃cx, ∀n, E

[∑
i

α(i) sup
[0,t]

(
XL,0,x − X0,x

)2] ≤ cx exp (k′t − dαn) . (7)

1.2. Polynomial bounds on the entropy and related quantities

We will need bounds on some entropy-related quantities in finite time.

Proposition 1.5. Let x be a well-tempered configuration, and consider the processes Xn def= XLn,0,x
t . We define

the following notations:
• hn

t is the density of the law of Xn
t with respect to the equilibrium measure µLn,0;

• Hn
t is the entropy of this law (Hn

t = EntµLn
(hn

t ));
• Hn

p,t is given by

Hn
p,t =

∫
hn

t logp
+(hn

t )dµn,

where log+ is the positive part of the logarithm.
Then there exists a polynomial Q (depending on x) such that, for all p ≥ 1, and all t ≥ 1,

Hp,t(n) ≤ Q(n)p. (8)

In particular, since Hn
t ≤ Hn

1,t, the entropy is polynomially bounded.
Moreover, the degree of Q does not depend on x (as long as x is well-tempered).

This is a refinement of a result by Royer [11] (which deals only with the entropy, and does not precise the
degree of Q, which will be needed later). The proof uses Girsanov’s theorem to get an explicit expression of hn

t ,
which is then estimated directly. The details may be found in [16].

2. From logarithmic Sobolev inequalities to uniqueness

2.1. Functional inequalities

Let us start by recalling a few definitions.

Definition 2.1. The measure µ on �
L satisfies a logarithmic Sobolev inequality with constant C if

Entµ(f2) ≤ C

∫ ∑
i∈L

|∇if |2 dµ (9)

for every function f such that both sides make sense.
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It satisfies a Poincaré inequality with constant C if

Varµ(f) ≤ C

∫ ∑
i∈L

|∇if |2 dµ (10)

with the same restriction.
Finally, for a ∈ (0, 1), µ satisfies a generalized Beckner inequality GBI(a) with constant C, if for any f ,

sup
p∈]1,2[

∫
f2dµ − (

∫
fpdµ)2/p

(2 − p)a
≤ Ca

∫
|∇f |2 dµ. (11)

The first two inequalities are well known, the third one was introduced in this form by Latala and Oleszkiewicz
in [7]. It is known (cf. [1, 7]) that we recover Poincaré, resp. log-Sobolev, by letting a go to zero, resp. 1, in
the definition of the Beckner inequality. It is also known that Beckner inequalities may be compared: GBI(a)
implies GBI(a′), whenever a > a′.

We will prove the uniqueness starting from hypotheses on the finite volume Gibbs measures, expressed in
terms of functional inequalities. More precisely, we fix a boundary condition (for simplicity, we choose the 0
boundary condition, however the same results should hold if we replace 0 by a (fixed) tempered configuration z),
and make assumptions on the measures µn = µLn,0.

Assumption 1. µn satisfies a logarithmic Sobolev inequality, with constant Cn, where:

Cn ≤ C
n

log(n)
,

and C is smaller than some explicit value (cf. (15)).

Assumption 2. µn satisfies a Beckner(a) inequality, with constant C, where a and C do not depend on n.
Moreover, a > amin, where amin only depends on the potential and the lattice dimension (cf. (26) for its explicit
value).

The main theorem is the following.

Theorem 2.2. If either Assumption 1 or Assumption 2 holds, there is only one tempered Gibbs measure in
infinite volume.

2.2. Uniqueness from logarithmic Sobolev

In this section, we prove Theorem 2.2 under Assumption 1.
The main argument is the following. Let PL

t be the semi-group defined by the SDE (4) in the finite box L,
with boundary condition 0, and Pt be the infinite-dimensional semi-group. For every f (in a class to be precised
later), we can decompose Ptf in the following way:

Ptf =
(
Ptf − PL

t f
)

+
(
PL

t f − µLf
)

+ µLf. (12)

The first term may be controlled thanks to equation (7). To get a good bound, we see that the diameter of L
should be of the order of t, to compensate the exp(kt).

More precisely, let us fix a ρ (a ratio between n and t) such that ρ > k′ > d′α, and define n(t) = �ρt�+ 1. By
design, n(t) satisifies:

n(t) ∈ [ρt, ρt + 1]. (13)
This ensures

k′t − d′αn(t) ≤ (k′ − ρd′α)t,
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where k′ − ρd′α is a negative constant. Hence when t goes to ∞, E
[∥∥∥XL,0,x

t − Xx
t

∥∥∥2

α

]
goes to zero. Plugging

this back into (7) yields:
∀x ∈ S′,

∣∣∣Ptf(x) − P
Ln(t)
t f(x)

∣∣∣ −−−→
t→∞ 0.

