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REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
WITH TWO RCLL BARRIERS

Jean-Pierre Lepeltier
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Abstract. In this paper we consider BSDEs with Lipschitz coefficient reflected on two discontinuous
(RCLL) barriers. In this case, we prove first the existence and uniqueness of the solution, then we
also prove the convergence of the solutions of the penalized equations to the solution of the RBSDE.
Since the method used in the case of continuous barriers (see Cvitanic and Karatzas, Ann. Probab. 24
(1996) 2024–2056 and Lepeltier and San Mart́ın, J. Appl. Probab. 41 (2004) 162–175) does not work,
we develop a new method, by considering the solutions of the penalized equations as the solutions of
special RBSDEs and using some results of Peng and Xu in Annales of I.H.P. 41 (2005) 605–630.
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1. Introduction

Non-linear backward stochastic differential equations (BSDE’s in short) were firstly introduced by Pardoux
and Peng ([10], 1990), who proved the existence and uniqueness of the adapted solution, under smooth square-
integrability assumptions on the coefficient and the terminal condition, and when the coefficient g(t, ω, y, z) is
Lipschitz in (y, z) uniformly in (t, ω). Then El Karoui, Kapoudjian, Pardoux, Peng and Quenez introduced
the notion of reflected BSDE (RBSDE in short) ([6], 1997) with one continuous lower barrier. More precisely,
a solution for such equation associated with a coefficient g, a terminal value ξ, a continuous barrier (Lt), is a
triplet (Yt, Zt,Kt)0≤t≤T of adapted processes valued on R

1+d+1, which satisfies a smooth square integrability
condition,

Yt = ξ +
∫ T

t

g(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdBs, 0 ≤ t ≤ T , a.s., (1)

and Yt ≥ Lt a.s. for any 0 ≤ t ≤ T , (Kt) is non-decreasing continuous, where Bt is a d-dimensional Brownian
motion. The role of (Kt) is to push upward the process Y in a minimal way, in order to keep it above L. In
this sense it satisfies ∫ T

0

(Ys − Ls)dKs = 0. (2)
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In order to prove the existence and uniqueness of the solution, they used first a Picard-type iterative procedure,
which requires at each step the solution of an optimal stopping problem. The second approximation is con-
structed by penalization of the constraint. At each step, they have the solution of a classical BSDE (Y n, Zn).
The comparison theorem on the solutions of BSDEs ([10], 1990) gets to the convergence of the sequence (Y n).
For the sequence (Zn), the fact that (Lt) is continuous is crucial (see [6], 1997, Lem. 6.1, and the proof using
the Dini’s theorem).

Following this paper, Cvitanic and Karatzas ([4], 1996) introduced the notion of reflected BSDE with two
barriers. In this case a solution of such an equation associated with a coefficient g, a terminal value ξ, a
continuous lower barrier (Lt) and a continuous upper barrier (Ut), with Lt ≤ Ut and LT ≤ ξ ≤ UT a.s. is a
triplet (Yt, Zt,Kt)0≤t≤T of adapted processes, valued in R

1+d+1, which satisfies

Yt = ξ +
∫ T

t

g(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdBs, 0 ≤ t ≤ T , a.s., (3)

Lt ≤ Yt ≤ Ut, a.s. for any 0 ≤ t ≤ T , (Kt) is a finite variation continuous process, K = K+
t − K−

t , where
K+,K− are increasing; the role of (Kt) is to keep the process Y between L an U in such a way that∫ T

0

(Ys − Ls)dK+
s = 0 and

∫ T

0

(Ys − Us)dK−
s = 0. (4)

In view to prove the existence and uniqueness of a solution, the method still bases on a Picard-type iteration
procedure, which requires at each step the solution of a Dynkin game problem.

Then in the Section 6 of this paper ([4], 1996), an alternative method for proving the existence of a solution
is presented, which still applies penalization of the constraints, under a condition which roughly says that the
barrier can be approximated (uniformly) by semi-martingales whose finite variation part process is absolutely
continuous with respect to the Lebesgue measure. Furthermore, the existence result is only obtained when the
coefficient g does not depend on z.

In [8], 2004, Lepeltier and San Martin relaxed in some sense the condition on the barriers, proving by a
penalization method an existence result, without any assumption (except square integrability assumption) on
L and U , but only when there exists a continuous semi-martingale with terminal value ξ, between L and U .
They proved also the existence result in the general case (where g may depend also on z). In [8], (see Lems. 5
and 6), the fact that L and U are continuous is also crucial.

In this paper, we consider the reflected BSDE’s with right continuous left limit (RCLL) barriers. In this case
the process Y may have jumps, and is RCLL. The role of Kt = K+

t − K−
t is to keep in a minimal way the

process Y between two barriers L and U ; it is then natural to replace (4) by∫ T

0

(Ys− − Ls−)dK+
s = 0 and

∫ T

0

(Ys− − Us−)dK−
s = 0. (5)

In Section 2 we set up accurately the problem and we present one “monotonic limit” theorem which will play
an important role in the penalization method for the RBSDEs with two RCLL barriers.

In Section 3, we generalize the existence and uniqueness result for a RBSDE with two discontinuous barriers,
using like in [4], a Picard iteration method and a Dynkin game problem.

In Section 4, we consider the penalization method for the RBSDEs. We prove that the solutions of penalized
equations

Y m,n
t = ξ +

∫ T

t

g(s, Y m,n
s , Zm,n

s )ds+ n

∫ T

t

(Y m,n
s − Ls)−ds−m

∫ T

t

(Us − Y m,n
s )−ds−

∫ T

t

Zm,n
s dBs

converge to the solution of the RBSDE. We use the idea that the solution of the RBSDE with one lower barrier,
penalized with respect to an upper barrier, may be considered as the solution of a RBSDE with two barriers.
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We also use a generalization of the “monotonic limit theorem” (see [11]). Some definitions and important results
about the Snell envelope and Dynkin game are listed in the Appendix (Sect. 5).

2. Definitions and assumptions for reflected BSDE with two RCLL barriers

Let (Ω,F , P ) be a complete probability space, and B = (B1, B2, · · · , Bd)′ be a d-dimensional Brownian
motion defined on the finite interval [0, T ]. Denote by {Ft; 0 ≤ t ≤ T } the natural filtration generated by the
Brownian motion B:

Ft = σ{Bs; 0 ≤ s ≤ t},
augmented with all P -null sets of F .

We shall need the following notations. For any given m ∈ N∗ and t ∈ [0, T ], let us introduce the following
spaces:

• L2
m(Ft) := {ξ : Ω → R

m, Ft–measurable random variables ξ with E[|ξ|2] <∞};
• Hp

m(0, t) := {ϕ : Ω × [0, t] → R
m; Ft–predictable processes with E

∫ t

0
|ϕt|pdt <∞};

• D2
m(0, t) :={ϕ ∈ Lp

F(0, t; Rm); Ft–progressively measurable RCLL processes
with E[sup0≤t≤τ |ϕt|2] <∞};

• A2(0, t) :={K: Ω × [0, t] → R, Ft–progressively measurable increasing RCLL processes
with K(0) = 0, E[(KT )2] <∞ }.

In the real–valued case, i.e., m = 1, the three first spaces will be simply denoted by L2(Ft), Hp(0, t), D2(0, t)
respectively. We shall denote by P the σ–algebra of predictable sets in [0, T ]× Ω.

We suppose the following assumptions:

Assumption 2.1. The terminal value ξ is a given random variable in L2(FT ).

Assumption 2.2. The coefficient g : [0, T ]×Ω×R×R
d �−→ R , is P ⊗B(R)⊗B(Rd)-measurable, and satisfies

(i) E

∫ T

0

g2(t, 0, 0)dt < +∞, (6)

and (ii)

|g(t, ω, y1, z1) − g(t, ω, y2, z2)| ≤ k(|y1 − y2| + |z1 − z2|) (7)

∀(t, ω) ∈ [0, T ]× Ω; y1, y2 ∈ R; z1, z2 ∈ R
d

for some 0 < k <∞.

