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DEPENDENT LINDEBERG CENTRAL LIMIT THEOREM
AND SOME APPLICATIONS

Jean-Marc Bardet1, Paul Doukhan1, 2, Gabriel Lang3 and Nicolas Ragache2

Abstract. In this paper, a very useful lemma (in two versions) is proved: it simplifies notably the
essential step to establish a Lindeberg central limit theorem for dependent processes. Then, applying
this lemma to weakly dependent processes introduced in Doukhan and Louhichi (1999), a new cen-
tral limit theorem is obtained for sample mean or kernel density estimator. Moreover, by using the
subsampling, extensions under weaker assumptions of these central limit theorems are provided. All
the usual causal or non causal time series: Gaussian, associated, linear, ARCH(∞), bilinear, Volterra
processes, . . ., enter this frame.
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1. Introduction

This paper adresses the problem of the central limit theorem (CLT) for weakly dependent sequences with
the point of view of the classical Lindeberg method (see Petrov [15], for references Rio [17]). For establishing
a CLT for a sequence (Sn)n∈N∗ of random vectors (r.v.), a convenient and efficient method (so-called the
“Lindeberg’s method” in the sequel) consists on proving that for all functions f with bounded and continuous
partial derivatives up to order 3, ∣∣∣E(

f(Sn) − f(N)
)∣∣∣ −→

n→∞ 0, (1)

with N a Gaussian random variable not depending on n. Assume that Sn = X1 + · · · +Xn where (Xk)k∈N∗ is
a zero-mean sequence with (2 + δ)-order finite moments for some δ > 0, and consider (Yk)k∈N∗ a sequence of
independent zero mean Gaussian r.v. such that the variance of Yk and Xk are the same. In order to obtain (1),
we first show that this convergence is satisfied when the sum of two terms converges to zero. The first term is
the sum of the (2+ δ)-order moments of (Xk)1≤k≤n. The second term is a sum of covariances between functions
of (Xk)1≤k≤n and (Yk)1≤k≤n and reflects all the dependence structure. Three cases are thus detailed in three
different lemmata: first, the case of independent r.v.s (here, the second term vanishes), then the dependent case
with general functions f , and finally the dependent case with characteristic functions that yields a very simple
expression.

Keywords and phrases. Central limit theorem, Lindeberg method, weak dependence, kernel density estimation, subsampling.
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For applications of those lemmata, the class of weakly dependent processes, introduced by Doukhan and
Louhichi [9], is selected here. Roughly speaking, a process X = (Xk)k∈N∗ is said to be a weakly depen-
dent process if the covariance of any bounded and Lipschitz function of “past” data of X by any bounded and
Lipschitz function of “future” data of X tends to 0 when the lag between the future and the past increases to ∞
(see a more precise definition below).

Why should we use such dependence structures (instead e.g. mixing)?

Two main reasons motivate this choice. Firstly, weak dependence is a very general property including certain
non-mixing processes: e.g. Andrews [1] explicited the simple example of an autogressive process with Bernoulli
innovations and proved that such a model is not mixing in the sense of Rosenblatt (see for instance Doukhan [6],
or Rio [18], for references) while Doukhan and Louhichi [9] proved that such a process is weakly dependent.
More generally, under weak conditions, all the usual causal or non causal time series are weakly dependent
processes: this is the case for instance of Gaussian, associated, linear, ARCH(∞), bilinear, Volterra, infinite
memory processes, . . . Secondly, the dependence property is obtained from the convergence to zero of covariances
of the process (see above). The second term in our lemmata writes as a sum of covariances; weak dependence is
therefore particularly accurate to bound this term (which is the essential step for proving the Lindeberg CLT).

Different applications of the lemmata are then presented for weakly dependent processes. First, a CLT
for sample means is established in Doukhan and Wintenberger [12]; in addition to the previous lemma for
characteristic function, the Bernstein block method is required (in such a case, Bulinski and Shashkin [3]
and [4] used also this method; an alternative method is derived in Rio [18] Coulon-Prieur and Doukhan [5] or
Neumann and Paparoditis [14]). For weakly dependent processes, a CLT for the subsample mean is derived
here directly from our lemmata. By this way, the conditions required for such a theorem are weaker than those
required for the CLT for the sample mean. For instance, the subsampling of a long range dependent process
provides a CLT for its sample mean, which is interesting for obtaining confidence intervals or semi-parametric
tests (even if a large part of the sample is not used).

Finally, an application of the Lindeberg method to the kernel density estimation is also given. By this way,
the CLT is established under the same conditions as in Coulon-Prieur and Doukhan [5] for causal processes
(but with a more simple and general method). Its extension to non-causal processes is also proposed here. The
required conditions are of a different nature that the usual conditions under strong mixing (see Robinson [19]);
but on some examples of time series (for instance, the causal linear processes) they imply the same decay rates of
the coefficients. On other examples (some non-causal time series), it is very difficult to check the strong mixing
property. Therefore the CLT we proved concerns a lot of new models. Moreover, a version of this CLT for
subsampled kernel density estimator is given. Once again, this allows to obtain a CLT under weaker conditions.
With an adapted subsampling step, the asymptotic normality of this estimator is established even in the case
of long memory processes, which provides usual confidence intervals on the density or goodness-of-fit tests.

The paper is organized as follows. In Section 2, the Lindeberg method is presented. Section 3 is devoted to a
presentation of weakly dependent processes. Section 4 contains different applications of the Lindeberg method
for weakly dependent processes while the proofs of the different results are in the Section 5.

2. Lindeberg method

Let (Xi)i∈N be a sequence of zero mean r.v. with values in R
d (equipped with the Euclidean norm ‖Xi‖2 =(

X
(1)
i

)2

+ · · ·+
(
X

(d)
i

)2

for Xi =
(
X

(1)
i , . . . , X

(d)
i

)
. Moreover, all along this paper we will assume that (Xi)i∈N

satisfies,
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Assumption Hδ: It exists 0 < δ ≤ 1 such that ∀i ∈ N, E‖Xi‖2+δ <∞ and ∀k ∈ N
∗, define

Ak =
k∑

i=1

E‖Xi‖2+δ. (2)

Let (Yi)i∈N be a sequence of zero mean independent r.v. with values in R
d, independent of the sequence (Xi)i∈N

and such that Yi ∼ Nd(0,CovXi) for all i ∈ N. Denote by C3
b the set of bounded functions R

d → R with
bounded and continuous partial derivatives up to order 3. Set, for f ∈ C3

b and k ∈ N
∗,

∆k =
∣∣∣E(

f(X1 + · · · +Xk) − f(Y1 + · · · + Yk)
)∣∣∣. (3)

Following the dependence between vectorsXi, we now provide 3 lemmata, the first one is well known and relates
to the independence case, the two others are concerned with the dependence case. Thus, first, for independent
random variables, the Lindeberg lemma (see e.g. Petrov [15]) is

Lemma 1 (Lindeberg under independence). Let (Xi)i∈N be a sequence of independent zero mean r.v. with
values in R

d satisfying Assumption Hδ. Then, for all k ∈ N
∗:

∆k ≤ 6 · ‖f (2)‖1−δ
∞ · ‖f (3)‖δ

∞ ·Ak.

This lemma is restated for completeness sake but it is essentially well known.