The second term of (12) depends on the convergence of a finite-dimensional diffusion to its equilibrium measure.
This is where our functional inequalities come into play. Indeed, thanks to Pinsker’s inequality and the expo-
nential decrease of the entropy,∣∣∣Pn(t)

t f − µnf
∣∣∣2 ≤ osc2(f)

∥∥∥L(XLn(t),0,x
t ) − µn(t)

∥∥∥2

vt

≤ 2 osc2(f)I(L(XLn(t),0,x
t )|µn(t))

≤ 2 osc2(f) exp

(
−2

t − 1
cLS
n(t)

)
I(L(XLn(t),0,x

1 )|µn(t))

≤ 2cx osc2(f) exp

(
−2

t− 1
cLS
n(t)

)
(1 + n(t))d+dxdV . (Prop. 1.5). (14)

Remark 2.3. Note that if we suppose (following Royer) a uniform logarithmic Sobolev inequality, the proof
is easily concluded: since n is of the order of t, the power of n is a power of t, and the exponential term ensures
the convergence to zero.

Recall that tempered measures charge only well-tempered configurations. If we consider the left-hand side
only for such configurations, we may replace dx by dtmp on the right-hand side.

Since by hypothesis, CLS(Ln) ≤ C n
log(n) , and since n(t) ≤ ρt + 1,

exp

(
−2

t− 1
cLS
n(t)

)
≤ exp

(
−2

(t− 1) log(n(t))
Cn(t)

)

≤ exp
(
−2

(t − 1)
C(ρt + 1)

log(n(t))
)

.

For all C′ > Cρ, and all t large enough, (t − 1)/(C(ρt + 1)) > 1/C′, therefore

exp

(
−2

t − 1
cLS
n(t)

)
≤ exp

(
− 2

C′ log(n(t))
)

≤ n(t)−2/C′
.

Coming back to (14), we obtain
∣∣∣Pn(t)

t f − µnf
∣∣∣2 ≤ c′x osc2(f)n(t)−2/C′

(1 + n(t))d+dtmpdV .

The r.h.s. converges as soon as d + dtmpdV < 2/C′, i.e.: C′ < 2
d+dtmpdV

. This is possible if

C <
2

ρ(d + dtmpdV )
. (15)

Under this condition, we have shown:

∀x ∈ P(dtmp),
∣∣∣Pn(t)

t f(x) − µnf
∣∣∣ −−−→

t→∞ 0.
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Once we have chosen a scale n(t) that guarantees convergence for the first two terms of (12), the last one may
be dealt with thanks to a compactness argument ([11], p. 72)

∃(tk), tk → ∞, ∃µ tempered Gibbs measure, µLn(tk),0

k→∞−−−−→ µ.

Along this particular sequence tk of times,

∀x ∈ P(dtmp), ∀f, Ptk
f(x) k→∞−−−−→ µf.

Let then ν be another tempered Gibbs measure. It is known (cf. [11], Th. 4.2.13) that ν is necessarily invariant
w.r.t the semi-group Pt. Then

ν(f) = ν(Ptk
f).

Ptk
f converges pointwise (on P , which has a ν-mass of 1, see (1)) to µf . Letting k go to infinity, since f is

bounded, we have by dominated convergence:

ν(f) = ν(µf) = µf.

Since this is true for f in a sufficiently large class of functions, ν = µ and the tempered Gibbs measure is unique:
Theorem 2.2 follows from Assumption 1.

3. Beyond logarithmic Sobolev inequalities

3.1. Strong enough Beckner inequalities imply uniqueness

We now prove uniqueness under Assumption 2. The compacity argument and the comparison between finite
and infinite volume still hold; the only thing to check is that the assumption is strong enough to guarantee:

PL
t f − µLf

t→∞−−−→ 0.

Once more, we use Pinsker’s inequality to bound this difference by an entropy. This entropy does not decay
exponentially fast (since we do not suppose log-Sobolev inequalities anymore), but we are able to show that it
converges nonetheless.

The argument is adapted from [5], where the following result is proved.

