ESAIM: Probability and Statistics October 2000, Vol. 4, pp. 53-135
URL: http://www.emath.fr/ps/

MINIMAX NONPARAMETRIC HYPOTHESIS TESTING
FOR ELLIPSOIDS AND BESOV BODIES * **

YURI I. INGSTER! AND IRINA A. SUSLINA 2

Abstract. We observe an infinitely dimensional Gaussian random vector z = £ + v where £ is a
sequence of standard Gaussian variables and v € [l is an unknown mean. We consider the hypoth-
esis testing problem Hy : v = 0 versus alternatives H.r : v € Vi for the sets Vo = Vi(7,pc) C la.
The sets V. are lq-ellipsoids of semi-axes a; = i~ *R/e with [p-ellipsoid of semi-axes b; = i~ pe /e re-
moved or similar Besov bodies By ;s(R/e) with Besov bodies By pn;r(ps/€) removed. Here 7 = (k, R)
or 7 = (k,h,t,R); k= (p,q,r,s) are the parameters which define the sets V. for given radii p. — 0,
0 < pgh,t <oco, —oco<rs<oo R>0;¢— 0isthe asymptotical parameter. We study the
asymptotics of minimax second kind errors 8: (o) = B(«, Vz(7, pc)) and construct asymptotically min-
imax or minimax consistent families of tests ©a;e,r,p., if it is possible. We describe the partition of
the set of parameters k into regions with different types of asymptotics: classical, trivial, degenerate
and Gaussian (of various types). Analogous rates have been obtained in a signal detection problem
for continuous variant of white noise model: alternatives correspond to Besov or Sobolev balls with
Besov or Sobolev balls removed. The study is based on an extension of methods of constructions of
asymptotically least favorable priors. These methods are applicable to wide class of “convex separable
symmetrical” infinite-dimensional hypothesis testing problems in white Gaussian noise model. Under
some assumptions these methods are based on the reduction of hypothesis testing problem to convex
extreme problem: to minimize specially defined Hilbert norm over convex sets of sequences 7 of mea-
sures 7; on the real line. The study of this extreme problem allows to obtain different types of Gaussian
asymptotics. If necessary assumptions do not hold, then we obtain other types of asymptotics.
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1. INTRODUCTION

1.1. Setting

Let an infinitely-dimensional Gaussian random vector x = £ +wv be observed where £ is a sequence of standard
independent Gaussian random variables with zero mean and unit variance, v € [y is an unknown mean sequence.

We consider the problem of testing null hypothesis Hy : v = 0 on a sequence v and consider families of
alternatives H. : v € V, for a given families of the sets V. of unknown v in the sequence space la, ¢ — 0
is an asymptotical parameter. Certainly this problem is equivalent to the well known problem of the testing
Hy : s =0 versus the family of alternatives H. : s € S C L2(0,1) in Gaussian white noise model:

dX.(t) = s(t)dt +edW (t), t € [0,1], s € La(0,1), € > 0.

In fact, for a fixed orthonormal basis {(,,} we consider the sequences of normalized empirical Fourier coefficients
x; and the sets V; = {v.(s), s € S:} of the normalized Fourier coefficients:

x; :5*1/0 Ci(t)dXce(t), vie(s) :5*1/0 Gi(t)s(t)dt.

The problems are studied in asymptotical minimax setting (as ¢ — 0). For a family of alternatives H. : v € V;
a family of (randomized) tests . = ¥-(z), V() € [0,1] is characterized by the families of the first kind errors
a(e) = Ep(he) and by the supremum of the second kind errors

5(1/}87‘/6) = sup 5(1/157”)7 5(1/15,”) = EU(]' - wE)a

veV,

where E, stands for the mean value with respect to the measure P, which corresponds to the observation
x =&+, v €ls. For fixed a € (0,1) the minimax distinguishability is characterized by the asymptotics of the
values

BlasVe) = inf B(5,V2), Wa={v: a(¥) <a}

It is clear that

The problem is called trivial, if f(a,Vz) =1 — « for any « € (0, 1).
The problem of sharp asymptotics is to investigate asymptotics of the values §(a, Vz) (up to vanishing term,
as € — 0) and to construct asymptotically minimax families of tests e o such that, as e — 0,

a(Ye,a) =a+o(1), B(Yea,Ve) =B, Vo) +o0(1).
The problem of rate asymptotics is to obtain conditions of distinguishability:
Bla,Ve) — 0
and to construct minimaz consistent families of tests e q:
a(Ye,a) = a+o(1), B(¢ea,Ve) =o(1),

or to obtain conditions of indistinguishability (asymptotical triviality):

Bla, Vo) = 1 —a.



MINIMAX NONPARAMETRIC HYPOTHESIS TESTING FOR ELLIPSOIDS AND BESOV BODIES 59

1.2. Alternatives

It is clear that it is not possible to distinguish null-hypothesis and alternatives which are too close to hypothe-
sis. Thus it is necessary to remove some small neighborhoods of null hypothesis. Typically these neighborhoods
can be defined in the form

fl(v) < HEA,I;

where f; is some norm or sub-norm on the sequence space.

Also often (with exception of “classical” case, see Ingster [12] and Sect. 2.1 later) it is necessary to restrict
nonparametrical alternatives to obtain nontrivial problem. Restrictions of such type also may be given by some
other norms or sub-norms f5 in sequence space:

fa(v) < Heo.
Thus alternatives may be defined by constraints
Ve={vely: fi(v) > Hz1, fa(v) < Heo}-

The objects of our interest are two cases: ellipsoids and Besov bodies.

1.2.1. Ellipsoidal case

In this case we consider simplest (as it seems) variant of norms: fi = fr.p,, fo = fs,q, where

0o 1/p
frp(v) = <Z|”i|piw> i fro(v) = sup |u|i"
i=1

1<i<o0

and —oo < 1,8 < 00, 0 < p,g < oo (if 0 < p,q < 1, then this relation define quasi-norm). Also we consider
thresholds Hy, of the form Hy = p./e, Hy = R/e, p. — 0.
Thus in this case we consider the sets V. = V.(7, p) which are ellipsoids with “small” ellipsoids removed:

VE(7'7 pe) = Eq,S(RE,Q) \ Ep,r(Ra,l)§ R.o = R/Ea Re.1 = PE/& (1-1)

where E, ,(R) is [p-ellipsoid of semi-axes a; =i~ "R:

E,.(R) = {v ely: Zi”)|vi|p < Rp}

i=1
with evident modification for p = co. Here 7 = (k, R), k € = where we determine the set = C R* as
E= {(p,q,T,S) : 0<p,g<o0, —co<T,5< OO}7

R > 0, the values p. > 0, p. — 0 are given.