Remark 1. Using the proof of the previous lemma, classical Lindeberg conditions may be used:

∆k ≤ 2‖f (2)‖∞Bk(ε) + ‖f (3)‖∞ · ak

(4
3
ε+

√
Bk(ε)

)
. (4)

where Bk(ε) =
k∑

i=1

E

(
‖Xi‖211{‖Xi‖>ε}

)
, for ε > 0, k ∈ N, (5)

ak =
k∑

i=1

E(‖Xi‖2) <∞, for k ∈ N.

Moreover, these classical Lindeberg conditions derive those from Lemma 1; indeed, according to Hölder In-

equality, E

(
‖Xi‖211{‖Xi‖>ε}

)
≤

(
E(‖Xi‖2+δ)

) 2
2+δ

(
P(‖Xi‖ > ε

) δ
2+δ

, and then, using the Bienaymé-Tchebichev

inequality, for all δ ∈]0, 1[, Bk(ε) ≤ ε−δAk. Consequently (4) implies,

∆k ≤ 2‖f (2)‖∞ε−δAk + ‖f (3)‖∞ak

(4
3
ε+ ε−δ/2

√
Ak

)
.

For the dependent case, the Lindeberg method provides the two following lemmata. First, for random vectors
Z =

(
Z(1), . . . , Z(d)

)′
and W =

(
W (1), . . . ,W (d)

)′ ∈ R
d, we will use the notations,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Cov(f (1)(W ), Z) =
d∑

�=1

Cov
(
∂f

∂x�
(W ), Z(�)

)
,

Cov(f (2)(W ), Z2) =
d∑

k=1

d∑
�=1

Cov
(

∂2f

∂xk∂x�
(W ), Z(k)Z(�)

)
.
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Assume that Z∗ is independent of W and admits the same distribution as Z; the previous expression is rewritten
Cov(f (2)(W ), Z2) = Ef (2)(W )(Z,Z)−Ef (2)(W )(Z∗, Z∗) where f (2)(W ) is here considered as a quadratic form
of R

d. Then,

Lemma 2 (dependent Lindeberg lemma - I). Let (Xi)i∈N be a sequence of zero mean r.v. with values in R
d

satisfying Assumption Hδ. Then,

∆k ≤ T1(k) +
1
2
T2(k) + 10 · ‖f (2)‖1−δ

∞ · ‖f (3)‖δ
∞ ·Ak,

where (empty sums are set equal to 0),

Tj(k) =
k∑

i=1

∣∣∣Cov
(
f (j)(X1 + · · · +Xi−1), X

j
i

) ∣∣∣, j = 1, 2. (6)

Characteristic functions are considered below; they provide a simpler result.

Lemma 3 (dependent Lindeberg lemma - II). Let (Xi)i∈N be a sequence of zero mean r.v. with values in R
d

satisfying Assumption Hδ. For the special case of complex exponential functions f(x) = ei〈t,x〉 for some t ∈ R
d

(and where 〈a, b〉 is the scalar product in R
d),

∆k ≤ T (k) + 6‖t‖2+δAk, where T (k) =
k∑

j=1

∣∣Cov(ei〈t,X1+···+Xj−1〉, ei〈t,Xj〉)
∣∣.

The main consequence of those three lemmata is related to the asymptotic behavior of
∑k

i=1Xi, and provide
sufficient conditions for establishing the CLT.

Theorem 1 (a Lindeberg CLT). Assume that the sequence (Xi,k)i∈N satisfies Assumption Hδ, and Ak −→
k→∞

0,

and there exists Σ a positive matrix such that Σk =
k∑

i=1

Cov(Xi,k) −→
k→∞

Σ. Moreover, assume that Tj(k) −→
k→∞

0

for j = 1, 2 (Lem. 2) or T (k) −→
k→∞

0 (Lem. 3). Then,

Sk =
k∑

i=1

Xi,k
D−→

k→∞
Nd(0,Σ).

Proof of Theorem 1. Under the assumptions of this theorem, it is clear that
∣∣∣E(

f(Sk) − f(Nk)
)∣∣∣ −→

k→∞
0 for

all functions f ∈ C3
b , or for all t ∈ R and f(x) = eitx, where Nk ∼ Nd(0,Σk). According to

∣∣∣E(
f(Nk) −

f(N)
)∣∣∣ −→

k→∞
0 where N ∼ Nd(0,Σ), we deduce that

∣∣∣E(
f(Sk)− f(N)

)∣∣∣ −→
k→∞

0 and therefore Sk
D−→

k→∞
N . �

Following this theorem, we can remark that the condition A(k) −→
k→∞

0 is the usual Lindeberg condition (with

also condition Σk −→
k→∞

Σ, the convergence of variances), while the conditions Tj(k) −→
k→∞

0 (for j = 1, 2) or

T (k) −→
k→∞

0 are related to the dependence structure of the sequence (Xi)i∈N.

3. Weakly dependent processes

We have just seen that the convergence in distribution of Sk to a Gaussian law is obtained if T1(k) and T2(k),
or T (k) converge to 0. Those terms are related to the dependence of the sequence (Xn)n∈N. Now, we address a
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very general class of dependent processes introduced and developped in Doukhan and Louhichi [9]. Numerous
reasons justify this choice. First, this frame of dependence includes a lot of models like causal or non causal
linear, bilinear, strong mixing processes or also dynamical systems. Secondly, these properties of dependence
are independent of the marginal distribution of the time series, that can be as well a discrete one, Lebesgue
measurable one or else. Finally, these definitions of dependence can be easily used in various statistic contexts,
in particular in the case of the establishment of central limit theorems, since the previous bounds provided for
T1(k), T2(k) or T (k) are written with sums of covariances (see above).

To define a such dependent processes, first, for h :
(
R

d
)u → R an arbitrary function, with d, u ∈ N

∗, de-
note,

Liph = sup
(y1,...,yu) 
=(x1,...,xu)∈(Rd)u

|h(y1, . . . , yu) − h(x1, . . . , xu)|
‖y1 − x1‖ + · · · + ‖yu − xu‖ ·

Then,

Definition 1. A process X = (Xn)n∈Z with values in R
d is a so-called (ε, ψ)-weakly dependent process if there

exist a function ψ : (N∗)2 × (R+)2 → R
+ and a sequence (εr)r∈N such that εr −→

r→∞ 0 satisfying,

∣∣∣Cov
(
g1(Xi1 , . . . , Xiu), g2(Xj1 , . . . , Xjv)

)∣∣∣ ≤ ψ(u, v,Lip g1,Lip g2) · εr (7)

for all

⎧⎪⎪⎨⎪⎪⎩
• (u, v) ∈ N

∗ × N
∗;

• (i1, . . . , iu) ∈ Z
u and (j1, . . . , jv) ∈ Z

v with i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv
• functions g1 : R

ud → R and g2 : R
vd → R such that

‖g1‖∞ ≤ 1, ‖g2‖∞ ≤ 1, Lip g1 <∞ and Lip g2 <∞.

In the sequel, two different particular cases of functions ψ corresponding to two different cases of weakly
dependent processes will be considered (more details can be found in Doukhan and Louhichi [9], Doukhan and
Wintenberger [12]),

• If X is a causal time series, i.e. there exist a sequence of functions (Fn) and a sequence of independent
random variables (ξk)k∈Z such that Xn = Fn(ξn, ξn−1, . . .) for n ∈ Z, the θ-weakly dependent causal
condition, for which

ψ(u, v,Lip g1,Lip g2) = v · Lip g2

(in such a case, we will simply denote θr instead of εr).
• If X is a non causal time series, the λ-weakly dependent condition, for which

ψ(u, v,Lip g1,Lip g2) = u · v · Lip g1 · Lip g2 + u · Lip g1 + v · Lip g2

(in such a case, we will simply denote λr instead of εr).