Assumption 2.3. The two barriers {Lt, 0 ≤ t ≤ T } and {Ut, 0 ≤ t ≤ T } are RCLL progressively measurable
real-valued processes satisfying

E( sup
0≤t≤T

(L+
t )2 + sup

0≤t≤T
(U−

t )2) < +∞, (8)

and Lt ≤ Ut for 0 ≤ t ≤ T , with LT ≤ ξ ≤ UT a.s.

For the existence of the solution of the reflected BSDE with two RCLL barriers, we shall need:

Assumption 2.4. (i) There exists a process Jt = J0 +
∫ t

0
φsdBs − V +

t + V −
t , with φ ∈ H2

d(0, T ), V +, V − ∈
A2(0, T ), such that

Lt ≤ Jt ≤ Ut P-a.s. for 0 ≤ t ≤ T.

(ii) For t ∈ [0, T ), Lt < Ut, a.s..

Now we present the definition of the solutions of the RBSDEs with two RCLL barriers.
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Definition 2.1. A triplet (Y, Z,K) of Ft-progressively measurable processes, where Y , K, are RCLL processes
and Y,K : [0, T ] × Ω �−→ R, and Z : [0, T ] × Ω �−→ R

d is called a solution of the RBSDE with two RCLL
reflecting barriers L(·), U(·), a terminal condition ξ and a coefficient g, if the followings hold:

(i) Y ∈ D2(0, T ), Z ∈ H2
d(0, T ), and K = K+ −K−, with K+,K− ∈ A2(0, T ).

(ii) Yt = ξ +
∫ T

t g(s, Ys, Zs)ds+K+
T −K+

t − (K−
T −K−

t ) −
∫ T

t ZsdBs, 0 ≤ t ≤ T.
(iii) Lt ≤ Yt ≤ Ut, 0 ≤ t ≤ T , a.s.
(iv)

∫ T

0
(Ys− − Ls−)dK+

s =
∫ T

0
(Us− − Ys−)dK−

s = 0, a.s.

So the state-process Y (·) is forced to stay between the barriers L(·) and U(·) by the cumulation action of
the reflection processes K+(·), K−(·) respectively; they act only necessarily to prevent Y (·) from crossing the
respective barrier, and in this sense, their actions can be considered minimal.

Now we present a generalized “monotonic limit” theorem, which will play an important role in the penalization
method for the RBSDE with two RCLL barriers. It is proved in [11], Theorem 3.1.

Theorem 2.1. We consider the following BSDE’s associated with two increasing processes: for i ∈ N,

Y i
t = ξ +

∫ T

t

g(s, Y i
s , Z

i
s)ds+Ai

T −Ai
t − (Ki

T −Ki
t) −

∫ T

t

Zi
sdBs, (9)

with E[sup0≤t≤T

∣∣Y i
t

∣∣2] <∞. Here g satisfies the Assumption 2.2, and Ai, Ki ∈ A2(0, T ); we also assume that
for each i ∈ N,

(h1) (Ai) is continuous with E[(Ai
T )2] <∞;

(h2) Kj
t −Kj

s ≥ Ki
t −Ki

s, ∀0 ≤ s ≤ t ≤ T , a.s. ∀i ≤ j;
(h3) for t ∈ [0, T ], Ki

t ↗ Kt, in L2(Ft), with E[K2
T ] <∞;

(h4) (Y i
t ) converges increasingly to (Yt) with E[ sup0≤t≤T |Yt|2] <∞.

Then there exists Z ∈ H2
d(0, T ) and A ∈ A2(0, T ), such that

Yt = ξ +
∫ T

t

g(s, Ys, Zs)ds+AT −At − (KT −Kt) −
∫ T

t

ZsdBs, (10)

where Z is the weak (resp. strong) limit of {Zi}∞i=1 in H2
d(0, T ) (resp. Hp

d(0, T ), for p < 2), for each t ∈ [0, T ],
At is the weak limit of {Ai

t}∞i=1 in L2(Ft), and K ∈ A2(0, T ).

3. The RBSDE with two RCLL barriers and Dynkin game

For the existence and uniqueness of the solution of the RBSDE with two RCLL barriers, we need the notions
of stochastic game and Dynkin game, which are described in the Appendix. In the following proposition, we
generalize Theorem 4.1 in ([4], 1996) to the case of RCLL barriers. Set T be the set of all Ft-stopping times,
and for all 0 ≤ t ≤ T , define

Tt = {τ ∈ T ; t ≤ τ ≤ T }. (11)

Proposition 3.1. Let (Y, Z,K), with K = K+−K− and K± ∈ A2(0, T ) be a solution of the RBSDE with two
RCLL barriers. For any 0 ≤ t ≤ T and any stopping times σ, τ in Tt, consider the payoff

Rt(σ, τ) =
∫ σ∧τ

t

g(s, Ys, Zs)ds+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ} + Uσ1{σ<τ}, (12)

as well as the upper and lower values, respectively,

V t = ess inf
σ∈Tt

ess sup
τ∈Tt

E[Rt(σ, τ)|Ft], (13)

V t = ess sup
τ∈Tt

ess inf
σ∈Tt

E[Rt(σ, τ)|Ft],
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of the corresponding stochastic game. This game has a value Vt, given by the state-process Yt solution of RBSDE,
i.e.,

Vt = V t = V t = Yt.a.s. (14)

Proof. For any ε > 0, consider the stopping time σε
t = inf{s ≥ t, Ys ≥ Us − ε} ∧ T , then Yσε

t
≥ Uσε

t
− ε on the

set {σε
t < T }; and on the set {σε

t = T }, we have Ys < Us − ε for t ≤ s < T . So Ys− < Us− for t < s ≤ σε
t , and

with (iv) of Definition 2.1, K−
σε

t
= K−

t follows. For any stopping time τ ∈ Tt, notice that {σε
t = T } ⊂ {τ ≤ σε

t },
so {σε

t < τ} ⊂ {σε
t < T }. On the set {σε

t < τ}, we have

Rt(σε
t , τ) ≤

∫ σε
t

t

g(s, Ys, Zs)du + Yσε
t
− (K−

σε
t
−K−

t ) + ε

≤
∫ σε

t

t

g(s, Ys, Zs)du + Yσε
t

+ (K+
σε

t
−K+

t ) − (K−
σε

t
−K−

t ) + ε

= Yt +
∫ σε

t

t

ZudBu + ε.

On the set {τ ≤ σε
t }, we have

Rt(σε
t , τ) =

∫ τ

t

g(s, Ys, Zs)du + ξ1{τ=T} + Lτ1{τ<T} − (K−
τ −K−

t )

≤
∫ τ

t

g(s, Ys, Zs)du + ξ1{τ=T} + Yτ1{τ<T} + (K+
τ −K+

t ) − (K−
τ −K−

t )

= Yt +
∫ τ

t

ZudBu.

Now compare the two inequalities; we have Rt(σε
t , τ) ≤ Yt +

∫ σε
t ∧τ

t
ZudBu + ε, a.s., hence

E[Rt(σε
t , τ)|Ft] ≤ Yt + ε. (15)

On the contrary, we consider the stopping time τε
t = inf{s ≥ t, Ys ≤ Ls + ε} ∧ T , then Yτε

t
≤ Lτε

t
+ ε on

the set {σε
t < T }, and K+

τε
t

= K+
t . For an arbitrary stopping time σ ∈ Tt, and with a similar proof, we get

Rt(σ, τε
t ) ≥ Yt +

∫ σ∧τε
t

t
Z(u)dBu − ε, a.s., then

E[Rt(σ, τε
t )|Ft] ≥ Yt − ε. (16)

So we deduce

E[Rt(σε
t , τ)|Ft] − ε ≤ Yt ≤ E[Rt(σ, τε

t )|Ft] + ε. (17)

Thanks to the Lemma 5.3 in the Appendix, this stochastic game has a value, i.e. there exists Vt s.t. Vt = V t =
V t. In addition, with (13) and (17), we have

V t ≤ Yt ≤ V t,

i.e. Vt = V t = V t = Yt. The proof is complete. �
Now we begin to prove the existence and uniqueness of the solution of the RBSDE. First we consider the

RBSDE with a coefficient g, independant of y and z. In this case, from the previous result, we know the
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necessary form of the state-process Yt, then we look for Z, K+ and K−. For this we introduce the followings:

Nt = E[ξ +
∫ T

0

g(s)ds|Ft] −
∫ t

0

g(s)ds, (18)

Lξ
t = Lt1{t<T} + ξ1{t=T}, L̃t = Lξ

t −Nt,

U ξ
t = Ut1{t<T} + ξ1{t=T}, Ũt = U ξ

t −Nt.