The thresholds Hy, of such form correspond to the normalization in a signal detection problem (for fixed
orthonormal basis in L2(0,1) these sets correspond to ellipsoids of radii R with small ellipsoids of radii p.
removed).

Observe evident inequality

Bla, V(r, p2)) < Bla, V(7' pL)),

which follows from the natural inclusions
Va(r,pe) C Vel p2),

when p>p,r <r\R<R q<q, s>s, p.>p..
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1.2.2. Besov bodies case

In this case we consider the norms (or quasi-norms) fi = frpn, f2 = fs,q: 0f Besov type, where if p, h < o0,
then

w\ 1/h

- oi 1/p

Frpn @) = | D127 | D oyl ,
j=1 =1

if p < h = o0, then
oi 1/p

Fron(@)= | sup 277 [ ju,l ,

1<j<00 =1

if h < p = oo, then we have the analogous modifications. Here we consider x = {z;}, v = {v;} € [y as a
pyramidal sequences: x; = z1j, v; = vj, j = 1,..., L =1,...,27, i =2/ 4+ . Note that there are some
different definitions of Besov norm in sequence space (up to some finite-dimensional subspace); this difference
is not essential to our study.

The sets V. = V.(7, p.) are Besov bodies with “small” Besov bodies removed:

‘/E - Bqﬁt;s(Rs,Z) \Bp,h;r(RE,l); RE,Z = R/57 Ra,l - pe/(‘:a (12)

where
Bphr(R)={v€ls: frpn(v) <R}, 7= (k,R,t,h), 0<t,h<oo, K€EE,
the values p. > 0, p. — 0 are given.
By natural inclusions: if p > p', r < r', R< R', q < q', 5> s', n < h, t > t, pe > p;,, then

Vs(Ta pe) C VE(T/ ) p;)’
one has evident inequality
ﬁ(aa V;:‘(T) Pe)) S ﬁ(O{, ‘/E(T Y ps))
1.2.3. Discussion

It is well known that ellipsoids for p = 2 and for standard Fourier basis correspond to Sobolev balls of
periodical r-smooth functions in Ly-norm.

There are no simple relations between Besov bodies B, p.(R) and ellipsoids E, ,(R). However note that if
p = h, then the Besov body B, ,.»(R) is an ellipsoid of semi-axes a; = a;; = R277", 1 =1,...,27, i =27 +1.
This implies the inclusions E, .(C1R) C Bp p;r(R) C E, -(C2R) for positive constants C1 2 = C1 2(p, 7).

Note also that Besov bodies By 5., for specific regular “wavelet”-basis correspond to Besov balls BZ,h of
o-smooth functions in the functional space L2(0,1) with r = 0 +1/2 — 1/p (up to factors in radii and up to
finite-dimensional balls), at least for o > 0;p,h > 1; see Meyer [21], Cohen et al. [2]. These relations provide
translations of the rate results from the case of the alternatives defined by Besov bodies in sequence space [ to
the case of the alternatives defined by Besov balls in functional space L2(0, 1) (see Donoho et al. [4,5]; Spokoiny
24, 25]).

The main subject of our interest is the sharp asymptotics for ellipsoidal case. Also we show that (excepted
some “boundary” cases) the same (as for ellipsoids) rates hold for the case of Besov bodies with the same
and do not depend on the R (it is assumed fixed or R =< 1) and on the parameters h and ¢ which define “thin”
structure of Besov norms.

Well known inclusions

B;g,min {p,2} (ClR) C SZ (R) C Bg,max {p,2} (OQR)
(where C1 2 = C1 2(p, o) are positive constants) provide the translation of rate results to Sobolev balls Sy (R) in
functional space in these cases. The case of Sobolev ball with r = 1/2 — 1/p corresponds to Ly-balls removed.
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These facts provide the translation of results bellow from ellipsoidal and Besov bodies cases to the cases of
alternatives defined by Besov or Sobolev balls in functional space L2(0,1).

There are some reasons to consider cases when we remove ellipsoids or Besov bodies and Besov or Sobolev
balls with r # 0 and o # 0. First, if p # 2, then L,-ball in the functional space (¢ = 0) roughly corresponds not
to l,-ball in sequence space but to ellipsoid or Besov body with r = 1/2—1/p. Next, the cases o # 0 correspond
to hypothesis testing on derivatives or on integrals of a signal of interest in many problems. Particularly, for
the model of the sample from the interval [0, 1] with unknown probability density the case 0 = —1 corresponds
to hypothesis testing problem on uniformity of a density and alternative corresponds to the set of distribution
functions on [0, 1] bounded away in L,-norm from linear distribution function Fy(t) = ¢. It is well known, that
in estimation and in hypothesis testing the we have classical rates in this case: the accuracy of estimation and
the rate of testing is n~'/2 where n is the sample size. If o = 0, then it does not hold. It is of interest to
describe the “boundary” between classical and nonclassical asymptotics (see Ingster [12]).

The problem of sharp asymptotics for ellipsoids were studied by Ermakov [6], Ingster [11-13] and by Suslina
[26,27] for different values of 7, s > r. In Ermakov [6] the case p = ¢ = 2 had been investigated. In Ingster [11,12]
the results for the cases 0 < p = ¢ < oo and ¢ < p = oo had been obtained. In Suslina [26,27] the cases
p#q, r =0, s >0 had been studied.

For similar problems in functional space the rates were studied by Ingster [9,10] for Sobolev balls SJ(R),p = 2
and for Sobolev or Nikol’ski balls S¢ with L,-balls removed; p <2, ¢ > p or 2 < p = q < o0o; by Lepski and
Spokoiny [19] for Sobolev balls Sg(R) with Ly-balls removed, p < 2, gn > 1; by Spokoiny [25] for Besov balls
Bgt(R) with Ly-balls removed for all p,¢ > 1,7 > 0,gn > 1. Sharp asymptotics for Besov bodies Bg,t(R)
with Lo-balls removed were studied in Ingster and Suslina [16]. The results of these papers show that different
asymptotics arise in these problems.