Remark 2. It is clear that if X is a θ-weakly dependent process it is also a λ-weakly dependent process.
The main reasons for considering a distinction between causal and non causal time series are: a/ the θ-weak
dependence is more easily relied to the strong mixing property; b/ some models or properties require different
conditions on the convergence rate of (θr) than for (λr).

Note first that sums of independent weakly dependent processes admit the common weak dependence property
where dependence coefficients are the sums of the initial ones. We now provide a non exhaustive list of weakly
dependent sequences with their weak dependence properties. In the sequel, X = (Xk)k∈Z denote a weakly
dependent stationary time series (the conditions of the stationarity will not be specified) and (ξn)n∈Z is a
sequence of zero mean i.i.d. random variables,

1. If X is a Gaussian process and if lim
i→∞

Cov(X0, Xi) = 0, then X is a λ-weakly dependent process such

that λr = O
(

sup
i≥r

|Cov(X0, Xi)|
)

(see Doukhan and Louhichi [9]).
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2. If X is an associated stationary processes, then X is λ-weakly dependent process such that λr =
O(supi≥r Cov(X0, Xi)) (see Doukhan and Louhichi [9]).

3. If X is a ARMA(p, q) process or, more generally, a causal (respectively, a non causal) linear process such

that Xk =
∞∑

j=0

ajξk−j (respectively, Xk =
∞∑

j=−∞
ajξk−j) for k ∈ Z, with ak = O(|k|−µ) with µ > 1/2,

then X is a θ- (respectively, λ-) weakly dependent process with θr = λr = O( 1
rµ−1/2

)
(see Doukhan

and Lang [8], p. 3). It is also possible to deduce λ-weak dependence properties for X if the innovation
process is itself λ-weakly dependent (Doukhan and Wintenberger [12]).

4. If X is a GARCH(p, q) process or, more generally, a ARCH(∞) process such that Xk = ρk · ξk with

ρ2
k = b0 +

∞∑
j=1

bjX
2
k−j for k ∈ Z and if,

• it exists C > 0 and µ ∈]0, 1[ such that ∀j ∈ N, 0 ≤ bj ≤ C · µ−j , then X is a λ-weakly dependent
process with λr = O(e−c

√
r) and c > 0 (this is the case of GARCH(p, q) processes).

• it exists C > 0 and ν > 1 such that ∀j ∈ N, 0 ≤ bj ≤ C · j−ν , then X is a λ-weakly dependent
process with λr = O(

r−ν+1
)

(see Doukhan [11]).

5. If X is a causal bilinear process such that Xk = ξk

(
a0 +

∞∑
j=1

ajXk−j

)
+ c0 +

∞∑
j=1

cjXk−j for k ∈ Z (see

Giraitis and Surgailis [13]) and if,

•
{ ∃J ∈ N such that ∀j > J , aj = cj = 0, or,

∃µ ∈]0, 1[ such that
∑

j |cj |µ−j ≤ 1 and ∀j ∈ N, 0 ≤ aj ≤ µj , then X is a λ-weakly dependent

process with λr = O(e−c
√

r), constant c > 0;
• ∀j ∈ N, cj ≥ 0, and ∃ν1 > 2 and ∃ν2 > 0 such that aj = O(j−ν1) and

∑
j cjj

1+ν2 < ∞,

with d = max
(
− (ν1 − 1) ; −(ν2δ)(δ + ν2 log 2)−1

)
, then X is a λ-weakly dependent process with

λr = O
(( r

log r
)d

)
and (see Doukhan et al. [10]).

6. If X is a non causal bilinear process satisfying Xk = ξk ·
(
a0 +

∑
j∈Z∗

ajXk−j

)
, for k ∈ Z, where ‖ξ0‖∞ <

∞ (bounded random variables) and ak = O(|k|−µ) with µ > 1, then X is a λ-weakly dependent process
with λr = O(

r1−µ
)

(see Doukhan [11]).
7. If X is a non causal finite order Volterra process such that Xk =

∑∞
p=1 Y

(p)
k for k ∈ Z, and with

Y
(p)
k =

∑
−∞<j1<j2<···<jp<∞

a
(p)
j1,...,jp

ξk−j1 · · · ξk−jp and such that it exists p0 ∈ N
∗ satisfying for p > p0,

a
(p)
j1,...,jp

= 0. Then if a(p)
j1,...,jp

= O
(

max
1≤i≤p

{|ji|−µ}
)

with µ > 0, X is a λ-weakly dependent process with

λr = O( 1
rµ+1

)
(see Doukhan [7]). As in case 3, λ-weak dependence properties for X may be proved

even for λ-weakly dependent innovations.
8. If X is a causal (respectively, non causal) infinite memory process such that

Xk = F (Xk−1, Xk−2, . . . ; ξk) (respectively, Xk = F (Xk−t, t �= 0; ξk)) for k ∈ Z,

where the function F is defined on R
N (respectively, R

Z) and satisfies, with m > 0, ‖F (0; ξ0)‖m < ∞
and ‖F ((xj)j ; ξ0) − F ((yj)j ; ξ0)‖m ≤ ∑

j 
=0 aj |xj − yj |, where a =
∑

j 
=0 aj < 1. Then X is a θ-

(respectively, λ-) weakly dependent process with θr = infp≥1

{
a

r
p +

∑
j>p aj

}
(respectively, λr =

infp≥1

{
a

r
p +

∑
|j|>p aj

}
) (see Doukhan and Wintenberger [12]).
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9. LetX be a zero-mean, second order stationary Gaussian (or linear) process. Assume thatX is long-range
dependent: Cov(X0, Xk) = L(k) · k2H−2 for k ∈ N, with H ∈ (1/2, 1) (so-called Hurst parameter) and
L(·) a slowly varying function (at +∞). Then, X is a λ-weakly dependent process with λr = L(r)·r2H−2.

Now, different applications of Theorem 1 are considered for weakly dependent processes.

4. Applications under weak dependence

4.1. Lindeberg central limit theorem

Doukhan and Wintenberger [12] prove a CLT using Bernstein blocks for a sequence (Xi)i∈N of stationary zero
mean (2 + δ)-order random variables. In order to prove T (k) −→

k→∞
0 (see Lem. 3), we consider two sequences

(pn)n∈N and (qn)n∈N such that, {
pn −→

n→∞ ∞
qn −→

n→∞ ∞ and pn = o(n), qn = o(pn).

Introduce now the number of Bernstein blocks kn =
[

n

pn + qn

]
. It can be shown that if pn · qn = o(n),

∥∥∥∥∥∥ 1√
n

n∑
i=1

Xi − 1√
n

kn∑
j=1

(j−1)(pn+qn)+pn∑
i=(j−1)(pn+qn)+1

Xi

∥∥∥∥∥∥
2

−→
n→∞ 0.

Therefore, it is sufficient to prove the convergence in distribution to a Gaussian law of the second sum, which is
easier than with the first one. Thus, Doukhan and Wintenberger [12] prove a (2 + δ)-order moment inequality
which entails condition A(kn) → 0 and T (kn) −→

k→∞
0, and they obtain:

Theorem 2. Let (Xi)i∈N be a sequence of stationary zero mean (2 + δ)-order random variables (with δ > 0).
Assume that (Xi)i∈N is a λ- (or θ-) weakly dependent time series satisfying λr = O(r−c) (or θr = O(r−c)) when

r → ∞, with c > 4 + 2/δ, then it exists 0 < σ2 <∞ such that
1√
n

n∑
i=1

Xi
D−→

k→∞
N (0, σ2).

