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ON THE TAILS OF THE DISTRIBUTION OF THE MAXIMUM OF A SMOOTH
STATIONARY GAUSSIAN PROCESS ∗
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Abstract. We study the tails of the distribution of the maximum of a stationary Gaussian process on
a bounded interval of the real line. Under regularity conditions including the existence of the spectral
moment of order 8, we give an additional term for this asymptotics. This widens the application of an
expansion given originally by Piterbarg [11] for a sufficiently small interval.
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1. Introduction and main result

Let X = {X(t), t ∈ [0, T ]}, T > 0 be a real-valued centered Gaussian process and denote

M := max
t∈[0,T ]

X(t).

The precise knowledge of the distribution of the random variable M is essential in many of statistical problems;
for example, in Methodological Statistics (see Davies [8]), in Biostatistics (see Azäıs and Cierco–Ayrolles [4]).
But a closed formula based upon natural parameters of the process is only known for a very restricted number
of stochastic processes X : for instance, the Brownian motion, the Brownian bridge or the Ornstein–Uhlenbeck
process (a list is given in Azäıs and Wschebor [6]). An interesting review of the problem could be found in
Adler [2].

We are interested here in a precise expansion of the tail of the distribution of M for a smooth Gaussian
stationary process. First, let us specify some notations
• r(t) := E

(
X(s)X(s + t)

)
denotes the covariance function of X . With no loss of generality we will also

assume λ0 = r(0) = 1;
• µ its spectral measure and λk (k = 0, 1, 2, . . . ) its spectral moments whenever they exist;

• φ(x) =
1√
2π

exp
(
−x

2

2

)
and Φ(x) =

∫ x

−∞
φ(t)dt.
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31062 Toulouse Cedex 4, France.
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Throughout this paper we will assume that λ8 <∞ and for every pair of parameter values s and t , 0 ≤ s 6= t ≤ T ,
the six-dimensional random vector (X(s), X ′(s), X ′′(s), X(t), X ′(t), X ′′(t)) has a non-degenerate distribution.

Piterbarg [11] (Th. 2.2) proved (under the weaker condition λ4 <∞ instead of λ8 <∞) that for each T > 0
and any u ∈ R: ∣∣∣∣∣1− Φ(u) +

√
λ2

2π
Tφ(u)− P (M > u)

∣∣∣∣∣ ≤ B exp
(
−u

2(1 + ρ)
2

)
, (1)

for some positive constants B and ρ. It is easy to see (see for example Miroshin [10]) that the expression inside
the modulus is non-negative, so that in fact:

0 ≤ 1− Φ(u) +

√
λ2

2π
Tφ(u)− P (M > u) ≤ B exp

(
−u

2(1 + ρ)
2

)
· (2)

The problem of improving relation (2) does not seem to have been solved in a satisfactory manner until now.
A crucial step has been done by Piterbarg in the same paper (Th. 3.1) in which he proved that if T is small
enough, then as u→ +∞:

P (M > u) = 1− Φ(u) +

√
λ2

2π
Tφ(u)−

(
3
√

3(λ4 − λ2
2)9/2

2πλ9/2
2 (λ2λ6 − λ2

4)

)
T

u5
φ

(
u

√
λ4

λ4 − λ2
2

)
[1 + o(1)] . (3)

The same result has been obtained by other methods (Azäıs and Bardet [3]; see also Azäıs et al. [5]).
However Piterbarg equivalent (3) is of limited interest for applications since it contains no information on

the meaning of the expression “T small enough”.
The aim of this paper is to show that formula (3) is in fact valid for any length T under appropriate

conditions that will be described below.
Consider the function F (t) defined by

F (t) :=
λ2

(
1− r(t)

)2
λ2

(
1− r2(t)

)
− r′2(t)

·

Lemma 1. The even function F is well defined, has a continuous extension at zero and

1. F (0) =
λ2

2

λ4 − λ2
2

;

2. F ′(0) = 0;

3. 0 < F ′′(0) =
λ2(λ2λ6 − λ2

4)
9(λ4 − λ2

2)
<∞.