1.3. Structure of the paper

The main result of the paper is the classification of the types of asymptotics. We call these types classical,
trivial, degenerate and Gaussian (of two main and some “boundary” types). In Sections 2 and 3 we describe
sharp asymptotics for these types (except for “classical” type) for ellipsoidal case and the rates for Besov bodies
(with the exception of “boundary” types). Also we describe the partitions of the set = = {k} C R* onto
regions of different types of asymptotics. This partition is drowning on the plane {s,r} for different values p, ¢
(see Figs. 1-8 in Sect. 3.3).

In Section 4 we describe the asymptotical minimax or consistent test procedures for the cases of degenerate
and Gaussian asymptotics.

In Sections 5-9 we give the proofs.

The main part of this paper deals with Gaussian asymptotics.

The study is based on reduction of the problem of finding asymptotically least favorable priors to specific
convex extreme problem: to minimize Hilbert norm ||7|| of sequences 7 of measures m; on the real line over
specific convex sets (Sect. 5). We study these extreme problems for ellipsoids (Sect. 6) and for Besov bodies
(Sect. 7). These studies are difficult enough and for Besov bodies cases we obtain only the rates. It seems very
probable that if p > h, q < ¢, then for Besov bodies case analogous sharp asymptotics hold also (which depend
on h,t). However the proof seems to include hard enough calculations and we do not consider this problem
here. The same is for “boundary” problems in Besov bodies case.

Note that these methods seem to be close enough to the methods by Donoho and Johnstone [4] and Donoho
et al. [5].

The proofs for degenerate and trivial types of the asymptotics are more simple. They are given in Sections 8
and 9.

Remark 1.1. One can regard as inconvenient the removing of alternatives too close to null-hypothesis and the
restrictions on alternatives. Other variant of minimax setting is possible where these constraints are replaced
by the introduction of some loss functions r.(v) which characterize losses of an statistician to accept the null-
hypothesis whenever the alternative v holds. The traditional setting corresponds to r(v) = 1y_(v). This setting



58 Y.I. INGSTER AND I.A. SUSLINA

is considered in Ingster [13] for the losses type of 7. (v) = g(f¥(v)/H: 1, f4(v)/H. 2) where fj, correspond to the
ellipsoidal case (for Besov bodies case the analogous consideration is possible). Under some assumptions (the
main is that the function log g(x,y) is concave) one can translate the results of these paper onto this setting.

Remark 1.2. It follows from results later that there is essential dependence of test procedures on the param-
eters 7 for the case of Gaussian asymptotics. In the paper Ingster [13] we consider different (adaptive) variant
of the problem which corresponds to the case of unknown parameters 7. In this case we assume that 7 € K for
a given compact K and we consider the alternatives of the type

HEA,K NS V;(K)

corresponding to all 7 € K:
Vo(K) = | Velr, (7))
TEK

with p. = p-(7) be a given functions on K.

First adaptive setting had been considered by Spokoiny [24, 25] for Besov or Sobolev balls with L,-balls
removed. It was shown that it is not possible to distinguish hypothesis and alternative without losses in
efficiency (type of loglog-factor). The lower bounds for p = 2 and upper bounds for fixed p > 1 had been
obtained in these papers.

We would like to obtains sharp adaptive asymptotics for ellipsoidal case and exact adaptive rates for the case
of Besov bodies with Besov bodies removed, which imply rate adaptive asymptotics for Besov or Sobolev balls.

These studies will be based on the results of this paper and we give here the results in more general form to
use ones later for investigation of adaptive setting.

The authors would like to thank Prof. O. Lepski and Prof. V. Spokoiny for very helpful discussions which were stimulated
this research.

2. NON-GAUSSIAN ASYMPTOTICS

2.1. Classical type (C)

Denote E¢ = {k € E: 7 < rp} where

1/4_1/]7, lfpSQa
T, =4 —1/2p, if 2 < p<oo,
0, if p = o0,

Theorem 1. Let kK € =¢. Then
Bla, Ve(r,pe)) = 0 iff pe/e — o0
and
5(05’ VE(Tv Ps)) —1l-a 'Lﬁ p€/€ — 0.

If p /e — 0o, then minimaz consistent families of tests Y. = 1yp_ <1y, Te — oo are based on statistics

>, 2P (P (22 — 1)), ifp<2,
Lepr =997 ]xil?, if 2 <p < oo,
sup; (|zile)/(p<(i" — 1/2)), if p=o0

for ellipsoids with evident modification of sums and changing v to any r e (r,rp) for Besov bodies.
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The proof of Theorem 1 follows directly from Ingster [12], Theorem 2.5 and from the proofs in this paper for
ellipsoids (one can make simple modifications for Besov bodies) and we omit it.

Thus the classical type (C) of the rates is defined by “minimum signal-noise ratio p./e” only. It is the same
as for the case of the simple or finite dimensional alternatives. We do not consider this type later on and assume
bellow that x € 2 = {k: 7 >r,}.

2.2. Trivial type (T)

It was shown by Ibragimov and Khasminkii [7] that the problem is trivial for S = L2(0,1)\ Dp(p) with p = 2
and any p > 0, € > 0; for p # 2 this result follows from Burnashev [1]. The same holds for V. =3\ E, (p) for
any p > 0 and r > rp, (see Ingster [12], Th. 2.5; for p = 2 it follows from Ermakov [6]).

It means the necessity of restrictions on alternatives for r > r, and for “ball-shaped” neighborhoods removed.
It is easy to see that the problem is trivial for ellipsoidal case with s < r, r > 0, however it was shown by
Suslina [26,27] that the problem is also trivial for ellipsoidal case VZ(T,pc)) if p < ¢, r =0 and s < s, ; with

o — )a=p)/pa. if p < 4,
P (a—p)/2a(p—2), ifp>4

This means that the restrictions are not enough to obtains nontrivial problem. Now we describe the regions

= € 2C of the trivial type.
Put for p,q < oc:

A= Ak)=gqs—pr, p=p(k) =pg(s =), I =1(k) =2q(p—2)s—2p(q—2)r+p—q

and if ¢ = oo, then I = I(k) = 2s(p — 2) — 2rp — 1. Define the set Zp by the inequality r > r, as well as by the
following inequalities. If p, ¢ < oo, then

p<0&A<0&I>0, if2>p>q,

p<qg—p&I<O0, if 2<p<y,
p<0&A<O, ifp>2p>gq,
1< q—p, ifp<2 p<qorp=q>2.
If g = 00, p < 00, then
s—r<1/p, if p<2,
s—r<1/p&I<0, ifp>2

and if p = 0o, g < 00, then s < r and r > 0.
For boundary case r = r,, these inequalities are equivalent to the following:

< o 1/4—1/q, ifp<2orp=2,q¢=>2,
s<si =
- n —1/2g, ifp>2o0rp=2,¢g<2.