Obviously, Nt is a continuous process on [0, T ] and Nt ∈ D2(0, T ). Then L̃t, Ũt are RCLL processes on [0, T ],
belong to D2(0, T ), and

L̃t ≤ Ũt, 0 ≤ t ≤ T,

L̃T− ≤ L̃T = 0 = ŨT ≤ ŨT−.

Then from (12), we get

E[Rt(σ, τ)|Ft] = E[L̃τ1{τ≤σ} + Ũσ1{σ<τ}|Ft] +Nt.

If we consider the Dynkin game problem with payoff Rt(σ, τ), with t = 0, player 1 chooses the stopping time
σ, player 2 chooses the stopping time τ , then R0(σ, τ) represents the amount paid by player 1 to player 2.
So player 1 tries to minimize the payoff while player 2 tries to maximize it. The game stops when one player
decides to stop, that is, at the stopping time σ ∧ τ , or at T if σ = τ = T . From Proposition 3.1, if the value of
the Dynkin game exists, then Yt satisfies

Yt = ess inf
σ∈Tt

ess sup
τ∈Tt

E[L̃τ1{τ≤σ} + Ũσ1{σ<τ}|Ft] +Nt (19)

= ess sup
τ∈Tt

ess inf
σ∈Tt

E[L̃τ1{τ≤σ} + Ũσ1{σ<τ}|Ft] +Nt.

Thanks to Theorem 5.2 in the Appendix, we turn to the following system to study the value of the Dynkin
game

X+ = S(L̃+X−), (20)

X− = S(−Ũ +X+),

where S denote the Snell envelope (see Def. 5.1 in Appendix). This system was introduced by Bismut ([3], 1977)
and was studied by him and Alario-Nazaret (1982). In the Appendix, we remember some results of Alario-
Nazaret in her thesis ([1], 1982) and in [2]. The following theorem is deduced from Theorem 5.1 in the Appendix.

Theorem 3.1. The system (20) admits a solution (X+, X−) in D2(0, T )× D2(0, T ).

Proof. This theorem is the direct application of Theorem 5.1 in the Appendix; the only thing that we need to
point out is that Assumption 2.4 leads to

L̃ ≤ X̃ − X̃ ′ ≤ Ũ

for some positive Ft-supermartingales (X̃, X̃ ′) of class D [0, T ]. It’s easily seen if we take

X̃t = J+
0 +

∫ t

0

φ+
s dBs + E[ξ+ +

∫ T

0

g+(s)ds|Ft] −
∫ t

0

g+(s)ds− V +
t − (JT − ξ)+1{t=T},

X̃ ′
t = J−

0 +
∫ t

0

φ−s dBs + E[ξ− +
∫ T

0

g−(s)ds|Ft] −
∫ t

0

g−(s)ds− V −
t − (JT − ξ)−1{t=T},
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where J+, φ+, ξ+, g+ and (JT − ξ)+ (resp. J−, φ−, ξ−, g− and (JT − ξ)−) are the positive (resp. negative)
part of J , φ, ξ, g and (JT − ξ) respectively. Then X̃ and X̃ ′ belong to D [0, T ] by the assumptions on ξ, g, J ,
φ and V ±. �

With these results, we get the following theorem, which gives the method to find the processes Z, K+ and
K−. The proof of this theorem is in the same way like the continuous case in [4], even easier, since in the
discontinuous case, we do not need to prove the continuity of Y .

Theorem 3.2. Let us consider the equation

π(K+) = S(L̃+ π(K−)) (21)

π(K−) = S(−Ũ + π(K+))

where S denotes the Snell envelope and πt(V ) = E[VT |Ft]−Vt. If we suppose the Assumption 2.4, this equation
has a solution (K+,K−) ∈ A2(0, T )× A2(0, T ); then the triple (Y, Z,K), where K = K+ −K−,

Y := N + π(K+) − π(K−) (22)

and Z ∈ H2
d(0, T ) uniquely determined via

E[ξ +
∫ T

0

g(s)ds+AT −K−
T |Ft] = N(0) + E[K+

T ] − E[K−
T ] +

∫ t

0

ZsdBs, 0 ≤ t ≤ T, (23)

is the unique solution of the RBSDE.

Proof. Since Assumption 2.4 is satisfied, by Theorem 3.1 the system (20) admits a solution (X+, X−) ∈
D2(0, T ) × D2(0, T ). By Lemma 5.1 in the Appendix, there exists a pair (K+,K−) ∈ A2(0, T ) × A2(0, T )
which solves the equation (21). In fact, (21) is equivalent to (20) when we set X+ = π(K+), X− = π(K−).

Then by Theorem 5.2 in the Appendix, Y = N +π(K+)−π(K−) is the value of a Dynkin game as (19), and
by (18), (22), and (23), we have

Yt +
∫ t

0

g(s)ds+K+
t −K−

t = E[ξ +
∫ T

0

g(s)ds+K+
t −K−

t |Ft] = Y (0) +
∫ t

0

ZsdBs, (24)

for 0 ≤ t ≤ T, where Y (0) = N(0) +E[K+
T −K−

T ]; in particular, YT = ξ; thus

ξ +
∫ T

0

g(s)ds+K+
T −K−

T = Y (0) +
∫ T

0

ZsdBs. (25)

From (24) and (25), we deduce the part (ii) of the definition 2.1:

Yt = ξ +
∫ T

t

g(s)ds+K+
T −K+

t − (K−
T −K−

t ) −
∫ T

t

ZsdBs.

From the definition of the Snell envelope (21) we have

π(K+) ≥ L̃+ π(K−),

π(K−) ≥ −Ũ + π(K+).

Then with (18) and (22), it follows

L ≤ N + L̃ ≤ Y = N + π(K+) − π(K−) ≤ Ũ +N ≤ U.
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Since the process K+ (resp. K−) is the increasing process of the decomposition of the Snell envelope S(L̃ +
π(K−)) (resp. S(−Ũ + π(K+))), by the Lemma 5.1 in the Appendix, we get

0 =
∫ T

0

(St−(L̃+ π(K−)) − L̃t− − πt−(K−))dK+
t =

∫ T

0

(Yt− − Lt−)dK+
t ,

0 =
∫ T

0

(St−(−Ũ + π(K+)) + Ũt− − πt−(K+))dK−
t =

∫ T

0

(Ut− − Yt−)dK−
t ,

almost surely, which shows that (iii) and (iv) of Definition 2.1 are satisfied.
Finally for (i) of Definition 2.1, we know that the equation (21) has a fixed point (K+,K−) ∈ A2(0, T ) ×

A2(0, T ), with Nt ∈ D2(0, T ); it follows that Yt ∈ D2(0, T ), and Z ∈ H2
d(0, T ) comes from the Itô representation

of the square-integrable martingale E[ξ+
∫ T

0
g(s)ds+K+

T −K−
T |Ft]. Uniqueness follows from Proposition 3.1. �

Finally, we get the following theorem.