Note that in Doukhan and Wintenberger [12] the Donsker principle is also proved.

4.2. Subsampling

Assume that (Xi)i∈Z is a zero mean (2 + δ)-order stationary sequence for some δ > 0, with Σ = Cov(X0).
Then, for a sequence (mn)n∈N such that mn −→

n→∞ ∞ and kn =
[
n/mn

] −→
n→∞ ∞. We consider a subsample

(Xmn , . . . , Xknmn) of (X1, . . . , Xn), and the sample,

(Y1,n, . . . , Ykn,n) with Yi,n =
1√
kn

Ximn for 1 ≤ i ≤ kn.

Depending on the weak dependence property of (Xi)i∈Z, we can obtain the Lindeberg Theorem for

Skn,n =
kn∑
i=1

Yi,n.
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Proposition 4.1. Assume that (Xi)i∈Z is a zero mean (2 + δ)-order stationary sequence for some δ > 0, with
Σ = Cov(X0). Then, for a sequence (mn)n∈N such that mn −→

n→∞ ∞ and kn =
[
n/mn

] −→
n→∞ ∞,

Skn,n =
1√
kn

kn∑
i=1

Ximn

D−→
n→∞ Nd(0,Σ),

if one of the following assumptions also holds,
• (Xi)i∈Z is a θ−weakly dependent sequence and θmn

√
kn −→

n→∞ 0.

• (Xi)i∈Z is a λ−weakly dependent sequence and λmnk
3
2
n −→

n→∞ 0.

This proposition allows to pass from a situation where the CLT is not satisfied to a situation where it is satisfied
by using a subsample with the correct asymptotic step of sampling. For instance, if X is a zero mean stationary
long range dependent (2 + δ)-order process (with δ > 0) and such that a/ X is a Gaussian process such that
E(X0Xn) = O(n2H−2) with 1/2 < H < 1 when n→ ∞ or b/ X a linear process. Then X is a λ-weakly depen-
dent process with λr = O(r2H−2) and it is well known (see for instance Taqqu [20]) that X does not satisfy a
usual central limit theorem. As a consequence, with a subsampling step mn such that o(mn) = n3/(4H−1), the
subsampled time series (Xjmn) satisfies a usual CLT with a convergence rate o(n(1−H)/(4H−1)).

Two objections can be raised to this method: first, only a part of the sample is used. The second and main
objection is that the choice of the convergence rate of the subsampling implies the knowledge of the convergence
rate of (λr) or (θr). However, an estimation of this last rate (for instance in the case of long-range dependence)
could provide an estimation of a fitted step of subsampling, or in the case of an exponential rate of convergence
of (λr) or (θr), all subsampling step mn = O(na) with 0 < a < 1 could be used: it is the case for instance for
GARCH(p, q) processes.

4.3. Kernel density estimation

Let (Xi)i∈N be a sequence of stationary zero mean r.v. (with real values) such that X0 has a marginal density
fX with respect to Lebesgue measure. Let K : R → R be a kernel function satisfying,

Assumption K: K : R → R be a bounded and Lipschitz function with
∫ ∞
−∞K(t) dt = 1.

Now, define (hn)n∈N a sequence such that hn −→
n→∞ 0 and consider the usual kernel density estimation,

f̂
(n)
X (x) =

1
n

n∑
i=1

1
hn

K

(
x−Xi

hn

)
for x ∈ R.

Proposition 4.2. Let (Xi)i∈Z be a stationary zero mean weakly dependent time series (with real values)
such that X0 has a marginal density fX with respect to Lebesgue measure. Assume that ‖fX‖∞ < ∞ and
maxi
=j ‖fi,j‖∞ <∞, where fi,j denotes the joint marginal density of (Xi, Xj). Then,

√
nhn

(
f̂

(n)
X (x) − Ef̂

(n)
X (x)

) D−→
n→∞ N

(
0, fX(x)

∫
R

K2(t) dt
)
,

if hn −→
n→∞ 0, nhn −→

n→∞ ∞ and,

• hn = o
(
n−2/(λ′−4) ∧ n−5/(2λ′−5)

)
when (Xi)i∈Z is a λ-weakly dependent process with λr = O(r−λ) and

λ′ > λ > 5, or
• when (Xi)i∈Z is a θ-weakly dependent process with θr = O(r−θ) and θ > 3.
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Now, following the regularity of the function fX , Ef̂
(n)
X (x) is a more or less good approximation of fX(x).

Hence, here there are two different cases of the approximation of the bias,

Corrolary 4.1. Assume that for some p ∈ N
∗, the function fX is a Cp(R) function, with bounded derivatives.

Then, under the conditions of Proposition 4.2, with K a kernel such that
∫

R
K(t)tq dt = 0 for q = {1, . . . , p−1}

and
∫

R
K(t)tp dt �= 0, if hn = C ·n−1/(2p+1) (with C > 0) and, following the different frames of weak dependence,

λ > 5p+ 5 or θ > 3,

√
nhn

(
f̂

(n)
X (x) − fX(x)

) D−→
n→∞ N

(
f

(p)
X (x)

1
p!

∫
R

tpK(t) dt , fX(x)
∫

R

K2(t) dt
)
.

Corrolary 4.2. Assume that the regularity of the function fX is ρ > 0 with ρ /∈ N
∗ (in the sense that f has a [ρ]-

th order bounded derivative which is Hölder continuous with exponent ρ− [ρ]). Then, under the same conditions
than Proposition 4.2, with K a kernel such that

∫
R
K(t)tq dt = 0 for q = {1, . . . , [ρ]− 1} and

∫
R
K(t)t[ρ] dt �= 0,

if hn = o
(
n−1/(2[ρ]+1)

)
and, following the different frames of weak dependence, λ > 5[ρ] + 5 or θ > 3,

√
nhn

(
f̂

(n)
X (x) − fX(x)

) D−→
n→∞ N

(
0, fX(x)

∫
R

K2(t) dt
)
.

4.4. Subsampled kernel density estimation

Now, imagine that the process (Xk)k∈Z is a weakly dependent zero mean stationary process such that the
conditions λ > 5 or θ > 3 of Proposition 4.2 are not satisfied. As a consequence, the kernel density estimator is
not proved to satisfy a central limit theorem. Subsampling can provide a way for obtaining a CLT (and then,
confidence intervals or goodness-of-fit tests). Indeed, like it was also considered before, a subsampled time series
with an asymptotic rate is “less” dependent than the original time series. Indeed, consider a sequence (mn)n∈N

such that
mn −→

n→∞ ∞ and kn =
[
n/mn

] −→
n→∞ ∞,

and the subsample (Xmn , . . . , Xknmn) of (X1, . . . , Xn). For (hn)n∈N a sequence such that hn −→
n→∞ 0, define

the subsampled kernel density estimator of fX as:

f̂
(n,mn)
X (x) =

1
kn

kn∑
i=1

1
hn

K

(
x−Ximn

hn

)
for x ∈ R.