Theorem 2. Let k € Z7 and if u = 0, then R > p.. Then the problem is trivial for ellipsoidal and Besov
bodies case:

Ble, Ve(r, pe)) = (1 — ). (2.1)

The proof of Theorem 2 is given in Section 9.
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2.3. Degenerate type
This type is characterized by the asymptotics

Bla, Ve(T, pe)) = (1 = ) @(Re(, pe)) + o(1)

where

Re(7,pe) = \/2logne —n_"pe /e, ne =mne(T, pe) = (R/pe)"/ 77 (2.2)

(note that s > r >0, p > ¢ for this type) which implies

2log(R/pe)

Bla, V(r,pe)) = (1 — a) ( —— pz/<“>R’“/<”>el> +o(1). (2.3)

Here and later ® stands for standard Gaussian distribution function.

This type had been described by Ingster [12], Theorem 3.3 for p = 0o, ¢ < p; r = 0 and follows from Ingster
[12], Theorem 3.4 for s > p > 0. The asymptotically minimax tests are based on simple thresholding in this
case.

We use the term “degenerate” in this case by likelihood ratio L.(T, p:) = dPr</dP, for asymptotically least
favorable prior 7° has asymptotically degenerate distribution for null-hypothesis: L.(7, pc) — ®(R(7, p:)) — 0
under Py-probability.

This type allows boundary between distinguishability and indistinguishability. Put the critical radii of re-
moving sets and constants:

(s—71)/2s

o) = B((/BPloge™) L A(r) = Au(r) = Aolr) = (2/5) %
This corresponds to the relation

AT (2) pE (1) ~ e(ne (T, pt (1)) V/2log ne (7, px(7)).

Then for any « € (0,1) one has

Bla, Vo) = 0 if liminf po/pi(7) > A1(T) (2.4)
and
Bla, Vo) = 1 —a if limsupp./pi(1) < Aa(7). (2.5)
Using the translation
r=c+1/2—-1/p, s=n+1/2—-1/q (2.6)

we can rewrite the rates in terms of smoothness parameters o, n for white Gaussian noise model:

pr = (cHoge ™) n—o—1/at1/p)/(2n=2/q+1) (2.7)

The conditions close to (2.4) and (2.5) arise in functional space for the balls of Holder 7- smooth function with
Loo-balls removed, see Ingster [10,12], where the relations (2.4) and (2.5) with different values A1 (7) > Aa(7)
had been obtained (note that this case corresponds to s = n+1/2, r =1/2). Lepski [17] had shown that there
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is the equality: A;(7) = Aa(7) for n < 1; Lepski and Tsybakov [20]) had shown that this equality holds for
n > 1 also. For finite p this type of rate asymptotics (with different A(7) = A; 2(7)) arises in Spokoiny [25].
Note that the rates (2.7) in the region Zp (possibly, excepted the boundary) are the same that in minimax
signal estimation problem in white Gaussian noise model (assuming the losses are defined by Sobolev or Besov
norm with parameters (p,o) and signal set is the ball in Sobolev or Besov norm with parameters (¢,n)); see
Donoho et al. [4,5] and Lepski et al. [18].
In our problem for ellipsoidal case we get the asymptotics of degenerate type in the region

Ep={ke€ZT: s>r>0, A<0}, ' ={kecE°: K¢}

For Besov bodies with ¢ < ¢t we consider the “interior” of Zp only: we assume k € Zp, A < 0.
Note that there exists common family of tests v o, which asymptotically minimax for any x € Zp, R > 0.
These test procedures are described in Section 4.1.

Theorem 3. Let k € =p. Then

1. For ellipsoidal case the sharp asymptotics (2.8) hold.
2. For Besov bodies case let A\ < 0, if ¢ < t. Then there exist such constants ¢y = ¢1(7) > 0, ¢a = ca(7) >0
which are bounded away from 0 and oo on any compact in Zp that

(1 - a)q)(RE(T7 p€7cl)) + 0(1) < ﬁ(a’ V;:‘(T? pé‘)) < (1 - a)(b(RE(T7 pf:‘?cQ)) + 0(1)

where

Re(r, pe,¢) = \/2logne(7) — (ene(r) " pefe, ne(r) = (B/pe)"/ 7).

These relations imply the rates (2.4), (2.5) with some (different) constants A1(7) > A2(T) which are
bounded away from 0 and co on any compact in Zp.

Proof of Theorem 3 is given in Section 8.

3. (GAUSSIAN ASYMPTOTICS

3.1. Types G; and Gy

These types of asymptotics seem to be the most important and interesting. For ellipsoidal case these types
are characterized by the asymptotics

Bla, Ve(r, pe)) = @(To = ue(T, pe)) + o(1). (3.1)

Here T, stands for (1 — a)-quantile of the standard Gaussian distribution: ®(7,) = 1 — a. The function
ue (T, pe) = ue characterizes the minimax distinguishability.
There are two main types of this function:

(1, pe) ~ d(r)(pe/R)** " (e/R)~ P+, k= 1,2; (3.2)

where d(k) > 0.
For the type GG1 one has:

p(4—g+4sq)
Bi(k) =4, Ai(k)= {ngjgiqu

p(s—r)—17

if ¢ < 00

if g =00
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and for the type G2 one has:

p(1+2sq) if g <
AQ(KJ) — {2(13—;07« ’ 1 q_OO
D, if g =00
2pa(s—r)tp—q ;¢
= ) qg < oo
Bs(k) = as=PT. 3.4
2( ) {2;}(5;")17 if q = oo. ( )

Put =P = =7\ Zp. Let us define the sets
Z¢, ={k€EP :r>r, & {I(k) <0orp=q=2}}
and
EGQZ{KZGEDZT>TP&I(I€)>O}~

Theorem 4. For ellipsoidal cases the relations (3.1, 3.2) hold where, if k = 1, k € Z¢,, then the values Ay, By,
are defined by (3.3), and if k = 2, Kk € Eq,, then ones are defined by (3.4). Here d(k) is a positive function on
the regions Eg, and Zqg, which is bounded away from 0 and co on any compact K C Z¢,, k=1,2.

Proof of Theorem 4 is given in Sections 5, 6.

Remark 3.1. It follows from the proof later that the function d(k) is continuous Lipschitz function except for,
may be, some 3-dimensional sub-manifolds in Zq,, k =1,2.