Theorem 3.1 ([5], Th. 5.5). Let µ be a probability measure on �
n, absolutely continuous w.r.t. Lebesgue

measure, and satisfying a GBI(a) inequality.
Let ν (an initial law) be such that:

∃t0, C, ∀t ≥ t0, ∀p ≥ 1,

(∫
Ptν logp

+(Ptν)
)1/p

≤ Cp. (16)

Then the entropy starting from ν decays sub exponentially along Pt:

∀a′ < a, ∃s, t0, ∀t ≥ t0, Entµ(Ps+tν) ≤ exp
(
1 − t1/(2−a′)

)
. (17)

Note that our parameter a is linked to the α appearing in [5] by a = (2α − 2)/α (cf. Ex. 4.3 of [5]).
Since this theorem entails a fast convergence (faster than polynomial), it is natural to expect that it should

be enough for our purposes. Unfortunately, this results holds for large (and unspecified) t, and we need to use
it for a relatively small t (of the order of the diameter of the box L).

Therefore, we will use ideas of [5] to prove a similar result with explicit constants. The preliminary estimates
we need were already cited in the previous section (cf. (8)). We prove the result in two steps: first we bound
the entropy for small times, then we iterate the estimate.
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3.1.1. First entropy estimate
We follow the idea of the fifth section of [5] (Convergence to equilibrium for diffusion processes).
It is well-known that logarithmic Sobolev inequalities imply exponential convergence of the entropy. When

we only have a Beckner inequality, we may still prove exponential convergence, but only for bounded functions.

Lemma 3.2 ([5], Ex. 4.3). If µ satisfies GBI(a), there exists C′
a such that, for any bounded probability

density h:

Entµ(Pth) ≤ Entµ(h) × exp

(
− t

C′
a

(
1 + log1−a (‖h‖∞)

)
)

. (18)

Cattiaux, Gentil and Guillin have shown that this implies decay estimates for all functions, but the decay is not
exponential.

The idea of their proof is to decompose a function h in a bounded part h�h≤K and a remainder h�h>k, and
then choose an appropriate K.

Using this method, we prove the following:

Proposition 3.3. If µn satisfies a GBI(a) inequality, uniformly in n, then for all a < a0, there exists a
polynomial Q = Qa,x, whose degree depends only on V and the dimension d, and a number t0(a), such that

∀s ≥ 1, ∀t ≥ t0(a), Hn
s+t ≤

1
ct,n

φ(Hs), (19)

where φ(x) = x
(
1 + log+(1/x)

)
, and ct,n = t1/(1−a)/Q(n).

We will need the following lemma, which we quote without proof.

Lemma 3.4 ([5], Lem. 5.3). Let h be a probability density w.r.t. µ. If there exists c > 0 such that the p-entropy
is bounded:

∀p > 1, Hp,t ≤ cp,

and if K satisfies
K ≥ e2, log(K) ≥ 2e × Entµ(h),

then
Entµ(h�h>K) ≤ (ec + 2)

Entµ(h)
log(K)

log
(

log(K)
Entµ(h)

)
.

We will also need bounds on the entropy of bounded functions.

Lemma 3.5. Let µ be a measure that satisfies GBI(a). There exists C′′
a such that, if h is a bounded probability

density, H is the entropy of h, and K satisfies

K ≥ e2, log(K) ≥ 4H,

then
Entµ (Pt(h�h≤K)) ≤ H × exp

(
− t

C′′
a log1−a (K)

)
.

Proof. This lemma follows from equation (18). In order to see this, we would like to normalize h�h≤K so that
it becomes a probability density, and apply the previous lemma. This can be done if

∫
h�h≤K �= 0. Lemma 3.4

from [6], shows that, for K ≥ e2: ∫
h�h>K ≤ 2H

log K
.

Since we assume log(K) ≥ 4H , ∫
h�h>K ≤ 1

2
,
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and since
∫

h = 1, this entails: ∫
h�h≤K = 1 −

∫
h�h>K ≥ 1/2. (20)

Let us denote by h̃ the renormalized version of h�h≤K . It is a bounded probability density, and we may apply
the bound (18):

Entµ(Pth̃) ≤ exp

⎛
⎝− t

C′
a

(
1 + log1−a

(∥∥∥h̃∥∥∥
∞

))
⎞
⎠Entµ(h̃).

We multiply both sides by
∫

h�h≤Kdµ, and put these factors in the entropies (by homogeneity).