Proposition 4.3. Under the same assumptions than Proposition 4.2, except that 0 ≤ λ ≤ 6 or θ ≤ 3, the
following CLT yields from the subsample (Xmn , . . . , Xknmn),

√
knhn

(
f̂

(n,mn)
X (x) − Ef̂

(n,mn)
X (x)

) D−→
n→∞ N

(
0, fX(x)

∫
R

K2(t) dt
)
,

for sequences (hn) and (mn) such that hn = n−h and mn = nm, where the points (m,h) are in the “white
zonas” (included in square (0, 1)2) of Figures 1 and 2 (see below). Moreover, the “optimal” convergence rate is
obtained for,

•
√
hnkn = n

λ
5+2(λ∨1)−ε for all ε > 0 small enough (and hn = n−ε and mn = n

5
5+2(λ∨1) +ε) when (Xi)i∈Z

is a λ-weakly dependent process;
•

√
hnkn = n

1
2 (θ∧1)−ε for all ε > 0 small enough (and hn = n−ε and mn = n((1−θ)∨0)+ε) when (Xi)i∈Z

is a θ-weakly dependent process.

From this result, we now answer to the following problem. Assume that X is a θ- (or λ-) weakly dependent
process and that the regularity ρ (in the sense of the previous section) of the density function fX and the
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Figure 1. Conditions (the “white” zona) satisfied by parameters m and h for obtaining the
CLT in the θ-weak dependence frame, when 0 < θ ≤ 1 (left) and 1 < θ ≤ 3 (right).
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Figure 2. Conditions (the “white” zona) satisfied by parameters m and h for obtaining the
CLT in the λ-weak dependence frame, when 0 < λ ≤ 1 (left) and 1 < λ ≤ 6 (right).

sequence decay rates θ and λ of the sequences (θr)r or (λr)r are known. In the previous section, we have
established a CLT for the density kernel estimator when θ (or λ) is larger than an affine function of ρ. However,
if this inequality is not satisfied, it is possible to find a subsampling step such that a CLT for the subsampled
kernel density estimator can be proved, Proposition 4.2. We have also,

Corrolary 4.3. Under the assumptions of consequence 4.1, but if 0 < λ ≤ 5p+ 5 (or 0 < θ ≤ p+ 3),

√
knhn

(
f̂

(n,mn)
X (x) − fX(x)

) D−→
n→∞ N

(
f

(p)
X (x)

1
p!

∫
R

tpK(t) dt , fX(x)
∫

R

K2(t) dt
)
,

with the following optimal conditions,

• for λ-weakly dependent process, with λr = O(r−λ) and 0 < λ ≤ 5p + 5, for hn = n− λ
5+p(5+2(λ∨1)) and

mn = n1− λ(2p+1)
5+p(5+2(λ∨1)) . Then, the convergence rate is

√
knhn ∼ n

pλ
5+p(5+2(λ∨1)) ;



164 J.-M. BARDET ET AL.

• for θ-weakly dependent process, with θr = O(r−θ) and 0 < θ ≤ p + 3, for hn = n− θ
3+2p(θ∨1) and mn =

n1− θ(2p+1)
3+2p(θ∨1) . Then, the convergence rate is

√
knhn ∼ n

pθ
3+2p(θ∨1) .

Corrolary 4.4. Under the assumptions of Consequence 4.2 with ρ /∈ N, but if 0 < λ ≤ 5[ρ] + 5 (or 0 < θ ≤
[ρ] + 3), then, √

knhn

(
f̂

(n,mn)
X (x) − fX(x)

) D−→
n→∞ N

(
0 , fX(x)

∫
R

K2(t) dt
)
,

with the following conditions (for all ε > 0 small enough),

• for λ-weakly dependent process, with λr = O(r−λ) and 0 < λ ≤ 5[ρ] + 5, for hn = n− λ
5+[ρ](5+2(λ∨1)) and

mn = n1+2ε− λ(2[ρ]+1)
5+[ρ](5+2(λ∨1)) . Then, the convergence rate is

√
knhn ∼ n

pλ
5+[ρ](5+2(λ∨1))−ε;

• for θ-weakly dependent process, with θr = O(r−θ) and 0 < θ ≤ [ρ] + 3, for hn = n− θ
3+2[ρ](θ∨1) and

mn = n1+2ε− θ(2[ρ]+1)
3+2[ρ](θ∨1) . Then, the convergence rate is

√
knhn ∼ n

[ρ]θ
3+2[ρ](θ∨1)−ε.

Hence, for all regularity parameter ρ > 0, even if λ or θ are very small numbers (for instance when X is a
long range dependent process), the subsampled kernel density estimator satisfies a CLT for a fitted choice of hn

and mn. Moreover, for θ-weakly dependent time series with θ > 0, when ρ → ∞, the convergence rate of this
theorem is n1/2−ε, with ε > 0.

5. Proofs

Proof of Lemma 1. For k ∈ N
∗, we first notice and prove that,

∆k ≤ ∆k,1 + · · · + ∆k,k (8)

with ∆k,i =
∣∣∣E(

fi(Wi +Xi) − fi(Wi + Yi)
)∣∣∣, for i ∈ {1, . . . , k}

Wi = X1 + · · · +Xi−1 and W1 = 0, for i ∈ {2, . . . , k},
fi(t) = E

(
f(t+ Yi+1 + · · · + Yk)

)
and fk(t) = f(t), for t ∈ R

d and i ∈ {1, . . . , k − 1}.

Let x,w ∈ R
d. Taylor formula writes in two following ways (for suitable vectors w1,x, w2,x ∈ R

d),

f(w + x) = f(w) + f (1)(w)(x) +
1
2
f (2)(w1,x)(x, x)

= f(w) + f (1)(w)(x) +
1
2
f (2)(w)(x, x) +

1
6
f (3)(w2,x)(x, x, x),

where, for j = 1, 2 and 3, f (j)(w)(y1, . . . , yj) stands for the value of the symmetric j-linear form f (j) of
(y1, . . . , yj) at w. Moreover, denote,

‖f (j)(w)‖1 = sup
‖y1‖,...,‖yj‖≤1

|f (j)(w)(y1, . . . , yj)|, ‖f (j)‖∞ = sup
w∈Rd

‖f (j)(w)‖1.

Thus for w, x, y ∈ R
d, there exists some suitable vectors w1,x, w2,x, w1,y, w2,y ∈ R

d such that:

f(w + x) − f(w + y) = f (1)(w)(x − y) +
1
2

(
f (2)(w)(x, x) − f (2)(w)(y, y)

)
+

1
2

(
(f (2)(w1,x) − f (2)(w))(x, x) − (f (2)(w1,y) − f (2)(w))(y, y)

)
= f (1)(w)(x − y) +

1
2

(
f (2)(w)(x, x) − f (2)(w)(y, y)

)
+

1
6

(
f (3)(w2,x)(x, x, x) − f (3)(w2,y)(y, y, y)

)
.
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Thus, γ = f(w + x) − f(w + y) − f (1)(w)(x − y) − 1
2

(
f (2)(w)(x, x) − f (2)(w)(y, y)

)
satisfies

|γ| ≤
(
(‖x‖2 + ‖y‖2)‖f (2)‖∞

)
∧

(1
6

(‖x‖3 + ‖y‖3)‖f (3)‖∞
)

≤
(
‖x‖2‖f (2)‖∞

)
∧

(1
6
‖x‖3‖f (3)‖∞

)
+

(
‖x‖2‖f (2)‖∞

)
∧

(1
6
‖y‖3‖f (3)‖∞

)
+

(
‖y‖2‖f (2)‖∞

)
∧

(1
6
‖x‖3‖f (3)‖∞

)
+

(
‖y‖2‖f (2)‖∞

)
∧

(1
6
‖y‖3‖f (3)‖∞

)
≤ 1

6δ
‖f (2)‖1−δ

∞ ‖f (3)‖δ
∞

{
‖x‖2+δ + ‖x‖2(1−δ)‖y‖3δ + ‖y‖2(1−δ)‖x‖3δ + ‖y‖2+δ

}
(9)

using the inequality 1 ∧ c ≤ cδ, that is valid for all c ≥ 0 when δ ∈ [0, 1].
Substituting fi, Wi, Xi and Yi to f , w, y and x in the preceding inequality and taking expectation gives a

bound to ∆k,i. Indeed,

Efi(Wi +Xi) − Efi(Wi + Yi)