Very cumbersome relations (3.1-3.4) correspond to the solution simple enough equations on the values zg =
20,e(K), m =mge(k) or hg = hoe(k), n = nge(k). For the type G; one has:

u? ~ co(k)mzg, (3.5)

where
1 (KM 28 ~ (pe [P ca(k)m!Te 20 ~ (¢/R)79, if ¢ < 0, (3.6)

' 0™ WP co(mymizg ~ (e/R)7Y,  ifg= oo '
and for the type G2 one has:

u? ~ co(k)nh3, (3.7)

where

raspy ~ (e/R)79, ifg< oo

1+prh ~ p CQ(K)n 0 ) q ) 3.8
alrn 0~ (pe/e)s {cz(m)ns ~ (g/R)71, if ¢ = 0. (3:8)

Here cp1,2(k) > 0 are functions which are bounded away from 0 and oo on any compact K C E¢g,, k=1,2.
These relations are proved in Sections 5, 6. Direct relations for the functions cg1,2(k) are presented in
Section 6 as well. The case p = ¢ is considered later in this section.
Note, that if the values u. defined by (3.2) satisfy u. = O(¢7°%) for small enough § = &(x) > 0, then the
accurate of the relations (3.5-3.8) is (1 + 0(¢°)) where 6; = 6;(k,6) > 0.
The asymptotics of type G; arise in Ermakov [6] for p = ¢ = 2, in Ingster [11,12] for p = ¢ < 2, in Suslina [26]
for p < 2,q > p. The asymptotical minimax families of tests ¢- o = 1{z_ >, in these cases are based on the

statistics
Le=Ley=u') 22;(xf - 1)
i
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where z. = z.(7, p.) are families of sequences,

The direct description of these families can be given for p = ¢ < 2:

1/(4— .
VD) i

zei = 20(y"" = y)
and for r > r, the values u., z9, m are defined by relations (3.5, 3.6) with

1 /1
co(k) ~ _/ (y'? — y*P) Y (A=P) gy
0

2
1
(k) ~ / (y™P — y*P)P/ P)yrPay,
0

1
ca(k) ~ / (y"P — y P )P/ A=P)ysp gy,
0
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(3.10)

The asymptotics of the type Go arise in Ingster [11,12] for 2 < p = ¢ < co. The asymptotical minimax families

of tests ¥z o = 1(r. >7,jux. in this case are based on the statistics

Le=Lc,= ugl Z hE,iE(mzﬁ 2(p))

and on the threshold procedure

X, = { max |z;| > \/210gn5}

1<i<n
where
&z, 2) = e /2 coshzz — 1.
Here h. = h(7) for r > 1, are the families of sequences h. ; € [0, 1]:
hei = ho(x"™ — z°P)y, x =1i/n,

)

the values u.(7), ho, n are defined by relations (3.7, 3.8) with
1
co(k) ~ 2sinh2(22(p)/2)/ (z"? — z°P)2d,
0
1
ale) ~ ) [ @7 o)arrds,
0
1
ca(k) ~ zp(p)/ (2" — z°P)z*Pd.
0

Here and later for p > 2 we denote by z(p) positive values defined by the relation

ptanh(z*(p)/2) = 2%(p).

If p < 2, then we put z(p) = 0. These values minimize the functions f,(z) = 27 sinh(2?%/2).

(3.11)

(3.12)

(3.13)
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The results (3.5-3.13) are presented in Ingster ([11,12], Ex. 3.1, 3.3 for s > r = 0) and are obtained in
Section 6 for general case s > r > rp; for s > r = r,, the asymptotics are of different forms (see Sect. 3.2 and
Sect. 6 later).

The types G1 and Go arise in Suslina [27] for r =0, ¢ #p <00, §> Spq.

It is clear that using the relation (3.1) we get the rates which are described by critical radii (rates in Spokoiny
24, 23))

pi(r) = B/ A g — 1 9, (3.14)
It means
Ble, Ve(T,pe)) — 0 iff - pe/pZ(r) — o0 (3.15)
and
Ble, Velrpe)) = 1—a it pe/pt(x) — 0. (3.16)

Using the translation (2.6) we can rewrite the rates for for white Gaussian noise model with o, >0, p,q > 1:

pi(o,m,p,q) =%, k=12,

where
4(n —o) _2(77—0)—|—p_1—q_1.
dn4+1" 77 2m+1—g-!

These rates for o = 0 were obtained in Ingster [9,10,12] for Sobolev balls S with Lj-balls of radii p. removed
(the type G1, if p < 2, ¢ > p and the type Ga, if p = ¢ < o0); in Lepski and Spokoiny [19], Ingster and
Suslina [16] for ¢ = 2, p < 2 (type G2); in Spokoiny [25] the rates of the types G; and G2 were obtained also
(up to logarithmical factor).

Note that in the regions of main types of Gaussian asymptotics these rates are smaller than the rates in
analogous minimax estimation problem that were obtained by Donoho et al. [4,5] an by Lepski et al. [18].

It is clear that the rates (3.15, 3.16) with the critical radii (3.14) follow from the inequalities

Cy =

O(Ty, — diuc(k, R, pe)) +0(1) < B(a, Va(T, pe)) < O(Ty, — dauc(k, R, pe)) + o(1) (3.17)

where u.(k, R, p.) are defined by either (3.5, 3.6) or (3.7, 3.8).

Theorem 5. For Besov bodies case and small enough € > 0 the relation (3.17) holds where us(k, R, ps) are
defined by either (3.5, 3.6), if k € Eq,, or (3.7, 3.8), if k € Eg, with ¢;(k) =1,1=0,1,2. Hered; = di(k,R) >
0dy = dg(l‘L,R) > 0.

Proof of Theorem 5 is given in Section 7.

3.2. Boundary log-types of Gaussian asymptotics

Let as consider also the “boundary” sets
B, ={k€ =D ., > 1, I(k) =0 without p = q = 2},

- =D
Eg, ={h€E"ir=1p, s>s,, p<20r p=2,p<q},

EGE):{KEED:T:TP, §>58,,p>20r p=2, p>q}
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Note, that A;(k) = A2(k), Bi(k) = Ba(k) for k € Eg, (these values are defined by (3.3, 3.4)). Observe that
the set =g, is the boundary between =g, and Z¢,, the set Z¢, is the boundary between Z¢, and Z¢, the set
Zq, is the boundary between Z¢g, and Z¢.