Entµ(Pt(h�h≤K)) ≤ exp

⎛
⎝− t

C′
a

(
1 + log1−a

(∥∥∥h̃∥∥∥
∞

))
⎞
⎠Entµ(h�h≤K). (21)

Finally, we control the sup norm of h̃:

h̃ =
h�h≤K∫
h�h≤Kdµ

≤ K

1/2
,

where we reused the bound (20) on the integral. Since K ≥ e, the denominator of (21) is bounded above:

C′
a

(
1 + log1−a

(∥∥∥h̃∥∥∥
∞

))
≤ C′

a

(
log1−a(K) + log1−a(2K)

) ≤ C′′
a log1−a(K).

This proves the lemma. �

We now proceed to the proof of the Proposition 3.3.

Proof. By definition, Ht = EntµLn
(ht). We consider the time s + t, and truncate hs: for all K,

hs = hs�hs≤K + hs�hs>K .

For any positive functions (f, g), Ent(f + g) ≤ Ent(f) + Ent(g) — this follows easily from the variational
formula for the entropy: Entµ(f) = sup

{∫
fh,

∫
ehdµ = 1

}
. Therefore,

∀s, t, ∀K, Ht+s = Ent(Pths) ≤ Ent(Pt(hs�hs≤K)) + Ent(Pt(hs�hs>K))

≤ Ent(Pt(hs�hs≤K)) + Ent(hs�hs>K),

since the entropy decreases along Pt. Suppose that K satisfies:
{

K ≥ ee,

log(K) ≥ 2eHs.
(22)

We now apply Lemma 3.5 to the first term. For the second term, (8) shows that the hypotheses of Lemma 3.4
are fulfilled. If K satisfies both hypotheses, we get:

Ht+s ≤ exp
(
− t

Ca0 log(K)1−a0

)
Hs + Q(n)

Hs

log(K)
log
(

log(K)
Hs

)
. (23)
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We now define K to be the unique solution on (ee,∞) of the following equation:

log(K) =
(

t

Ca0 log log K

)1/(1−a0)

. (24)

This K (which depends on t) is well defined, because K �→ log(K) log log(K)1/(1−a0) is bijective from ]ee,∞[
onto ]0,∞[. Assume for the time being that K satifies the second condition of (22). The inequality (23) becomes

Ht+s ≤ 1
log(K)

Hs + Q(n)
Hs

log(K)
log
(

log(K)
Hs

)
.

Let us work a little bit to get a simpler bound. Since K ≥ ee, log log K ≥ 1, and Q(n) may always be taken
larger than 1. This yields:

Ht+s ≤ log log(K)
log(K)

Hs +
Q(n)Hs

log(K)
(
log log(K) + log+(1/Hs)

)
≤ log log(K)

log(K)
Hs +

Q(n)Hs

log(K)
log log(K)

(
1 + log+(1/Hs)

)
≤
(

log log(K)
log(K)

)
Q(n)Hs

(
2 + log+ (1/Hs)

)
. (25)

Our choice of K ensures that there exists a constant ca such that:

log log(K)/ log(K) ≤ ca

t1/(1−a)
,

for any t larger than a t0(a).
Insert this into equation (25), and define Qa(n) = 2caQ(n). The bound becomes

Ht+s ≤ Qa(n)
t1/(1−a)

Hs

(
1 + log+(1/Hs)

)
,

which is exactly (19).
Let us go back to the case where K (defined as the solution of (24)) does not satisfy (22). Since by definition

K ≥ ee, we need only consider the case where log(K) ≤ 2eHs. We know that there exists a polynomial Q′
a,x

such that Hn
s ≤ Q′

a,x(n), for all s ≥ 1. In this case,

log(K) ≤ Q′′
a,x(n).

In other words,

1 ≤ Q′′
a,x(n)

log(K)
.

Since log log(K) ≥ 1, it follows that

1 ≤ log log K

log K
Q′′

a,x(n).

Finally, the entropy H decreases along the semi-group. For every s ≥ 1, and t ≥ t0(a), we have:

Ht+s ≤ Hs ≤
(

log log K

log K

)
Q′′

a,x(n)Hs(2 + log+(1/Hs)).

This shows that (25) still holds, and the end of the proof is the same. �
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3.2. Iteration of the estimate

We are now in a position to prove Theorem 2.2, under Assumption 2.
The previous estimate (19) is useful if ct,n is greater than 1. Let D be the degree of Q (it does not depend

on x nor on a). We will assume:

a0 > amin =
D − 1

D
. (26)

Note that we may choose a > amin in Lemma 3.3.