= Efi(Wi +Xi) − Efi(Wi + Yi) − E

(
f

(1)
i (Wi)(Xi − Yi) − 1

2

(
f

(2)
i (Wi)(Xi, Xi) − f

(2)
i (Wi)(Yi, Yi)

))
because Wi is independent from Xi and Yi and because EXi = EYi = 0 and CovXi = CovYi. Using Jensen’s
inequality and the independence of X ’s and Y ’s, we derive E(‖Yi‖2+δ) ≤ (E(‖Yi‖4))

1
2+ δ

4 and E(‖Yi‖4) ≤
3 · E2(‖Xi‖2) because Yi is a Gaussian r.v. with the same covariance than Xi. Therefore

E(‖Yi‖2+δ) ≤ 3
1
2 + δ

4 (E(‖Xi‖2+δ))4(
1
2+ δ

4 )/(2+δ) ≤ 3
1
2+ δ

4 E(‖Xi‖2+δ)
E‖Xi‖2(1−δ)

E‖Yi‖3δ ≤ E‖Xi‖2(1−δ)
(
E‖Xi‖2

)3δ/2 ≤ E‖Xi‖2+δ for 3δ ≤ 2
≤ 33δ/4

E‖Xi‖2(1−δ)
(
E‖Xi‖2

)3δ/2 ≤ 3
1
2+ δ

4 E‖Xi‖2+δ else
E‖Yi‖2(1−δ)

E‖Xi‖3δ ≤ (
E‖Yi‖2

)1−δ
E‖Xi‖3δ ≤ (

E‖Xi‖2
)1−δ

E‖Xi‖3δ ≤ E‖Xi‖2+δ

in the case 3δ > 2 (we note that 3δ ≤ 4) the second inequality relies on the relations ‖Yi‖3δ ≤ ‖Yi‖4 ≤ 31/4‖Xi‖2.
Those inequalities allow to consider the terms between braces in (9). Recall that ‖f (j)

i ‖∞ ≤ ‖f (j)‖∞ ( for
1 ≤ i ≤ k and 0 ≤ j ≤ 3). We obtain

∆k,i ≤ 2(1 + 3
1
2+ δ

4 )
6δ

‖f (2)‖1−δ
∞ ‖f (3)‖δ

∞E‖Xi‖2+δ ≤ 6‖f (2)‖1−δ
∞ ‖f (3)‖δ

∞E‖Xi‖2+δ.

As a consequence, from assumption (2),

∆k ≤ 6 ·Ak · ‖f (2)‖1−δ
∞ ‖f (3)‖δ

∞. �

Proof of Remark 1. Set b2k = max1≤i≤k E(‖Xi‖2). Now, for ε < 6 ‖f (2)‖∞ · (‖f (3)‖∞)−1, and using inequality
(9), one obtains

∆k,i ≤ ‖f (2)‖∞E

(
‖Xi‖2 ∧ 1

6
(‖f (2)‖∞

)−1‖f (3)‖∞ · ‖Xi‖3
)

+
1
3
‖f (3)‖∞E(‖Yi‖3)

+ ‖f (2)‖∞E

(
‖Yi‖2 ∧ 1

6
(‖f (2)‖∞

)−1‖f (3)‖∞ · ‖Xi‖3
))

≤ ‖f (2)‖∞E
(‖Xi‖211{‖Xi‖>ε}

)
+

1
3
‖f (3)‖∞ ·

(
E
(‖Xi‖311{‖Xi‖≤ε}

)
+ E(‖Yi‖3)

)
+ ‖f (2)‖∞E

(‖Yi‖211{‖Xi‖>ε}
)
.
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Now as any nonnegative square integrable real valued r.v. Z is associated, we get

Cov(Z2, 11{Z>ε}) = EZ211{Z>ε}) − EZ2
P(Z > ε) ≥ 0

thus
E
(‖Yi‖211{‖Xi‖>ε}

)
= E‖Yi‖2 · P(‖Xi‖ > ε) = E‖Xi‖2 · P(‖Xi‖ > ε) ≤ E

(‖Xi‖211{‖Xi‖>ε}
)

so that

∆k,i ≤ 2‖f (2)‖∞E
(‖Xi‖211{‖Xi‖>ε}

)
+

1
3
‖f (3)‖∞ ·

(
ε · E(‖Xi‖2) + 33/4(E((‖Xi‖2)3/2)

)
,

from the Hölder Inequality. It implies that

∆k ≤ 2‖f (2)‖∞Bk(ε) +
1
3
‖f (3)‖∞

(
ε · ak + 33/4

k∑
i=1

bk · E(‖Xi‖2)
)

≤ 2‖f (2)‖∞Bk(ε) +
1
3
‖f (3)‖∞ · ak

(
ε+ 33/4 · bk

)
.

Moreover, b2k ≤ ε2 + max1≤i≤k E

(
‖Xi‖211{‖Xi‖>ε}

)
, therefore b2k ≤ ε2 +Bk(ε) and thus bk ≤ ε+

√
Bk(ε). As a

consequence,

∆k ≤ 2‖f (2)‖∞Bk(ε) + ‖f (3)‖∞ · ak

(4
3
ε+

√
Bk(ε)

)
. �

Proof of Lemma 2. Consider (X∗
i )i∈N a sequence of r.v. satisfying Assumption Hδ and such that (X∗

i )i∈N is
independent of (Xi)i∈N and (Yi)i∈N. Moreover, assume that X∗

i has the same distribution as Xi for i ∈ N.
Then, using the same decomposition as in the proof of Lemma 1, one can also write,

∆k,i ≤ |E (fi(Wi +Xi) − fi(Wi +X∗
i ))| + |E (fi(Wi +X∗

i ) − fi(Wi + Yi)))| .

From the previous Lemma,

k∑
i=1

|E (fi(Wi +X∗
i ) − fi(Wi + Yi))| ≤ 2(1 + 3

1
2+ δ

4 )
6δ

· ‖f (2)‖1−δ
∞ · ‖f (3)‖δ

∞ ·Ak.

Moreover, the bound for γ of the proof of Lemma 1 entails,

|fi(Wi +Xi) − fi(Wi +X∗
i )| ≤

∣∣∣f (1)
i (Wi)(Xi −X∗

i )
∣∣∣

+
1
2

∣∣∣f (2)
i (Wi)(Xi, Xi) − f

(2)
i (Wi)(X∗

i , X
∗
i )

∣∣∣ +
2
6δ

‖f (2)‖1−δ
∞ ‖f (3)‖δ

∞
{‖Xi‖2+δ + ‖X∗

i ‖2+δ
}
,

because (Xi) is now supposed to be a dependent sequence of random variables and is no more independent from
(Wi). But with the notation before Lemma 2, we may write

k∑
i=1

|Ef (1)
i (Wi)(Xi −X∗

i )
∣∣∣ =

k∑
i=1

|Ef (1)
i (Wi)(Xi)

∣∣∣ = T1, and

k∑
i=1

∣∣∣E (
f

(2)
i (Wi)(Xi, Xi) − f

(2)
i (Wi)(X∗

i , X
∗
i )

) ∣∣∣ = T2.
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It implies that,

∆k ≤ T1 +
1
2
T2 + 10 · ‖f (2)‖1−δ

∞ · ‖f (3)‖δ
∞ ·Ak. �

Proof of Lemma 3. Here, for t ∈ R
d, f(x) = ei〈t,x〉. Denote Vi = VarXi, the covariance matrix of the vector Xi.