For k € Eg, put

uZ ~ d(r)(pe/ B2 /(e R)P2) log e ™. (3.18)

For k € E¢, put
u? ~ d(r)(p:/¢)" (loge ™)@~ 4/P. (3.19)

For xk € Eg, put
w2 ~ d(r)(p- /)% loge™. (3.20)

Theorem 6. For ellipsoidal case the relation (3.1) holds. If k € Zq,, then the values u. satisfy (3.18), if
K € Eq,, then ones satisfy (3.19), if k € Eq, then ones satisfy (3.20). Here d(k) are positive functions on the
regions Eg, — Zq, which are bounded away from 0 and co on any compact K C Z¢,, k= 3,4,5.

Proof of Theorem 6 is given in Sections 5, 6.

For the case r = 0 the asymptotics type G3 arise in Suslina [27].

These sharp asymptotics imply the rates (3.15, 3.16) with critical radii of the following form: if kK € Eq,,
then

() = £B2(/A20) (1gg =) /4200, (3.21)
if kK € Z¢g,, then
pi(r) = e(loge™")P/ap; (3.22)
and if K € Eg,, then
P (k) = e(loge™1)1/2P, (3.23)

Thus the asymptotics are close to classical in the regions G4, G5 (the difference is in log-factor only).

If u. = O(¢7%) for small enough 6 > 0, then logm. < logn. < log hal = loge~! and relations (3.18-3.20)
correspond to the values u(7) which are defined by the values zg = 2zo,¢(k), m = me(k) or hg = hoe(k), n =
ne(k) determined by the following relations. If k € E¢,, then

u? ~ co(k)nhdloghg* (3.24)
where

ca(k)n' % hologhg ' = (¢/R)™9, if ¢ < oo

ca(w)n® = (¢/R)71, if ¢ = oo. (3.25)

cr(w)n' TP holog hg = (p:/¢)?, {

If kK € 2g,, then

u? ~ co(r)mzg logm, (3.26)
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where
Hasd = (¢/R)9, if g < o0
p/4,p = p Jealr)mTezg = (ef e 3.27
c1(k)mP’ %25 logm = (p: /e)”, {mszo = (¢/R) Y, if ¢ = o0. (327
If k € Eg,, then
u? ~ co(k)nhjlogn (3.28)
where
Washg = (e/R)74, if ¢ < o0
12 (o) ca(k)n 0 » 1g 3.29
c1(k)n'/“hologn = (pe/e)?, {CQ(H)TLS = (¢/R), if ¢ = cc. (329

These relations are proved in Sections 5 and 6. Direct relations for the functions cg 12(%) are presented in
Section 6 as well.

Remark 3.2. We assume later in the proofs of upper bounds in the theorems and in some estimations that
ue (1, pe) = O(e7?) for any § > 0, k € Zg,, | = 1,2,3 and u.(7, pc) = O(1) for k € Z¢,, | = 4,5%.

We consider these relations as the assumptions on the values p. = p:(k) for the values u. defined by the
relations of the type (3.2).

These assumptions are not essential. In fact, if [ = 1,2,3 and u.(7, pg)g‘S — 00, then, by making p. smaller,
we can get u (7, pe) < £° and the values 3(a, V- (7, p-)) are not decrease, but still B(c, Vo(7, p:)) — 0,ase — 0
by the Theorems. The case [ = 4,5 and u. (7, p:) — oo is considered by similar way.

The reader can assume for simplicity ue(7, pe) = O(1) for k € E¢,, | = 1,2,3 (it is enough to the goals of
this paper). We consider more general assumption to make the basis for study of adaptive problems later where
we need to consider the case u2(r, p:) < logloge™1.

One can easy check that under assumptions above the following relations hold. If k € Z¢,, [ =1, 3,4, then

zom MP=D 0, if p>q zom P/EP) 0, ifp <25 20— 0, m — .
If Kk € Eq,, [ =1,3, then

20 = 0(e%), m™t = 0(%).
Alsoif Kk € Eg,, k=2,3,5, then
n~ "Phy — 0, if p>2; hg — 0, n — oc.
If Kk € Eq,, [ =2,3, then
ho = O(%1), n=! = 0(e%).
Here 61 = §1(k), d2 = 02(k) are some positive values. We will use these relations in the proofs.

Remark 3.3. Note without proofs that for Besov bodies case the rate asymptotics (3.15, 3.16) hold with
critical radii analogous to (3.21-3.23), if Kk € G5 — G5. However the power degree of log-factors depends on
the parameters ¢, h.

1 This assumption should be extended onto uc (7, pe) = O((loge™1)%), k € Eg,, 1 =4,5.
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FIGURE 1. p=¢q < 2. FIGURE 2. 2<p=¢q < .

3.3. Graphical representation

In this section we describe the partition of the planes of the parameters {r,s} onto the regions of the
asymptotics of different types for fixed values p, ¢ in ellipsoidal case. Remind that the same partition hold for
Besov bodies in the sequences space as well. In functional space for the case of Sobolev balls Sg’(R) with Sobolev
balls S (pe) removed and for the case of Besov balls By ,(R) with Besov balls By, (p:) removed one can get
partitions for ¢ > 0, n > 0, p > 1, ¢ > 1 using the translation (2.6) which corresponds to the moving of
origin of coordinates to the point (1/2 —1/p,1/2 —1/q) on the pictures. This point is the beginning of vertical
half-line (the case o = 0, 1 > 0) that is presented on the pictures and corresponds to L,-balls removed.

In Figures 1 and 2 we show the partitions for finite p = ¢. The classical asymptotics C' correspond to r < 7,
with rp, =1/4—1/p, if p <2 and r, = —1/2p, if p > 2. If r > rp, then we have trivial case T for s < r, of
course. Note that regions of the type T are closed on all pictures later.

If s > r > rp,, then we have Gaussian asymptotics of the type Gy for p < 2, and of the type G for p > 2.
The boundary r = r,, s > r, between C and either GG; or G corresponds to the types either G4 or G'5. The
vertical line on the pictures corresponds to case of functional space: o = 0.

The case ¢ < p = oo is presented in Figure 3.

The region C of the classical asymptotics corresponds to r < 0 and the Gaussian asymptotics G are replaced
onto degenerate D in this case. These results are presented in Ingster [10,11].

Next pictures correspond to p < oo, p # q. We denote as z* = z;, , and y* = y; , the points on the plain
{r, s} with the coordinates

x* = (1/4—1/p, 1/4—1/q), y" = (=1/2p, —1/2q)

with evident modification for g = oc.