Theorem 3.3. For a given ξ ∈ L2(FT ), a process g(t, ω) ∈ H2(0, T ), and two RCLL progressively measurable
real-valued processes L,U , which satisfy assumptions 2.3 and 2.4, there exists a unique (Y, Z,K), with Y ∈
D2(0, T ), Z ∈ H2

d(0, T ), K = K+ − K−, with K+,K− ∈ A2(0, T ), which is solution of the RBSDE with
barriers L and U .

Now we will consider the general case that is when g may depend on (y, z); for this we shall use a fixed point
method. This method was firstly introduced by Pardoux and Peng ([10], 1990), and also used by Cvitanic and
Karatzas ([4], 1996) in the case of two continuous barriers.

Theorem 3.4. Let ξ be a given random variable in L2(FT ), a coefficient g which satisfies Assumption 2.2, and
two RCLL progressively measurable real-valued processes L and U, which satisfy Assumptions 2.3 and 2.4. Then
there exists a unique triplet (Y, Z,K), with Y ∈ D2(0, T ), Z ∈ H2

d(0, T ), K = K+−K− and K+,K− ∈ A2(0, T ),
which is solution of the RBSDE with two barriers L,U . The uniqueness holds in the following sense: if there
exists another (Y ′, Z ′,K ′) with K ′ = K ′+ −K ′− and K ′± ∈ A2(0, T ), satisfying (i)-(iv) of Definition 2.1, we
have Yt = Y ′

t , Zt = Z ′
t, Kt = K ′

t, for 0 ≤ t ≤ T .

Proof. Denote by S, the space of progressively measurable processes {(Yt, Zt), 0 ≤ t ≤ T } valued in R×R
d, which

satisfy E
∫ T

0 |Ys|2 + |Zs|2 ds <∞. Given (ϕ, ψ) ∈ S, we define g(t, ω) by setting g(t, ω) = g(t, ω, ϕ(t, ω), ψ(t, ω));
then by the Theorem 3.3, there exists a unique solution (Y, Z,K) ,K = K+ −K−to the RBSDE wih coefficient
g and (Y, Z,K+,K−) ∈ D2(0, T )×H2

d(0, T )× (A2(0, T ))2 . In particular, (Y, Z) ∈ S. In this way, we construct
a mapping

Φ : S �−→ S , via (Y, Z) = Φ(ϕ, ψ).

In order to establish the unique solution of the RBSDE, it is sufficient to prove that the mapping Φ is a
contraction with respect to an appropriate norm on S, defined by

‖(Y, Z)‖β :=

(
E

[∫ T

0

eβt(|Yt|2 + |Zt|2)dt
]) 1

2

,

for an appropriate β ∈ (0,∞) which will be determined later.
Let (ϕ0, ψ0) be another pair in the set S, (Y 0, Z0) = Φ(ϕ0, ψ0) with K0, be the unique solution of the

RBSDE with coefficient function g0(t, ω) = g(t, ω, ϕ0(t, ω), ψ0(t, ω)). We define

ϕ = ϕ− ϕ0, ψ = ψ − ψ0, Y = Y − Y 0, Z = Z − Z0,K = K −K0.
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Clearly, dY t = [g(t, ϕt, ψt)−g(t, ϕ0
t , ψ

0
t )]dt−dKt+ZtdBt, and Yt−Yt− = −(Kt−Kt−), Y 0

t −Y 0
t− = −(K0

t −K0
t−),

so Y t −Y t− = −(Kt −Kt−). Applying Itô’s formula to eβtY
2

t , and taking expectation on the two sides, we get

E[eβtY
2

t ] + E[
∫ T

t

eβs(β
∣∣Y s

∣∣2 +
∣∣Zs

∣∣2)ds] + E[
∑

s∈[t,T ]

((Ks −Ks−)2] (26)

= 2E
∫ T

t

eβsY s−dKs − 2E
∫ T

t

eβsY sZsdBs + 2E
∫ T

t

eβsY s[g(s, ϕs, ψs) − g(s, ϕ0
s, ψ

0
s)]dt

≤ 2kE
∫ T

t

eβs
∣∣Y s

∣∣ (|ϕs| +
∣∣ψs

∣∣2)dt
≤ 4k2E

∫ T

t

eβs
∣∣Y s

∣∣2 ds+
1
2
E

∫ T

t

eβs(|ϕs|
2 +

∣∣ψs

∣∣2)dt,
where k is the Lipschitz constant in (7). For the Itô integral term in the second line, we have

E

(∫ T

0

e2βs(Y s)2
∣∣Zs

∣∣2 ds

) 1
2

≤ eβTE

⎡⎣ sup
t≤s≤T

∣∣Y s

∣∣ (∫ T

0

∣∣Zs

∣∣ds) 1
2
⎤⎦

≤ 1
2
eβTE

[
sup

0≤t≤T
(Y s)2 +

∫ T

0

∣∣Zs

∣∣ ds] <∞,

since from well-known inequalities for semi-martingales sups≤T

∣∣Y s

∣∣ ∈ L2 (FT ) . Then we know that this term
is P-integrable with zero expectation.

For the term E
∫ T

t
eβsY s−dKs = E

∫ T

t
eβsY s−d(K

+

s −K
−
s ), notice that since (Y, Z,K), (Y 0, Z0,K) satisfy

(iii) and (iv) in Definition 2.1, we have∫ T

t

eβsY s−dKs =
∫ T

t

eβsY s−dK
+

s −
∫ T

t

eβsY s−dK
−
s ≤ 0,

in view of∫ T

t

eβsY s−dK
+

s =
∫ T

t

eβs(Ys− − Y 0
s−)dK+

s +
∫ T

t

eβs(Y 0
s− − Ys−)dK0+

s

=
∫ T

t

eβs(Ys− − Ls−)dK+
s +

∫ T

t

eβs(Ls− − Y 0
s−)dK+

s +
∫ T

t

eβs(Y 0
s− − Ls−)dK0+

s

+
∫ T

t

eβs(Ls− − Ys−)dK0+
s

≤ 0,

and similarly
∫ T

t eβsY s−dK
−
s ≥ 0.

Now if we choose t = 0 and β = 1 + 4k2 in the definition of the norm, we deduce from the inequality (26),

E

[∫ T

0

eβs
(∣∣Y s

∣∣2 +
∣∣∣Z2

s

∣∣∣)ds

]
≤ 1

2
E

∫ T

0

eβs
(
|ϕs|

2 +
∣∣∣ψ2

s

∣∣∣)dt,

i.e. the mapping Φ is a contraction. The proof is complete. �
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4. Dynkin game and the penalization method for the RBSDE with two RCLL

barriers

In this section we will give another proof for the existence of a solution for reflected BSDEs with two RCLL
barriers (Th. 3.4), which is based on a penalization method. For each m,n ∈ N, since g(s, y, z) + n(y − Ls)− −
m(Us−y)− is Lipschitz in (y, z), the following classical BSDE (cf. [10]) admits the unique solution (Y m,n, Zm,n)

Y m,n
t = ξ +

∫ T

t

g(s, Y m,n
s , Zm,n

s )ds+ n

∫ T

t

(Y m,n
s − Ls)−ds−m

∫ T

t

(Us − Y m,n
s )−ds−

∫ T

t

Zm,n
s dBs (27)

when ξ and g satisfy Assumptions 2.1 and 2.2, L and U satisfy Assumptions 2.3 and 2.4. We set Km,n,+
t =

n
∫ t

0
(Ls − Y m,n

s )+ds and Km,n,−
t = m

∫ t

0
(Us − Y m,n

s )−ds.
We begin with establishing several basic estimates for (Y m,n, Zm,n,Km,n,+,Km,n,−). These estimates will

be useful to prove the existence of a solution provided in this section.

Proposition 4.1. We assume that Assumption 2.4 holds. Then there exists a constant C, independent of m
and n, such that the following estimate holds:

E

[
sup

0≤t≤T
(Y m,n

t )2
]

+ E

[∫ T

0

|Zm,n
s |2 ds

]
+ E[(Km,n,+

T )2] + E[(Km,n,−
T )2] ≤ C. (28)

To prove this result, we need the following lemma.