Lemma 3.6. The following properties hold.
• There exists t0(n) such that, for all t > t0(n), ct,n > 1.
• There exists u0(n) such that, for all u > u0, u may be written as t × (ct,n)2, with t > t0(n).
• The quantity u0(n) is relatively small:

u0(n) = o(n). (27)

Moreover, for all u > u0(n),for all s ≥ 1,

Hn
s+u ≤ (e + Hs) exp

(
− u1/(3−a)

Q(n)(1−a)/(3−a)

)
. (28)

This lemma implies Theorem 2.2.
Indeed, we only need to show that the entropy at time t in the box Ln(t) converges to zero. We apply the

lemma with s = 1, u = t, n = n(t) (this is possible thanks to (27)). Since Q(n) is (by definition) of degree D, it
is bounded above by nD (up to a constant), and there is a c such that:

H
n(t)
1+t ≤

(
e + H

n(t)
1

)
exp

(
−c

(
n(t)

n(t)D(1−a)

)1/(3−a)
)

.

Since H
n(t)
1 grows polynomially in n (this is the result of theorem 1.5) and t is of the order of n, it suffices to

show that the power of n in the exponential is positive, and the whole quantity will go to zero. This power is:

1
3 − a

(1 − D + aD) ,

which is indeed positive, because a > amin (defined by (26)).
This shows that the entropy at time t in the box Ln(t) goes to zero. As was already said before, the other

parts of the proof require no change, therefore Theorem 2.2 will be proved as soon as we show Lemma 3.6.

Proof of Lemma 3.6. Let us begin by showing the existence of t0, u0.
Recall that ct,n = t1/(1−a)/Q(n), and that the degree of Q is D. Let us choose an a′ such that

amin < a′ < a < a0.

If we define t0 = cnD(1−a′) for some constant c,

ct,n ≥ t1/(1−a)

nD
> 1,

for t ≥ t0.
One then defines u = u(t, n) = t × (ct,n)2. This increases with t, and one may choose

u0(n) = u(t0(n), n) = cnD(1−a′)(3−a)/(1−a)/Q(n)2.
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We would like u0 to be small w.r.t. n (we do not want to wait for a period longer than the diameter of the
box). The previous choice ensures:

u0(n) ∼ cnD(1−a′)(3−a)/(1−a)−2D.

This u0 is negligible compared with n when

D
(1 − a′)(3 − a)

1 − a
− 2D < 1.

This is satisfied for a′ = a (because D(3 − a) − 2D = D(1 − a) < 1, since a > amin). By continuity, this still
holds for some a′ < a.

Let us now prove (28). The idea is to iterate the estimate given by Lemma 3.3. To do this, fix t > t0(n),
and define the sequence (vk) by vk = Hs+kt. To control vk, we compare it to wk defined recursively by:

{
w0 = v0,

wk+1 = f(wk),

where f(x) = 1
ct,n

φ(x) (cf. Lem. 3.3). Since f is increasing, and

vk+1 ≤ f(vk)

(this follows from Eq. (19), applied with s = s + tk, and t = t), it is easily seen by induction that vk ≤ wk.
Now wk is easily studied by standard methods: the condition ct,n > 1 ensures that f has only one stable

stationary point, xe = exp(1− ct,n), and that wk converges to this point. If we start from a point to the left of
xe, wk is always bounded by xe. On the right of xe, f is a

(
1 − 1

ct,n

)
-contraction. Therefore, for all k,

wk ≤ xe +
(

1 − 1
ct,n

)k

(w0 − xe)+ . (29)

The explicit value of xe, and the bound (1 − 1/c)k ≤ exp(−k/c) show that:

∀k, vk ≤ wk ≤ exp(1 − ct,n) + w0 exp(−k/ct,n).

Let us now look at the entropy H at time s + u. If u can be written as u = kt with a t > t0(n), the previous
iterated bound reads:

Hs+u ≤ exp(1 − ct,n) + w0 exp(−k/ct,n).

For any u > u0(n), let us choose t such that t(ct,n)2 = u, and k = c2
t,n (more precisely, k is the nearest integer).

By definition of u0, t is larger than t0. Now t and ct,n may be rewritten as functions of u:

tc2
t,n = u, therefore t =

(
uQ(n)2

)(1−a)/(3−a)
,

ct,n =
1

Q(n)
(uQ(n)2)1/(3−a).
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Since w0 = v0 = Hs, we obtain:

Hs+u ≤ (e + Hs) exp (−ct,n)

≤ (1 + Hs) exp
(
− u1/(3−a)

Q(n)(1−a)/(3−a)

)
.