Proof.
1. The denominator of F (t) is equal to

(
1 − r2(t)

)
Var
(
X ′(0)|X(0), X(t)

)
thus non zero due to the non

degeneracy hypothesis. A direct Taylor expansion gives the value of F (0).
2. The expression of F ′(t) below shows that F ′(0) = 0:

F ′(t) =
2λ2

(
1− r(t)

)
r′(t)

(
r′2(t)−

(
λ2 − r′′(t)

)(
1− r(t)

))
(
λ2

(
1− r2(t)

)
− r′2(t)

)2 · (4)

3. A Taylor expansion of (4) provides the value of F ′′(0). Note that λ4 − λ2
2 can vanish only if there exists

some real ω such that µ({−ω}) = µ({ω}) = 1/2. Similarly, λ2λ6− λ2
4 can vanish only if there exists some
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real ω and p ≥ 0 such that µ({−ω}) = µ({ω}) = p, µ({0}) = 1− 2p. These cases are excluded by the non
degeneracy hypothesis. �

We will say that the function F satisfies hypothesis (H) if it has a unique minimum at t = 0. The next
proposition contains some sufficient conditions for this to take place.

Proposition 1. (a) If r′(t) < 0 for 0 < t ≤ T then (H) is satisfied.
(b) Suppose that X is defined on the whole line and that

1. λ4 > 2λ2
2;

2. r(t), r′(t)→ 0 as t→∞;

3. there exists no local maximum of r(t) (other than at t = 0) with value greater or equal to
λ4 − 2λ2

2

λ4
·

Then (H) is satisfied for every T > 0.

An example of a process satisfying condition (b) but not condition (a) is given by the covariance

r(t) :=
1 + cos(ωt)

2
e−t

2/2

if we choose ω sufficiently small. In fact, a direct computation gives λ2 = 1 +ω2/2; λ4 = 3 + 3ω2 +ω4/2 so that

λ4 − 2λ2
2

λ4
=

1 + ω2

3 + 3ω2 + ω4/2
·

On [0,∞), the covariance attains its second largest local maximum in the interval
[
π
ω ,

2π
ω

]
, so that its value is

smaller than exp
(
− π2

2ω2

)
. Hence, choosing ω is sufficiently small the last condition in (b) is satisfied.

The main result of this article is the following:

Theorem 1. If the process X satisfies hypothesis (H), then (3) holds true.

2. Proofs

Notations.
• pξ(x) is the density (when it exists) of the random variable ξ at the point x ∈ Rn.
• 1lC denotes the indicator function of the event C.
• Uu([a, b]), u ∈ R is the number of upscrossings on the interval [a, b] of the level u by the process X defined

as follows:

Uu([a, b]) = #{t ∈ [a, b], X(t) = u,X ′(t) > 0} ·

• For k a positive integer, νk(u, [a, b]) is the kth order factorial moment of Uu([a, b])

νk(u, [a, b]) = E
((
Uu([a, b])

)(
Uu([a, b])− 1

)
. . .
(
Uu([a, b])− k + 1

))
.

We define also

ν̄k(u, [a, b]) = E
((
Uu([a, b])

)(
Uu([a, b])− 1

)
. . .
(
Uu([a, b])− k + 1

)
1l{X(0)≥u}

)
.

• a+ = a ∨ 0 denotes the positive part of the real number a.
• (const) denotes a positive constant whose value may vary from one occurrence to another.

We will repeatedly use the following lemma, that can be obtained using a direct generalization of Laplace’s
Method (see Dieudonné [9], p. 122).
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Lemma 2. Let f (respectively g) be a real-valued function of class C2 (respectively Ck for some integer k ≥ 1)
defined on the interval [0, T ] of the real line verifying the conditions:

1. f has a unique minimum on [0, T ] at the point t = t∗, and f ′(t∗) = 0, f”(t∗) > 0.
2. Let k = inf

{
j : g(j)(t∗) 6= 0

}
.

Define

h(u) =
∫ T

0

g(t) exp
[
−1

2
u2f(t)

]
dt.

Then, as u→∞:

h(u) '
(
g(k)(t∗)
k!

∫
J

xk exp
[
−1

4
f”(t∗)x2

]
dx
)

1
uk+1

exp
[
−1

2
u2f(t∗)

]
, (5)

where J = [0,+∞) , J = (−∞, 0] or J = (−∞,+∞) according as t∗ = 0, t∗ = T or 0 < t∗ < T respectively.

We will use the following well-known expansion as (Abramovitz and Stegun [1], p. 932). For each a0 > 0 as
u→ +∞ ∫ ∞

u

exp
[
−1

2
ay2

]
dy =

(
1
au
− 1
a2u3

+
3

a3u5
+O

(
1
u7

))
exp

[
−1

2
au2

]
, (6)

for all a ≥ a0 where O
(

1
u7

)
should be interpreted as bounded by

K

u7
, K a constant depending only on a0.

Proof of of Theorem 1.