Lemma 4.1. There exists a triple (Y ∗, Z∗,K∗), with K∗ = K∗+ −K∗−, and Y ∗ ∈ D2(0, T ), Z∗ ∈ H2
d(0, T )

and K∗+,K∗− ∈ A2(0, T ), such that

Y ∗
t = ξ +

∫ T

t

g(s, Y ∗
s , Z

∗
s )ds+K∗+

T −K∗+
t − (K∗−

T −K∗−
t ) −

∫ T

t

Z∗
sdBs, (29)

and Lt ≤ Y ∗
t ≤ Ut, dP ⊗ dt-a.s.

Proof. Let J defined in Section 1 and set J∗
t = Jt + (ξ − JT )1{t=T}, v

+
t = V +

t + (ξ − Jt)−1{t=T}, v
−
t =

V −
t + (ξ − Jt)+1{t=T}; then v± ∈ A2(0, T ), J∗

t is still an RCLL semimartingale, and by BDG inequality
E[sup0≤t≤T (J∗

t )2] ≤ C, where C is a constant. Obviously, Lt ≤ J∗
t ≤ Ut and

J∗
t = ξ −

∫ T

t

φsdBs + (v+
T − v+

t ) − (v−T − v−t )

= ξ +
∫ T

t

g(s, J∗
s , φs)ds−

(∫ T

t

g(s, J∗
s , φs)ds+ (v+

T − v+
t ) − (v−T − v−t )

)
−
∫ T

t

φsdBs.

Then if we set K∗+
t = v+

t +
∫ t

0 g
+(s, J∗

s , φs)ds, K∗−
t = v−t +

∫ t

0 g
−(s, J∗

s , φs)ds, so K∗+, K∗− ∈ A2(0, T ),
Y ∗ = J∗ ∈ D2(0, T ), Z∗ = φ ∈ H2

d(0, T ), and (Y ∗, Z∗,K∗) satisfies (29). �

Proof of Proposition 4.1. Let (Y ∗, Z∗,K∗) with K∗ = K∗+−K∗− be given as in Lemma 4.1. Then for m,n ∈ N,
the triplet also satisfies

Y ∗
t = ξ +

∫ T

t

g(s, Y ∗
s , Z

∗
s )ds+K∗+

T −K∗+
t − (K∗−

T −K∗−
t )

+n
∫ T

t

(Ls − Y ∗
s )+ds−m

∫ T

t

(Y ∗
s − Us)+ds−

∫ T

t

Z∗
s dBs.
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Set (Y
m,n

, Z
m,n

), (Ỹ m,n, Z̃m,n) be respectively the solutions of the following equations,

Y
m,n

t = ξ +
∫ T

t

g(s, Y
m,n

s , Z
m,n

s )ds+K∗+
T −K∗+

t

+n
∫ T

t

(Ls − Y
m,n

s )+ds−m

∫ T

t

(Y
m,n

s − Us)+ds−
∫ T

t

Z
m,n

s dBs.

Ỹ m,n
t = ξ +

∫ T

t

g(s, Ỹ m,n
s , Z̃m,n

s )ds− (K∗−
T −K∗−

t )

+n
∫ T

t

(Ls − Ỹ m,n
s )+ds−m

∫ T

t

(Ỹ m,n
s − Us)+ds−

∫ T

t

Z̃m,n
s dBs.

By the comparison theorem for BSDE’s, we obtain that for any m,n ∈ N, Y
m,n

t ≥ Y m,n
t ≥ Ỹ m,n

t and Y
m,n

t ≥
Y ∗

t ≥ Lt, Ỹ
m,n
t ≤ Y ∗

t ≤ Ut, so (Y
m,n

, Z
m,n

) is also solution of

Y
m,n

t = ξ +
∫ T

t

g(s, Y
m,n

s , Z
m,n

s )ds+K∗+
T −K∗+

t −m

∫ T

t

(Y
m,n

s − Us)+ds−
∫ T

t

Z
m,n

s dBs, (30)

and (Ỹ m,n, Z̃m,n) is also solution of

Ỹ m,n
t = ξ +

∫ T

t

g(s, Ỹ m,n
s , Z̃m,n

s )ds− (K∗−
T −K∗−

t ) + n

∫ T

t

(Ls − Ỹ m,n
s )+ds−

∫ T

t

Z̃m,n
s dBs. (31)

Then let us consider the following BSDEs

Y +
t = ξ +

∫ T

t

g(s, Y +
s , Z+

s )ds+K∗+
T −K∗+

t −
∫ T

t

Z+
s dBs, (32)

Y −
t = ξ +

∫ T

t

g(s, Y −
s , Z−

s )ds− (K∗−
T −K∗−

t ) −
∫ T

t

Z−
s dBs. (33)

Since K
m,n,−
t = m

∫ t

0 (Y
m,n

s − Us)+ds and K̃m,n,+
t = n

∫ t

0 (Ls − Ỹ m,n
s )+ds are increasing processes, then using

the comparison theorem for (30) and (32), (31) and (33), with (27), we get

Y +
t ≥ Y

m,n

t ≥ Y m,n
t ≥ Ỹ m,n

t ≥ Y −
t , (34)

for any m,n ∈ N, ∀t ∈ [0, T ]. Then we have

E[ sup
0≤t≤T

(Y m,n
t )2] ≤ max{E[ sup

0≤t≤T
(Y +

t )2], E[ sup
0≤t≤T

(Y −
t )2]}. (35)

Since K∗± ∈ A2(0, T ), by Itô’s formula and BDG inequality, it follows that

E[ sup
0≤t≤T

(Y +
t )2] ≤ c, E[ sup

0≤t≤T
(Y −

t )2] ≤ c.

Using (35), we get that there exists a constant c independent of m,n, such that

E[ sup
0≤t≤T

(Y m,n
t )2] ≤ c. (36)
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Now we consider the last two terms of (28). First, since for any m,n ∈ N, Ỹ m,n
t ≤ Y m,n

t , then K̃m,n,+
t ≥

Km,n,+
t ≥ 0. So if E[(K̃m,n,+

T )2] ≤ c, then E[(Km,n,+
T )2] ≤ c. Rewrite (31) into the following form

K̃m,n,+
t = Ỹ m,n

0 − Ỹ m,n
t −

∫ t

0

g(s, Ỹ m,n
s , Z̃m,n

s )ds+K∗−
t +

∫ t

0

Z̃m,n
s dBs. (37)

Notice that from (34) we have

E[ sup
0≤t≤T

(Ỹ m,n
t )2] ≤ max{E[ sup

0≤t≤T
(Y +

t )2], E[ sup
0≤t≤T

(Y −
t )2]} ≤ c,

and E[(K∗−
T )2] ≤ c1; then with the Lipschitz property of g, taking square and expectation on the both sides of

(37), we get

E[(K̃m,n,+
T )2] ≤ c+ c2E

∫ T

0

∣∣∣Z̃m,n
s

∣∣∣2 ds. (38)

Then applying Itô’s formula to
∣∣∣Ỹ m,n

t

∣∣∣2, with classical technics and (38), it follows that

E[(K̃m,n,+
T )2] ≤ c, then E[(Km,n,+

T )2] ≤ c.

In the same way, we deduce that E[(Km,n,−
T )2] ≤ c. Applying Itô’s formula to |Y m,n

t |2, then

E[|Y m,n
t |2] + E

[∫ T

t

|Zm,n
s |2 ds

]

≤ c

(
1 +

∫ T

t

|Y m,n
s |2 ds+ α

∫ T

t

|Zm,n
s |2 ds

)
+ E

[
sup

0≤t≤T
(L+

t )2
]

+ E

[
sup

0≤t≤T
(U−

t )2
]

+ E[(Km,n,+
T )2] + E[(Km,n,−

T )2].