The case p < 2, p < ¢ < oo (see Fig. 4) is close to p = ¢ < 2: we have the regions C, T, G; with some
translation of the boundary between the regions of trivial and Gaussian types; the boundary between C' and
G corresponds to G4 as well. Therefore, if r = 0, s > 0, then we have the interval (0, (¢ — p)/pg] of trivial
type. These results are presented in Suslina [26].

The case 2 < p < g < oo is presented in Figures 5 and 6. The boundary between the regions G and T is not
linear in this case: the break point is *. We have the regions G and G2 of main types of Gaussian asymptotics
and we have the type G3 on the boundary half-line I = 0 from the point z*. The boundary between G5 and
C corresponds to the type Gs. The difference between the cases p < 4 and p > 4 is the position of the point
x*. These results for » = 0 are presented in Suslina [27]. Note that if » = 1/2 — 1/p (vertical half-line), then
we have the interval 0 <n < (¢ —p)/2pq of the type G1 and half-line n > (¢ —p)/2pq of the type G3. These
results for functional space and L,-balls removed are presented in Spokoiny [25] (up to loglog-factor and some
additional restrictions).

The most interesting cases seem to be p > ¢ (see Figs. 7 and 8).
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FIGURE 6. 2 <p < qg<o0; p>4.
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FIGURE 8. 2 >p >q.

We have regions D of degenerate type here. If p > 2, then main Gaussian type is Go2; boundary type G5 (the
boundary between G2 and C for r = —1/2p) is presented as well. For r = 1/2 —1/p (vertical half-line) we have
the interval It : 0 <n < (p—q)/pq of the type T, the interval Ip : (p —q)/pg <n < (p—q)/2q of the type
D and half-line n > (p —¢)/2q of the type Ga. These results for functional space and L,-balls removed are
presented in Spokoiny [25] (up to loglog-factor and some additional restrictions).

If p < 2, then all main types of the asymptotics are presented (with the exception of boundary Gs-type).
The boundary of the region T' has break points z*, y* and (0,0). For r = 1/2 — 1/p (vertical half-line) we
have the interval It : 0 <n < (p—q)/2q of the type T, the interval I, : (p —q)/2¢ <n < (p—q)/2q(2 — p)
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of the type G2 (for p > 1) and half-line n > (p — q)/2q(2 — p) of the type G1. These results are presented in
Spokoiny [25] (up to the part of the interval Ig,). The case r = 0 was considered by Suslina [27].

4. TEST PROCEDURES

4.1. Degenerate case

We describe common asymptotically minimax test procedures which do not depend on k € Zp and provide
the upper bounds in Theorem 3.

Theorem 7. Let kK € Ep. Then

1) For ellipsoidal case let us consider the tests
Yeo = (1 —a)lx, +a (4.1)

which are based on the thresholding

XE—{linféu]i[ |:Ei|>\/210gN€}U{ sup |xi|/Ti>1} (4.2)
_1_ €

Ne<i<oo

with T; = /2logi + 2loglogi and N. < loge™!. Then a(ie o) = a+ o(1) and for any compact K C Ep
and B > 1

sup (B(Ye,a: Ve(T, p)) = (1 = ) (R (7, pe))) < o(1).
k€K, B-1<R<B

Here the values R (T, pe) are defined by (2.2).
2) For Besov bodies case assume A < 0, if hq < pt. Let us consider the tests (4.1) which are based on the
thresholding

X = { max max |z;| > \/ZCJE} U{ sup  max ||/ T > 1}

1<5<Je 1<1<29 J.<j<oo 1<1<2i

where C =log2, T; = \/2C(j +logj), J. < logloge™t. Then a(ve o) = o+ o(1) and there exists such
function ¢(1) > 0; (1) =1, if ¢ > t, that

B(We,a, Ve(T: pe)) < (1 = )@(v/2logne(r) — e(T)n"(1)pe /) + o(1).

Here the values n = n. are defined by the relations: n = 290, R/p. = c(7)270(=7),

The proof of Theorem 7 is given in Section 8.
It is clear that Theorem 7 implies the rates (2.4, 2.5).

4.2. Gaussian case

We describe the test procedures which provide the upper bounds in Theorems 4-6. Note that these test
procedures depend essential on x € Zg,, R and on p..

Let k € Zg,,] = 1,...,5. Test procedures are defined by two families of sequences: h.(7,p.)) = he =
(hets oy heiy...), hey €[0,1] and Z.(7,p)) = Ze = (Ze1y -+ s Zeyiy--- ), 2ei > 0. In Besov bodies case for
i=2 +1,1=1,...,27 the values h.;, 2.; depend on j > 1 only. The asymptotically minimax families of
tests are of the form ¥, o = Ve a;r,p. = lip.>13ux.- They are based on the statistics

Le=uZ"Y  hei(wi, 2.)
i
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where the functions £(z, z) are defined by (3.11), and on the threshold procedure
Xe=Xoirp = {sup ||/ Tes > 1},
i
where for ellipsoidal case thresholds T ; are defined by

Tei =1/ (2+0)Aci, Acyi =log(|lme]|7%) — 22,(1 - ),

and for Besov body case

Toij=Tej=1/(2+06)log(lme ] ~2).

‘We use the notations )

z ;
el = 202, sinb? 228
which is explained in Section 5.

Here and later we denote by ¢ small enough positive values (may be, different) which may depend on 7 but
bounded away from 0 on any compact.

The sequences h. = h(7, p.) and z. = z:(7, pc) for p = q, r > r,, were defined in Section 3.1, for general case
ones are defined in Sections 6 and 7.
Theorem 8. The tests Ve o = Ve air.p. Satisfy the relation: aie o) = a+ o(1) and:

1) For ellipsoidal case and for k € E¢,, | =1,...,5

5(1/15,04, VvE(Ta pE)) S q)(TDt - uE) + 0(1)

where the values u. are defined by Theorems 4 and 6.
2) For Besov bodies case and for k € Eg,, 1 = 1,2 there exist such function c¢(t) > 0 that

ﬁ(we,aa ‘/E(Ta pa)) < (I)(Ta - C(T)ue) + 0(1)

where the values u. are defined by Theorem 5.

Proof of Theorem 8 follows from the results of Section 6 for ellipsoids and of Section 7 for Besov bodies.