Then, for a r.v. Z independent from (Yi)i∈N,

Efj(Z) = E
(
f(Z + Yj+1 + · · · + Yk)

)
= e−

1
2 t′·(Vj+1+···+Vk)·t · E(ei〈t,Z〉).

Then, again
∆k,j ≤ ∣∣E(fj(Wj +Xj) − fj(Wj +X∗

j ))
∣∣ +

∣∣E(fj(Wj +X∗
j ) − fj(Wj + Yj))

∣∣ ,
with the second term bounded as in the proof of Lemma 2 with ‖f (2)‖1−δ∞ · ‖f (3)‖δ∞ = ‖t‖2+δ, and for the first
term,

E(fj(Wj +Xj) − fj(Wj +X∗
j )) = e−

1
2 t′·(Vj+1+···+Vk)·t · E

(
ei〈t,Wj〉(ei〈t,Xj〉 − ei〈t,X∗

j 〉)
)
,∣∣E(fj(Wj +Xj) − fj(Wj +X∗

j ))
∣∣ ≤ ∣∣∣e− 1

2 t′·(Vj+1+···+Vk)·t
∣∣∣ ∣∣Cov(ei〈t,Wj〉, ei〈t,Xj〉)

∣∣,
≤ ∣∣Cov(ei〈t,Wj〉, ei〈t,Xj〉)

∣∣. �

Proof of Proposition 4.1. The proof of this proposition is a consequence of Theorem 1, using T (n) −→
n→∞ 0. In

one hand, thanks to the stationarity of the sequence (Xi)i∈Z,

Akn =
kn∑
i=1

E
(‖Yi,n‖2+δ

)
= k−δ/2

n E
(‖X0‖2+δ

) −→
n→∞ 0.

In the other hand, a bound of T (kn) can be provided. Indeed, let t ∈ R
d, and then,

T (kn) =
kn∑
j=1

∣∣∣Cov
(
ei〈t,Y1,n+···+Yj−1,n〉, ei〈t,Yj,n〉

)∣∣∣ ,
=

kn∑
j=1

∣∣Cov(Ft,n(Xmn , . . . , X(j−1)mn
), Gt,n(Xjmn))

∣∣ ,
with Gt,n(s) = e(i〈s,t〉/√kn) and Ft,n(s1, . . . , sj−1) = Gt,n(s1) × · · · ×Gt,n(sj−1) for (s1, . . . , sj) ∈ (Rd)j . But,

‖Gt,n‖∞ ≤ 1 and LipGt,n ≤ ‖t‖ · k−1/2
n

‖Ft,n‖∞ ≤ 1 and LipFt,n ≤ ‖t‖ · k−1/2
n ,

from inequality |u1 × · · · × uj−1 − v1 × · · · × vj−1| ≤ |u1 − v1|+ · · ·+ |uj−1 − vj−1| , valid for complex numbers
ui, vi with modulus less than 1. Therefore, under the different frames of dependence,

Dependence |Cov(Ft,n(Xmn , . . . , X(j−1)mn
), Gt,n(Xjmn))| T (kn)

θ ≤ ‖t‖ · k−1/2
n θmn ≤ ‖t‖ · k1/2

n θmn

λ ≤ ‖t‖ · k1/2
n λmn ≤ ‖t‖ · k3/2

n λmn

and then, Theorem 1 implies Proposition 4.1. �
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Proof of Proposition 4.2. Let x ∈ R, define,

Sn =
√
nhn

(
f̂

(n)
X (x) − Ef̂

(n)
X (x)

)
=

n∑
i=1

Yi

where Yi =
1√
nhn

(
K

(x−Xi

hn

)
− E

(
K

(x−Xi

hn

)))
= u(Xi) (10)

and the function u depends also on x and n. First, for δ > 0,

An =
n∑

i=1

E
(‖Yi‖2+δ

)
= (nhn)−δ/2 · 1

hn
E

(∣∣∣K(x−Xi

hn

)
− E

(
K

(x−Xi

hn

))∣∣∣2+δ
)

≤ 22+δ · (nhn)−δ/2 · 1
hn

E

(∣∣∣K(x−Xi

hn

)∣∣∣2+δ
)

≤ 22+δ · (nhn)−δ/2 · ‖fX‖∞ ·
∫

R

∣∣K(s)
∣∣2+δds,

(the boundedness of K implies the convergence of the last integral). As a consequence, An −→
n→∞ 0 when

nhn −→
n→∞ ∞. Now,

|E(Yi)| ≤ E |Yi| ≤ ‖fX‖∞
∫

R

|u(s)| ds

≤ 2hn√
nhn

‖fX‖∞
∫

|K(v)| dv

≤ C1

√
hn

n
, for some constant C1 > 0. (11)

Moreover, using changes in variables v = (x − s)/hn, v′ = (x− s′)/hn,

Cov(Yj , Yi) =
∫

R2
u(s)u(s′)(fj,i(s, s′) − fX(s)fX(s′)) dsds′

|Cov(Yj , Yi)| ≤ (‖fj,i‖∞ + ‖fX‖2
∞)

∫
R2

|u(s)||u(s′)| dsds′

≤ 4h2
n

nhn
(‖fj,i‖∞ + ‖fX‖2

∞)
(∫

|K(v)| dv
)2

≤ C2
hn

n
, for some constant C2 > 0. (12)

The function K is supposed to be a bounded and Lipschitz function, the same for u,

‖u‖∞ ≤ 2 ‖K‖∞ · 1√
nhn

and Lipu = 2 LipK · 1
hn

√
nhn

·
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Therefore, using the η-weak dependence inequality of the time series (Xi)i∈N, with always Yi = u(Xi), there
exists C > 0 such that,

|Cov(Y0, Yr)| ≤ C · un,r with un,r =

⎧⎪⎨⎪⎩
θr

nh2
n

for the θ-weak dependence

λr

nh3
n

for the λ-weak dependence.

As a consequence of both (12) and the previous inequalities, there exists constants C3 > 0 such that

|Cov(Y0, Yr)| ≤ C3 ·
(hn

n
∧ un,r

)
, for all r ∈ N. (13)

Finally, we also quote that for i ∈ N,

Var (Yi) =
∫

R

fX(t) · u2(t) dt

=
1
n

∫
R

fX(x − hns) ·K2(s) ds− hn

n

(∫
R

fX(x− hns) ·K(s) ds
)2

.

From the assumptions on functions fX and K, the Lebesgue dominated convergence Theorem can be applied
and therefore,

n · Var (Yi) −→
n→∞

∫
R

fX(x) ·K2(s) ds. (14)

Using the relations (11), (13) and (14), then,

Var (Sn) = n · VarY0 + 2
n−1∑
i=1

(n− i)Cov(Y0, Yi)

∣∣∣∣nhn · Var
(
f̂

(n)
X (x)

)
− fX(x)

∫
R

K2(t) dt
∣∣∣∣ ≤ o(1) + 2C3 ·

n−1∑
i=1

(
hn ∧ (n · un,ri)

)
.