This concludes the proof. �

3.3. Are Beckner inequalities the right scale?

We show here that the scale of Beckner inequalities is arguably the “right” one for proving uniqueness. We
only give a heuristic argument, using a toy model introduced by Bodineau and Martinelli in [4].

This paper studies the phase transition regime, and tries to find lower bounds on the growth of the constants,
as the size increases. The type of result they get is:

Proposition 3.7. In the phase transition regime, for the + boundary condition, the LS constants (in [−n, n]d)
grow at least like n2.

This can be linked with our theorem: indeed, if the proposition holds in our setting, and in the whole phase
transition regime, then a sublinear growth of the LS constants must imply that no phase transition occurs.

Their approach is however very different: they find a “good” test function for which the entropy is large
whereas the energy stays small.

In another section, the authors introduce a toy model, which is supposed to reproduce the main aspects
of the dynamics for the (classical) Ising model, in the phase transition regime: namely, the dynamics of the
disappearance of a big droplet of − spins when the boundary condition is +.

The model is a birth and death process on {0, 1, . . . , nd} with rates b and d:

b(x) = xα if x ≥ 1,

b(0) = 1,

d(x + 1) = xα exp ((x + 1)α − xα) if x ≥ 2

d(1) = e.

(30)

We choose α = d−1
d and note that the process is reversible w.r.t. µ defined by µ(x) = 1

Z exp(−xα).
The authors of [4] then proceed to study the Poincaré and log-Sobolev constants of this one-dimensional by

means of Muckenhoupt-like criteria, established in the discrete case by Miclo [10]. In fact, similar results exist
for any Beckner inequality. We rephrase here a result from [2] (the discrete version of Th. 13, justified in the
remarks at the end of Sect. 4 — note that our a is related to their r by a = 2(1 − 1/r)).

Proposition 3.8. For any i ∈ �, define the following quantities:

R+(x) =
∑
y≥x

µ(y), R−(x) =
∑
y≤x

µ(y),

S+(i, x) =
x∑

y=i+1

1
µ(y)b(y)

, S−(i, x) =
i−1∑
x

1
µ(y)b(y)

,

B+(i) = sup
x>i

S+(i, x)R+(i, x) loga

(
1 +

1
2R+(i, x)

)

B−(i) = sup
x<i

S−(i, x)R−(i, x) loga

(
1 +

1
2R−(i, x)

)
.
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Finally, let B = infi(B+(i) ∧ B−(i)). Then µ satisfies a GBI(a)inequality if and only if B is finite, and there
exists a universal constant k such that 1

kB ≤ Ca ≤ kB.

This can be used to find explicit bounds on the Beckner constants, thanks to the estimates [4]:

∑
y≥x

µ(y) ≈ x1−α exp(−xα),

x∑
y=i+1

1
µ(y)b(y)

≈ x1−2α exp(xα),

where X ≈ Y means that there exists a k (independant of x, i, α) such that 1
kX ≤ Y ≤ kX . This implies

estimates on B+, B− and B, e.g.:

B+(i, x) ≈ x1−2α exp(xα)x1−α (xα)a

≈ x1−3α+αa.

Define ad to be the solution of 1 − 3α + αa = 0. If a > ad, B ≈ B+(i, Nd) ≈ Nd(1−3α+αa) and the Beckner
constant blows up with N . If a < ad, B, and therefore the Beckner constant, stays bounded with N .

Since ad = (3α − 1)/α and α is defined in terms of a “dimension” d, we have shown the following

Theorem 3.9. Consider the toy model defined by (30) For each value of the “dimension” d, there exists an ad

such that:
• if a > ad, the Beckner constant C(a, N) grows like N ;
• if a < ad, the Beckner constant C(a, n) stays bounded in N .

Moreover, ad satisfies:
• if d = 1 or 2, ad < 0 so that all constants blow up in N ;
• if d = 3, ad = 0, the Poincaré constant stays bounded whereas all other constants blow up;
• if d > 3, ad ∈ (0, 1).

In particular, this tells us that (if the toy model is an appropriate approximation of the true model), there may
be parameters for which the phase transition occurs, but the Poincaré constant stays bounded. This leads us
to believe that Theorem 2.2 should not be too far from optimality, and that it should not be possible to prove
uniqueness if we only suppose a uniform Poincaré inequality.
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