Set α = 1
3c , finally, we get E[

∫ T

0
|Zm,n

s |2 ds] ≤ c. �

In (27), for fixed m, we set gm(s, y, z) = g(s, y, z) −m(Us − y)−; obviously, gm is Lipschitz and

E

∫ T

0

(gm(s, 0, 0))2ds ≤ 2E
∫ T

0

(g(s, 0, 0))2ds+ 2m2TE sup
0≤t≤T

(U−
t )2 <∞.

By the classical comparison theorem of BSDEs, we know that (Y m,n) is increasing in n for any fixed m.
Thanks to the results for the RBSDE with one RCLL barrier obtained in [9], when n → ∞ we know that
(Y m,n) ↗ Y m,∞ in H2(0, T ), (Zm,n) → Zm,∞ weakly in H2

d(0, T ), Km,n,+
t → Km,∞,+

t weakly in L2(Ft), and
that (Y m,∞, Zm,∞,Km,∞,+) is the solution of the following RBSDE with one lower barrier L,

Y m,∞
t = ξ +

∫ T

t

g(s, Y m,∞
s , Zm,∞

s )ds+Km,∞,+
T −Km,∞,+

t −m

∫ T

t

(Us − Y m,∞
s )−ds−

∫ T

t

Zm,∞
s dBs, (39)

Y m,∞
t ≥ Lt, 0 ≤ t ≤ T , and

∫ T

0 (Y m,∞
t − Lt)dK

m,∞,+
t = 0, a.s.. Then set Km,∞,−

t = m
∫ t

0 (Us − Y m,∞
s )−ds;

with (28) we have the following lemma.

Lemma 4.2. There exists a constant C independent of m such that

sup
0≤t≤T

E(Y m,∞
t )2 + E

∫ T

0

|Zm,∞
t |2 dt+ E(Km,∞,+

T )2 + E(Km,∞,−
T )2 ≤ C. (40)
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Using the BDG inequality, it follows

E

(
sup

0≤t≤T
(Y m,∞

t )2
)

≤ C.

From the comparison Theorem 3.4 in [9], we have Y m,∞
t ≥ Y m+1,∞

t ; we conclude that there exists a process Y
such that Y m,∞ ↘ Y , and using Fatou’s Lemma, we get

E

(
sup

0≤t≤T
(Yt)2

)
≤ C. (41)

By the dominated convergence theorem, it follows that Y m,∞ → Y as m → ∞, in H2(0, T ). Using Theo-
rem 3.4 in [9] again, we know that

Km,∞,+
t ≥ Km+1,∞,+

t ,Km,∞,+
t −Km,∞,+

s ≥ Km+1,∞,+
t −Km+1,∞,+

s ,

for 0 ≤ s ≤ t ≤ T . With (40), we deduce that there exists a process K+ s.t., for t ∈ [0, T ], Km,∞,+
t ↘ K+

t

in L2(Ft). Obviously K+ is an increasing process and E[(K+
T )2] ≤ c. So the assumptions of Theorem 2.1 are

satisfied, and we deduce that the limit Y satisfies

Yt = ξ +
∫ T

t

g(s, Ys, Zs)ds+K+
T −K+

t − (K−
T −K−

t ) −
∫ T

t

ZsdBs, (42)

where K−
t is the weak limit of Km,∞,−

t in L2(Ft), and Zm,∞ strongly converges to Z in Hp
d(0, T ), for p < 2.

Similarly, (Y m,n) is decreasing on m for any fixed n; let m→ ∞, then by the results of [9], (Y m,n) ↘ Y∞,n in
H2(0, T ), (Zm,n) → Z∞,n weakly in H2

d(0, T ), Km,n,−
t → K∞,n,−

t weakly in L2(Ft), and (Y∞,n, Z∞,n,K∞,n,−)
is the solution of the following RBSDE with one upper barrier U , i.e.

Y∞,n
t = ξ +

∫ T

t

g(s, Y∞,n
s , Z∞,n

s )ds+ n

∫ T

t

(Y∞,n
s − Ls)−ds−K∞,n,−

T +K∞,n,−
t −

∫ T

t

Z∞,n
s dBs, (43)

Y∞,n
t ≤ Ut, 0 ≤ t ≤ T ,

∫ T

0
(Y∞,n

t − Ut)dK
∞,n,−
t = 0. Set K∞,n,+

t = n
∫ t

0
(Y∞,n

s − Ls)−ds; then

sup
0≤t≤T

E(Y∞,n
t )2 + E

∫ T

0

|Z∞,n
t |2 dt+ E(K∞,n,−

T )2 + E(K∞,n,+
T )2 ≤ C. (44)

Then by the comparison Theorem 3.4 in [9], and the above estimation, we get that there exists a process
Y ′ ∈ S2(0, T ) such that Y∞,n ↗ Y ′ and the convergence also holds in H2(0, T ). Finally with Theorem 2.1, we
get that the limit Y ′ satisfies

Y ′
t = ξ +

∫ T

t

g(s, Y ′
s , Z

′
s)ds+K

′+
T −K

′+
t − (K

′−
T −K ′−

t ) −
∫ T

t

Z ′
sdBs. (45)

Here Z∞,n strongly converges to Z in Hp
d(0, T ), for p < 2, K

′−
t (resp. K

′+
t ) is the weak limit of K∞,n,−

t (resp.
K∞,n,+

t ) in L2(Ft). Now we want to prove that the two limits are equal.

Lemma 4.3. The two limits Y and Y ′ are equal.

Proof. Since Y m,n ↗ Y m,∞ and Y m,n ↘ Y∞,n, so for ∀m,n ∈ N, Y∞,n ≤ Y m,n ≤ Y m,∞. Then with
Y m,∞ ↘ Y , Y∞,n ↗ Y ′, it follows Y ≥ Y ′. On the other hand, consider (27) and (43), due to Y∞,n ≤ Y m,n,
it follows that for 0 ≤ s ≤ t ≤ T ,

Km,n,+
t −Km,n,+

s ≤ K∞,n,+
t −K∞,n,+

s .
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Otherwise we know that Km,n,+
t → Km,∞,+

t weakly in L2(Ft), K
∞,n,+
t → K

′+
t weakly in L2(Ft), as n→ ∞ and

Km,∞,+
t → K+

t strongly in L2(Ft), as m → ∞. In the previous inequality, first let n → ∞, then let m → ∞,
we get

K+
t −K+

s ≤ K
′+
t −K

′+
s . (46)

Then consider (27) and (39), since Y m,n ≤ Y m,∞, then for 0 ≤ s ≤ t ≤ T

Km,n,−
t −Km,n,−

s ≤ Km,∞,−
t −Km,∞,−

s .

Similarly, in this inequality, first let n→ ∞, then let m→ ∞, we have

K
′−
t −K

′−
s ≤ K−

t −K−
s . (47)

With (46), it follows for 0 ≤ s ≤ t ≤ T

K+
t −K+

s − (K−
t −K−

s ) ≤ K
′+
t −K

′+
s − (K

′−
t −K

′−
s )

i.e. the process K
′+
t −K

′−
t − (K+

t −K−
t ) is increasing, and by the comparison theorem for BSDE, it follows

Y ′ ≥ Y . At last Y ′ = Y . �
We get immediately Z = Z ′, K+−K− = K ′+−K ′−. We are now able to prove that the limit of the solutions

of the penalized BSDE’s is the solution of the RBSDE with two RCLL barriers.

Theorem 4.1. The triple (Y, Z,K), Y ∈ D2(0, T ), Z ∈ H2
d(0, T ), K = K+ −K−, K+,K− ∈ A2(0, T ) is the

unique solution of the RBSDEs with two RCLL barriers L,U .