Under the assumptions of the Proposition, if the right term of the forthcoming inequality (16) converges to 0,
the right term of the previous inequality converges to 0 and thus,

nhn · Var
(
f̂

(n)
X (x)

)
−→
n→∞ f(x)

∫
R

K2(t)dt. (15)

Now, we are going to bound T (n) for applying Lemma 3. Let x ∈ R and t ∈ R. First we can write,

T (n) =
n−1∑
j=1

|Cov(Fx,t(X1, . . . , Xj−1), Gx,t(Xj))| ,

where Fx,t(X1, . . . , Xj−1) = exp
(
it(Y1 + · · · + Yj−1)

)
and Gx,t(Xj) = exp

(
itYj

)
, with always Yk = u(Xk). In

order to compute a bound for T (n) we need the following decomposition due to Rio [18],

Fx,t(X1, . . . , Xj−1) =
j−1∑
k=1

(eitSk − eitSk−1), with Sk = Y1 + · · · + Yk and S0 = 0.
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Thus,

Cov(Fx,t(X1, . . . , Xj−1), Gx,t(Xj)) =
j−1∑
k=1

Cov
(
eitSk − eitSk−1 , eitYj

)
.

Consider a r.v. Y ∗
j independent from (Y1, . . . , Yk−1), with the same distribution than Yj . Then,∣∣∣Cov

(
eitSk − eitSk−1 , eitYj

)∣∣∣ =
∣∣∣E((

eitSk − eitSk−1
)(

eitYj − eitY ∗
j
))∣∣∣

≤ |t|2E
(|Yk| · (|Yj | + |Y ∗

j |)) from inequality |eia − eib| ≤ |b− a|
≤ C

hn

n
, for some constant C > 0,

from relations (11) and (12). From another hand, one can write,

Cov
(
eitSk − eitSk−1 , eitYj

)
= Cov

(
g1(X1, . . . , Xk), g2(Xj)

)
,

with ‖g2‖∞ = 1 and ‖g1‖∞ ≤ |t|‖Sk − Sk−1‖∞ ≤ |t| · ‖u‖∞ ≤ 2|t|‖K‖∞ · 1√
nhn

and,

∣∣eit(u(x1)+···+u(xk)) − eit(u(y1)+···+u(yk))
∣∣

|x1 − y1| + · · · + |xk − yk| ≤ |t| · |(u(x1) + · · · + u(xk)) − (u(y1) + · · · + u(yk))|
|x1 − y1| + · · · + |xk − yk|

≤ |t| · Lipu · k.

As a consequence, Lip g1 ≤ 8|t| · LipK · k

hn

√
nhn

and Lip g2 ≤ 4|t| · LipK · 1
hn

√
nhn

. Using these results and

the weak dependence property of X , there exists C > 0 such that for  = j − k ∈ [1, j],∣∣∣Cov
(
eitSk − eitSk−1 , eitYj

)∣∣∣ ≤ C · hn

n
∧ vn,k,�

with vn,k,� =

⎧⎪⎨⎪⎩
k2

( 1
nh3

n

∨ 1

n1/2h
3/2
n

)
· λ� for the λ-weak dependence,

1
nh2

n

· θ� for the θ-weak dependence.

This implies,

T (n) ≤ C

n∑
j=1

j∑
�=1

hn

n
∧ vn,n,�

≤ C
n∑

�=1

hn ∧ (
n · vn,n,�

)
(16)

≤ C · h1−β
n nβ

n∑
�=1

vβ
n,n,�

with β ≥ 0 (analogously to the case of Var f̂ (n)
X (x)). Since nhn −→

n→∞ ∞ and hn −→
n→∞ 0, one obtains that

T (n) −→
n→∞ 0 under the different conditions satisfied by hn and the weak dependence sequence. Then, all the

conditions of Theorem 1 are satisfied, which implies Proposition 4.2. �
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Proof of Corollaries 4.1 and 4.2. Under the assumptions on K, from Prakasa Rao [16],

E

(
f̂

(n)
X (x)

)
=

⎧⎨⎩ fX(x) + hp
n · (1 + o(1)) · f (p)

X (x)
1
p!

∫
R

tpK(t) dt if the regularity of fX is p ∈ N
∗

fX(x) +O(h[ρ]
n ) if the regularity of fX is ρ /∈ N

∗
.

It implies the optimal choice of convergence rate of hn, following this two cases, and the conditions on the
convergence rates of the different frames of weak dependent. �
Proof of Proposition 4.3. This proof is quite the same than the proof of Proposition 4.2 and therefore we omit
the details. Let x ∈ R, define,

Sn =
√
knhn

(
f̂

(n,mn)
X (x) − Ef̂

(n,mn)
X (x)

)
=

kn∑
i=1

Yi

where Yi =
1√
knhn

(
K

(x−Ximn

hn

)
− E

(
K

(x−Ximn

hn

)))
= u(Ximn), (17)

and the function u depends both on x and n. First, for δ > 0,

A(mn)
n =

kn∑
i=1

E
(‖Yi‖2+δ

) ≤ 2 · (knhn)−δ/2 · ‖fX‖∞ ·
∫

R

∣∣K(s)
∣∣2+δds.

As a consequence, A(mn)
n −→

n→∞ 0 when knhn −→
n→∞ ∞. Moreover, we have,

|E(Yi)| ≤ C1

√
hn

kn
, for some constant C1 > 0;

|Cov(Y0, Yr)| ≤ C3 ·
(hn

kn
∧ ukn,mn·r

)
, for some constant C3 > 0 and all r ∈ N,

with the sequence (up,q) defined in the proof of the Proposition 4.2. We have also,

kn · Var (Yi) −→
n→∞

∫
R

fX(x) ·K2(s) ds,

and thus
∣∣∣∣knhn · Var

(
f̂

(n,mn)
X (x)

)
− fX(x)

∫
R

K2(t) dt
∣∣∣∣ ≤ o(1) + 2C3 ·

kn−1∑
i=1

(
hn ∧ (kn · ukn,mn·r)

)
. Under the

conditions on hn and mn,

knhn · Var
(
f̂

(n,mn)
X (x)

)
−→
n→∞ f(x)

∫
R

K2(t)dt. (18)

For bounding T (kn), one writes again with Sk = Y1 + · · · + Yk and S0 = 0,

T (kn) =
kn−1∑
j=1

∣∣∣∣∣
j−1∑
k=1

Cov
(
eitSk − eitSk−1 , eitYj

)∣∣∣∣∣ .
Thanks to the inequality,∣∣∣Cov

(
eitSk − eitSk−1 , eitYj

)∣∣∣ ≤ C
hn

kn
, for some constant C > 0,
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and with the sequence (vn,k,�) of the previous proof, this implies,

T (kn) ≤ C ·
kn∑
i=1

(
hn ∧ (kn · vkn,kn,mn�)

)

≤ C · h1−β
n kβ

n

kn∑
�=1

vβ
kn,kn,mn�

with β ≥ 0. With hn = n−h and mn = nm, where h,m ∈ (0, 1), the condition T (kn) −→
n→∞ 0, which implies (18)

and therefore the central limit theorem, can be obtained for different choice of h and m. After computations,
the following graphs provide the zonas (depending also of the decay rate θ or λ of weak dependence property)
where h and m can be chosen.

Finally, the “optimal” rate of convergence, in the sense of a maximal
√
knhn = n(1−m−h)/2, is obtained from

a maximization of 1 −m− h. In every cases this occurs for the point (m,h) most below and left of the graph
“white” zona. This implies the optimal condition of the proposition. �
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