Step 1: The proof is based on an extension of Piterbarg’s result to intervals of any length. Let τ > 0, the
following relation is clear

P (M[0,τ ] > u) = P (X(0) > u) + P (Uu([0, τ ]).1l{X(0)≤u} ≥ 1)

= 1− Φ(u) + P (Uu([0, τ ]) ≥ 1)− P (Uu([0, τ ]).1l{X(0)>u} ≥ 1).

In the sequel a term will be called negligible if it is O
(
u−6 exp

(
−1

2
λ4u

2

λ4 − λ2
2

))
as u → +∞. We use the

following relations to be proved later:

(i) P (Uu([0, T ]).1l{X(0)>u} ≥ 1) is negligible;
(ii) Let 2τ ≤ T . Then P ({Uu([0, τ ])Uu([τ, 2τ ]) ≥ 1}) is negligible.

With these relations, for 2τ ≤ T , we have

P (M[0,2τ ] > u)−
(
1− Φ(u)

)
= P (Uu([0, 2τ ]) ≥ 1) +N1

= P (Uu([0, τ ]) ≥ 1) + P (Uu([τ, 2τ ]) ≥ 1) +N2 = 2P (Uu([0, τ ]) ≥ 1) +N3

= 2P (M[0,τ ] > u)− 2
(
1− Φ(u)

)
+N4, (7)

N1 · · ·N4 being negligible. Applying (7) repeatedly and on account of Piterbarg’s theorem that states that (3)
is valid if T is small enough, one gets the result.

Step 2: Proof of (i). Using Markov’s inequality:

P (Uu([0, T ]).1l{X(0)>u} ≥ 1) ≤ ν̄1(u, [0, T ]),
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where ν̄1 is evaluated using the Rice formula (Cramér and Leadbetter [7])

ν̄1(u, [0, T ]) =
∫ +∞

u

dx
∫ T

0

E
(
X ′+(t)|X(0) = x,X(t) = u

)
pX(0),X(t)(x, u)dt. (8)

Also if Z is a real-valued random variable with a Normal-(m,σ2) distribution,

E(Z+) = σφ
(m
σ

)
+mΦ

(m
σ

)
,

and plugging into (8) one obtains (see details in Azäıs et al. [5]):

ν̄1(u, [0, T ]) =
φ(u)
2π

∫ T

0

dt
(√

λ2F

∫ ∞
u

e−
1
2Fy

2
dy

− r′2
√
F√

λ2(1− r2)
exp

[
− (1− r)u2

2(1 + r)

] ∫ ∞
u

exp
[
− r′2Fy2

2λ2(1− r2)

])
=
∫ T

0

B(t, u)dt,

where r, r′ and F stand for r(t), r′(t) and F (t) respectively. Clearly, since r′ ′(0) = −λ2 < 0, there exists T0

such that r′ < 0 on (0, T0]. Divide the integral into two parts: [0, T0] and [T0, T ]. Using formula (6) on [0, T0]
we get

B(t, u) =
φ(u)
2π

√
λ2F

−5/2λ2(1− r)2

r′2
u−3 +O

(
u−5φ(u)

)
,

and since, as t→ 0, (1− r)2r′−2 = O(t2), Lemma 2 shows that∫ T0

0

B(t, u)dt = O
(
u−6 exp

(
− λ4u

2

2(λ4 − λ2
2)

))
·

On the other hand, since inft∈[T0,T ] F (t) is strictly larger than F (0), it follows easily from∫ ∞
u

exp
(
−ay

2

2

)
dy ≤ (const)

1√
a

exp
(
−au

2

2

)
a > 0, u ≥ 0,

that ∫ T

T0

B(t, u)dt

is negligible.

Step 3: Proof of (ii). Use once more Markov’s inequality:

P (Uu([0, τ ])Uu([τ, 2τ ]) ≥ 1 ) ≤ E (Uu([0, τ ])Uu([τ, 2τ ])) .