Proof. Let us remember that from Theorem 3.4, we have the uniqueness. By the discussion before, we know
that (Y m,∞

t , Zm,∞
t ,Km,∞,+

t ) is the solution of the RBSDE with one lower barrier Lt. In (39), denote Km,∞
t =

Km,∞,+
t − Km,∞,−

t ; then (Y m,∞
t , Zm,∞

t ,Km,∞
t ) can be considered as the solution of the RBSDE with two

barriers L and U + (U − Y m,∞)−. In fact it is easy to see that

L ≤ Y m,∞ ≤ U + (U − Y m,∞)−,

∫ T

0

(Y m,∞
t − Lt)dK

m,∞,+
t = 0

and

∫ T

0

(Y m,∞
t − Ut − (U − Y m,∞)−t )dKm,∞,−

t = m

∫ T

0

(Y m,∞
t − Ut)−(Ut − Y m,∞

t )−dt = 0.
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So by the Proposition 3.1, we get

Y m,∞
t = ess inf

σ∈Tt

ess sup
τ∈Tt

E

[ ∫ σ∧τ

t

g(s, Y m,∞
s , Zm,∞

s )ds+ ξ1{σ∧τ=T} (48)

+Lτ1{τ<T,τ≤σ} + Uσ1{σ<τ} + (Uσ − Y m,∞
σ )−1{σ<τ}|Ft

]

≥ ess inf
σ∈Tt

ess sup
τ∈Tt

E

[ ∫ σ∧τ

t

g(s, Y m,∞
s , Zm,∞

s )ds+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ}

+Uσ1{σ<τ}|Ft

]

≥ ess inf
σ∈Tt

ess sup
τ∈Tt

E

[ ∫ σ∧τ

t

g(s, Ys, Zs)ds+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ}

+Uσ1{σ<τ}|Ft

]
− kE

[ ∫ T

0

|Y m,∞
s − Ys| + |Zm,∞

s − Zs| ds|Ft

]
.

Since Y m,∞ → Y in H2(0, T ), Zm,∞ → Z in Hp
d(0, T ) for p < 2, as m → ∞, we can choose a subsequence

which satisfies E[
∫ T

0

∣∣Zmj,∞
s − Zs

∣∣ds|Ft] → 0 a.s., so we deduce

E[
∫ T

0

(|Y m,∞
s − Ys| + |Zm,∞

s − Zs|)ds|Ft] → 0, a.s.

In (48), let m→ ∞, we obtain

Yt ≥ ess inf
σ∈Tt

ess sup
τ∈Tt

E

[∫ σ∧τ

t

g(s, Ys, Zs)ds+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ} + Uσ1{σ<τ}|Ft

]
. (49)

On the other side, in the same way, we know that (Y∞,n, Z∞,n,K∞,n,−
t ) is the solution of the RBSDE with the

upper barrier Ut, in (43). Denote K∞,n
t = K∞,n,+

t −K∞,n,−
t ; (Y∞,n

t , Z∞,n
t ,K∞,n

t ) is solution of the RBSDE
with two barriers L− (Y∞,n − L)− and U. Similarly by proposition 3.1, we deduce that

Y∞,n
t ≤ ess sup

τ∈Tt

ess inf
σ∈Tt

E[
∫ σ∧τ

t

g(s, Ys, Zs)ds+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ} (50)

+Uσ1{σ<τ}|Ft] + kE[
∫ T

0

|Y∞,n
s − Ys| + |Z∞,n

s − Zs| ds|Ft].

Since Y∞,n → Y in H2(0, T ), Z∞,n → Z in Hp
d(0, T ) for p < 2, as n→ ∞, like above, let n→ ∞, we get

Yt ≤ ess sup
τ∈Tt

ess inf
σ∈Tt

E[
∫ σ∧τ

t

g(s, Ys, Zs)ds+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ} + Uσ1{σ<τ}|Ft]. (51)

Comparing (49) and (51), in view of ess sup ess inf ≤ ess inf ess sup, we deduce finally

Yt = ess sup
τ∈Tt

ess inf
σ∈Tt

E[
∫ σ∧τ

t

g(s, Ys, Zs)du+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ} + Uσ1{σ<τ}|Ft]

= ess inf
σ∈Tt

ess sup
τ∈Tt

E[
∫ σ∧τ

t

g(s, Ys, Zs)du+ ξ1{σ∧τ=T} + Lτ1{τ<T,τ≤σ} + Uσ1{σ<τ}|Ft].
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Using (18) in Section 2.3, we can rewrite Y in the following form

Yt = ess inf
σ∈Tt

ess sup
τ∈Tt

E[L̃τ1{τ≤σ} + Ũσ1{σ<τ}|Ft] +Nt

= ess sup
τ∈Tt

ess inf
σ∈Tt

E[L̃τ1{τ≤σ} + Ũσ1{σ<τ}|Ft] +Nt,

where Nt = E[ξ+
∫ T

0 g(s)ds|Ft]−
∫ t

0 g(s)ds, L̃t = Lt1{t<T}+ξ1{t=T}−Nt, Ũt = Ut1{t<T}+ξ1{t=T}−Nt. That
is, the process Yt −Nt is the value of the stochastic game problem, whose payoff is Jt(σ, τ) = E[L̃(τ)1{τ≤σ} +
Ũ(σ)1{σ<τ}|Ft]. To go further, we need to check if L̃ and Ũ are also in D2(0, T ), which can be easily seen by
using Doob’s inequality. In fact

E

[
sup

0≤t≤T
(Nt)2

]
≤ 2E

⎡⎣ sup
0≤t≤T

(
E

[
ξ +

∫ T

0

g(s, Ys, Zs)ds|Ft

])2

+

(∫ T

0

g(s, Ys, Zs)ds

)2
⎤⎦

≤ C

(
1 + E

∫ T

0

|Ys|2 ds+ E

∫ T

0

‖Zs‖2 ds

)
<∞,

E[ sup
0≤t≤T

(L̃t)2] ≤ E[ sup
0≤t≤T

(Lt)2] + E[ sup
0≤t≤T

(Nt)2] + E[(ξ)2] <∞,

E[ sup
0≤t≤T

(Ũt)2] ≤ E[ sup
0≤t≤T

(Ut)2] + E[ sup
0≤t≤T

(Nt)2] + E[(ξ)2] <∞.

Thanks to the Theorem 5.2 in the Appendix, we know that Yt −Nt = X+
t −X−

t , where (X+, X−) is a pair of
supermartingales in D2(0, T ) × D2(0, T ), solution of the system

X+ = S(L̃+X−) (52)

X− = S(−Ũ +X+)

(notice that L̃T = ŨT = 0). Then by the Doob-Meyer decomposition theorem, we get

X+
t = E[K+,1

T |Ft] −K+,1
t , X−

t = E[K−,1
T |Ft] −K−,1

t ,

where K+,1
t ,K−,1

t are predictable increasing processes and by Lemma 5.2, K±,1 ∈ A2(0, T ). With the repre-
sentation theorem for the martingale part, it follows

Yt = Nt +X+
t −X−

t (53)

= E[ξ +
∫ T

0

g(s, Ys, Zs)ds+K+,1
T −K−,1

T |Ft] −
∫ t

0

g(s, Ys, Zs)ds−K+,1
t +K−,1

t

= Y0 +
∫ t

0

Z1
sdBs −

∫ t

0

g(s, Ys, Zs)ds−K+,1
t +K−,1

t .

Finally rewrite (42) in forward form and compare with (53); similarly to the case of the RBSDE with one RCLL
barrier [9], we get, Zt − Z1

t = 0, K−
t − K+

t = K−,1
t − K+,1

t . Then by (52), and the properties of the Snell
envelope, since X+ ≥ L̃+X− and X− ≥ −Ũ +X+, we see easily that

L ≤ N + L̃ ≤ N +X+ −X− = Y ≤ N + Ũ ≤ U,

so (iii) of Definition 2.1 is satisfied.
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Finally, (iv) of Definition 2.1 also comes from the theory of the Snell envelope, Lemma 5.1. Indeed

0 =
∫ T

0

(X+ − (L̃+X−))t−dK+,1
t =

∫ T

0

(X+ −X− − L+N)t−dK+
t

=
∫ T

0

(Yt− − Lt−)dK+
t ,

and

0 =
∫ T

0

(X− − (−Ũ +X+))t−dK−,1
t =

∫ T

0

(X− −X+ + U −N)t−dK−
t

=
∫ T

0

(Ut− − Yt−)dK−
t .