Because of Rice formula (Cramér and Leadbetter [7]):

E (Uu([0, τ ])Uu([τ, 2τ ])) =
∫ τ

0

∫ 2τ

τ

At2−t1(u)dt2dt1 =
∫ 2τ

0

(t ∧ (2τ − t))At(u)dt, (9)

with

At(u) = E
(
X ′+(0)X ′+(t)|X(0) = X(t) = u

)
pX(0),X(t)(u, u).
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It is proved in Azäıs et al. [5], that

At(u) =
1√

1− r2
φ2

(
u√

1 + r

)
[T1(t, u) + T2(t, u) + T3(t, u)] , (10)

with

• T1(t, u) = σ
√

1 + ρ φ(b)φ(kb);

• T2(t, u) = 2(σ2ρ− µ2)
∫ +∞

b

Ψ(kx)φ(x)dx;

• T3(t, u) = 2µσΨ(kb)φ(b);

• µ = µ(t, u) = E
(
X ′(0)|X(0) = X(t) = u)

)
= − r′

1 + r
u;

• σ2 = σ2(t) = Var
(
X ′(0)|X(0), X(t))

)
= λ2 −

r′2

1− r2
;

• ρ = ρ(t) = Cor
(
X ′(0), X ′(t)|X(0), X(t)) =

−r′′(1− r2)− rr′2
λ2(1− r2)− r′2 ;

• k = k(t) =
√

1 + ρ

1− ρ ; b = b(t, u) = µ/σ;

• Ψ(z) =
∫ z

0

φ(v)dv;

• r, r′, r′′ again stand for r(t), r′(t), r′′(t).

As in Step 2, we divide the integral (9) into two parts: [0, T0] and [T0, 2τ ]. For t < T0, b(t, u) and k(t) are
positive, thus using expansion (6), we get the formula p. 119 of Azäıs et al. [5]:

T1(u) + T2(u) + T3(u) =
2σ2

b
Ψ(kb)(1 + ρ)φ(b)− 4σ2

b3
Ψ(kb)φ(b)− (1 + ρ)σ2kφ(kb)φ(b)

+ 2σ2k3φ(kb)φ(b) +
4σ2

b2
kφ(kb)φ(b) +O

(
σ2φ(kb)φ(b)

(
1
b7

+
k

b6
+
k3

b4

))
·

Since T1(u) + T2(u) + T3(u) is non negative, majorizing φ(kb) and Ψ(kb) by 1 we get

At(u) ≤ (const)
σ2√

1− r2(t)

(
(1 + ρ)
b

+ k3 +
k

b2
+

1
b7

+
k

b6
+
k3

b4

)
exp

[
−1

2
(
1 + F (t)

)
u2

]
·

Now it is easy to see that, as t→ 0

σ2 ' (const)t2, (1 + ρ) ' (const)t2,
√

1− r2(t) ' (const)t, b ' (const)u,

so that

σ2(1 + ρ)
b
√

1− r2(t)
' (const)

t3

u
;

σ2k3√
1− r2(t)

' (const)t4;

σ2k

b2
√

1− r2(t)
' (const)t2u−2;
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and also that the other terms are negligible. Then, applying Lemma 2:∫ T0

0

(t ∧ (2τ − t))At(u)dt ' (const)u−6 exp
(
− λ4u

2

2(λ4 − λ2
2)

)
,

thus negligible.
For t ≥ T0 remark that T1(u) + T2(u) + T3(u) does not change when µ (and consequently b) changes of sign.

Thus µ and b can supposed to be non-negative. Forgetting negative terms in formula (10) and majorizing Ψ
by 1; 1− Φ(b) by (const)φ(b) and µ by (const)u, we get:

At(u) ≤ (const)φ2

(
u√

1 + r

)(
φ(b)(1 + u)

)
= (const)(1 + u) exp

[
−1

2
(
1 + F (t)

)
u2

]
·

We conclude as in Step 2. �
Proof of of Proposition 1. Let us prove statement (a). The expression (4) of F ′ shows that it is positive for
0 < t ≤ T , since r′(t) < 0 and

(
r′2(t)−(λ2−r′′(t))(1−r(t))

)
= −1

4

[
Var
(
X(t)−X(0)

)
Var
(
X ′(t)+X ′(0)

)
−Cov2

(
X(t)−X(0), X ′(t)+X ′(0)

)]
< 0.

(11)

Thus the minimum is attained at zero.

(b) Note that F (0) =
λ2

2

λ4 − λ2
2

< 1 = F (+∞). If F has a local minimum at t = t∗, equation (4) shows that r

has a local maximum at t = t∗ so that

F (t∗) =
1− r(t∗)
1 + r(t∗)

>
λ2

2

λ4 − λ2
2

due to the last condition in (b). This proves (b). �
Remark. The proofs above show that even if hypothesis (H) is not satisfied, it is still possible to improve
inequality (2). In fact it remains true for every ρ such that

ρ < min
t∈[0,T ]

F (t).

The authors thank Professors P. Carmona and C. Delmas for useful talks on the subject of this paper.
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