The proof is complete. �

5. Appendix

5.1. Some remarks about the Snell envelope

Any Ft-adapted RCLL process η = (ηt)0≤t≤T , is called of class D[0, T ], if the family {η(τ)}τ∈T is uniformly
integrable, where T is the set of all Ft-stopping times, such that 0 ≤ τ ≤ T .

Definition 5.1. Let η = (ηt)0≤t≤T be of class D[0, T ], with ηT ≥ 0, then its Snell envelope St(η) is defined as

St(η) = ess sup
τ∈Tt

E[η(τ)|Ft], 0 ≤ t ≤ T (54)

where T is the set of all Ft-stopping times, and for all 0 ≤ t ≤ T , Tt = {τ ∈ T ; t ≤ τ ≤ T }.

From Theorems 2.28 and 2.29 of [5] (El Karoui, 1979), the Snell envelope has the following properties:

Proposition 5.1. St(η) is a RCLL positive process and is the smallest supermartingale, which dominate the
process η. In addition, if η satisfy

η∗ := sup
0≤t≤T

|ηt| ∈ L1(Ω), (55)

then S(η) is a potential of class D[0, T ]. (Indeed it’s dominated by the martingale E[η∗|Ft].)

Proposition 5.2. There exists a unique decomposition of the Snell envelope:

St(η) = Mt −Ac
t −Ad

t (56)

where Mt is a Ft-martingale, Ac
t is a continuous integrable increasing process with Ac

0 = 0 , Ad
t is a pure-jumps

integrable increasing predictable RCLL process with Ad
0 = 0.

We need also the following results, whose proofs can be found in [5] and [7].

Lemma 5.1. Relatively to the decomposition in the Proposition 5.2, we have∫ T

0

(St−(η) − ηt−)dAt = 0, (57)

where At = Ac
t +Ad

t .
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Lemma 5.2. Let X = (Xt)0≤t≤T be a supermartingale in the space D2(0, T ), and A be the increasing process
of the Doob-Meyer decomposition of X. Then we have E[A2

T ] <∞.

Then easily, we have the following corollary.

Corollary 5.1. Let η = (ηt)0≤t≤T be in the space D2(0, T ), ηT = 0, and A = Ac + Ad where Ac, Ad are the
increasing processes of the decomposition of the Snell envelope St(η). Then A satisfies E[A2

T ] <∞.

5.2. Stochastic game and the Dynkin game problem

Definition 5.2. For a probability space (Ω,F , P ), let U (resp. V ) be the set of the strategies for the first
(resp. second) player. We consider a family of random variables J(u, v), indexed by the set U × V . The rule of
the game is the following:

(i) The first player wants to minimize J(u, v) acting on u ∈ U .
(ii)The second player wants to maximize J(u, v) acting on v ∈ V .
We call such a system a stochastic game.

Definition 5.3. A pair (u∗, v∗) ∈ U × V is called saddle point for the game, if for all (u, v) ∈ U × V , we have:

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗), a.s.

Definition 5.4. We denote by V (resp.V ) the upper (resp. lower) value of the game, i.e.

V = ess inf
u∈U

ess sup
v∈V

J(u, v)

resp. V = ess sup
v∈V

ess inf
u∈U

J(u, v).

Definition 5.5. If V = V = V a.s., then V is called the value of the stochastic game.

Then we give a sufficient condition for the existence of a value in a stochastic game problem.

Lemma 5.3. For a stochastic game with payoff J(u, v), if for all ε > 0, there exist uε ∈ U , vε ∈ V, such that

J(uε, v) − ε ≤ J(u, vε) + ε a.s. for all u ∈ U , v∈ V, (58)

then this game has the value.

It is easy to prove this lemma, so we omit it.

Definition 5.6. The Dynkin game problem is a kind of stochastic game. Given a probability space equipped
with a filtration (Ω,F , P,Ft), where Ft satisfies the general conditions of Dellacherie, T the set of F -stopping
times dominated by a fixed time T , two RCLL Ft-progressive processes L∗, U∗ of class D, with L∗ ≤ U∗, for
any (τ, σ) ∈ T × T , the payoff J(τ, σ) is defined by

J(τ, σ) = E[L∗
τ1{τ≤σ} − U∗

σ1{σ<τ}].

The first player wants to choose a stopping time τ in view to get the maximum of the payoff J(τ, σ) on T , while
the second player wants to choose a stopping time σ in view to get the minimum of the payoff J(τ, σ) on T .

In order to find the value of the Dynkin game problem, we need the following system, which was firstly
introduced by Bismut ([3], 1977) then by Alario-Nazaret ([1], 1982).

X = S(L∗ +X ′) (59)
X ′ = S(U∗ +X),

where S is the Snell envelope (Def. 5.1). In ([3], 1977), the thesis of Alario-Nazaret ([1], 1982) and ([2], 1982),
we can find the following result, which gives conditions for the existence of a solution for this system.
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Theorem 5.1. There exists a pair (X,X ′), of positive Ft-supermartingales of class D with XT = X ′
T = 0,

which satisfies the system (59), if we have the followings:
(i) L∗

T = U∗
T = 0.

(ii) There exist two positive Ft-supermartingales (X̃, X̃ ′) of class D, such that L∗ ≤ X̃ − X̃ ′ ≤ −U∗.

The detailed proof can be found in [3] and [2], so we omit it. The following theorem gives the relation between
this system and the value of the Dynkin game.

Theorem 5.2. Suppose that (X,X ′) is a the solution of the system (59), and consider for any 0 ≤ t ≤ T, the
stochastic game with payoff

Rt(τ, σ) = E[L∗(τ)1{τ≤σ,τ≤T} − U∗(σ)1{σ<τ}|Ft]

as well as its upper and lower values

V t = ess inf
σ∈Tt

ess sup
τ∈Tt

Rt(τ, σ)

V t = ess sup
τ∈Tt

ess inf
σ∈Tt

Rt(τ, σ),

where Tt = {τ ∈ T ; t ≤ τ ≤ T }. Then we have almost surely

Xt −X ′
t = V t = V t. (60)

In the special case t = 0, then we get the existence of the value for the classical Dynkin game problem.

Proof. For any t ∈ [0, T ], ε > 0, consider the stopping time τε
t = inf{s ≥ t,Xs ≤ X ′

s +L∗
s + ε} ∧ T ; then by the

theory of the Snell envelope Xt∧τε
t

is a martingale ([5], 2.16 and 2.17). Notice that X ′ is a supermartingale and
X ′ ≥ X + U∗. Then for any stopping time σ ∈ Tt, and notice that {τε

t < σ} ⊂ {τε
t < T }, we have

Xt −X ′
t ≤ E[Xσ∧τε

t
−X ′

σ∧τε
t
|Ft]

≤ E[(X −X ′)τε
t
1{τε

t <σ} + (X −X ′)σ1{σ≤τε
t }|Ft]

≤ E[(L∗
τε

t
+ ε)1{τε

t <σ} − U∗
σ1{σ≤τε

t }|Ft]

≤ E[L∗
τε

t
1{τε

t <σ} − U∗
σ1{σ≤τε

t }|Ft] + ε = Rt(τε
t , σ) + ε a.s.

On the other hand, we consider the stopping time σε
t = inf{s ≥ t,X ′

s ≤ Xs + U∗
s + ε} ∧ T ; then X ′

t∧σε
t

is a
martingale, and X is a supermartingale s.t. X ≥ X ′ + L∗. Similarly, for any stopping time τ ≥ t, we get that

Xt −X ′
t ≥ E[L∗

τ1{τ≤σε
t } − U∗

σε
t
1{σε

t <τ}|Ft] − ε = Rt(τ, σε
t ) − ε a.s.

Then from the Lemma 5.3, we deduce the result

Xt −X ′
t = V t = V t, a.s. �
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