5. (GAUSSIAN ASYMPTOTICS: REDUCTION TO EXTREME PROBLEM

To study sharp and rate asymptotics for Gaussian type we use a generalization of methods of Ingster [12,13]
which allows asymptotical reduction of wide enough class of “symmetrical convex separable” minimax hypothesis
testing problems to extreme problem: to minimize special Hilbert norm ||7|| over the convex set I (7, p.) of
sequences T = (m1,... ,7;,...) where m; are probability measures on the real line. Under general assumptions
(which are formulated in terms of properties of extreme sequences 7. ) these extreme sequences (or close to
ones) define the asymptotically least favorable priors 7€ = 7.1 X ... X m; X ... and asymptotically minimax
tests.

The idea of reduction is following. Assume for a moment that a set V. is convex and closed. Then (see
Burnashev [1], for example) the least favorable prior is Dirac mass d,, at the point v. € V7 nearest to 0:

= inf .
Jocll = it o] >0

The point v, and the norm u. = ||v.|| determine the minimax efficiency and minimax test in the problem (we
call this problem as problem C):

Blo, Vo) = ®(To, — ue), Ya(2) = 1{(ar)>T01
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where 7. = v /||ve||, (@,7) =), xiri.
In fact,
Bla, Vo) = Ble,ve) = (To, — [[oe)-
From the other hand, by (x,r.) ~ N((v,7:),1) under P,-distribution, one has: a(¢4(x)) = «,

Bda(2),Ve) = ©(Ta — inf (re,v))
and by convexity and minimax theorem

sup inf (r,v) = inf su rv:mf v —mfr v
Sup i (7,0) = il sup (r.0) = inf o] = fnf (r=,0).

These considerations use only the existence of the points v. which minimize the norm over V., the Gaussian
structure of the likelihood ratio dP,_/dPy, the N((v,r:),1)-normality of the statistics

(,72) = ||ve]| 7  (log(dPy, /dPy) + [[ve*/2)

under P,-distributions and the convexity of the set V..

Of course, sets V; are not convex in our problems. However we will try to find asymptotically least favorable
priors as product priors m® =7, 1 X ... X e ; X ... corresponding to sequences .. We will show that under
some assumptions the likelihood ratio dPy-/dPy has asymptotically Gaussian structure:

log dPre /dPy = —||7|?/2 + Le.

Here the statistics Le ~ N (0, ||7||) under Py-distribution where ||7|| is a norm of Hilbert type on the space of
the sequences 7. If we could replace the set V. onto some convex set II. = {7}, then we can obtain the problem
which is close to the problem C above, however not in the sequence space Iz, but in Hilbert space of sequence
7. The results for the problem C motivate the consideration of the extreme problem

= inf Nl
we = inf || 6.1
We can hope that if a family of sequence 7. provides infimum in (5.1): u. = ||7¢||, then the family ¢ provides

asymptotically least favorable family of priors.

Simpler variant of this scheme have been used in Ingster [11,12] for ellipsoids with p = ¢ < co. In this section
we realize this scheme following to Ingster [13]. In the next sections we study the extreme problem (5.1). This
extreme problem had been studied “on the rate” by Suslina [27] for ellipsoidal case with » = 0. We generalize
the methods of this paper in Sections 6 and 7.

5.1. Hilbert structure

Let L be a set of sequences 7 = (r1,...,7;,...) of signed measures r; with finite support on the real line
(R', B) where B is Borelian o-algebra. Put

(71,72) :Z Ti1Ti2) Z/Rl /R 1)ri 1 (du)ri2(dv). (5.2)

Note that

dP., dP.
(7"1,7"2) = COVPO,1 ( 1 2 )

dPo,1” dPyq
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where P, = f g1 Pe1r(dt) is a mixture of one-dimensional Gaussian measures P1 = N(t,1), Cov is covariation.

This yields
u? 2
(rig,srin) = |\7"i71||2 =F </1 <exp {? +xu} - 1) ri,l(du)> >0,
R

where « is a standard Gaussian variable. Thus the bilinear form (71, 72) is positive semi-defined. Also one can
see that (r;1,7;1) = 0 if and only if r; 1 = a,;0¢ for any a; € R'. Here and later 6, is Dirac mass at the point t.
Put L' ={r e L:|F|| < o}, Lo = {ady, a € R'}. Thus, the bilinear form (5.2) defines Hilbert structure on the

set L' =1’ /Lo of equivalent classes. We will not use any topological properties of this structure (completeness
and so on) and will not consider this properties.
Put

'={recl: mdv)>0, m(R" <1 Vi},

II={7ell': = are probability measure Vi},

and IT" = 1T /Lo. Note that any equivalent class 7" € II" contains one and only one sequence 7 € Il and we
can identify the sets II" and II.

5.2. Lower bounds

To obtain asymptotical lower bounds we use asymptotical variant of Bayesian approach. Let us consider
Bayesian problems: to test simple hypothesis Hy : P = Py versus simple Bayesian alternatives Hye : P = Py,
where Pre is a mixture:

Pre(dvy, ... ,dv;,...) = /Pu(dvl, ooy dug, ) (du).
First, note (see, for example, Ingster [12], Part II, Sect. 4.1) that if 7¢(V.) = 1 or #¢(VZ) — 1, then

5(a7‘/€) Z ﬁﬂ'f(aa‘/e) or 5(a7‘/€) 2 ﬁﬂ'i(av‘/s) +0(1)

where (e (a, VZ) is the minimum second kind errors for tests of level « in Bayesian problems. Also, if

AP, 2 dP,e\?
E 1) =E -1
O<dP0 ) 0<dpo> -0
then fre(a, Vo) = 1 —a.

Let as consider product prior 7° =71 X ... X Tz ; X ... corresponding to a sequence 7, € II. Then

Pre(dvy, ... dv;,...) = H/ Py, (dvi)me i (du;)
i R

and by the inequality < exp(z — 1) we have:
AP\ 2 dPy. \*
E = JIE
O<dP0) HO<dP0>
dPTra i ?
exp (Z Ey < aB, 1) ) = exp (Z [I7e.i]

IN

2) = exp (HfrEHQ) —1

as |||l — 0.
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This relation motivates to use Hilbert norm ||7.|| in asymptotical hypotheses testing problems. More over,
under some assumptions the norm ||7.|| defines the asymptotics of error probabilities in this Bayesian hypothesis
testing problem (see Ingster [13] and Th. 9 later). To our study it is enough to consider the case when 7. ; are
symmetrical three-point measures at the points 0, z.; and —z, ;:

hexi
’ (6Z5,i + 6_Za,i)

Te = 7?(7167 26) L Teq = 77(2671'7 ha,i) = (1 - he,i) 9

(or two-point measures, if he ; = 1). Here he, Z. are two sequence, h.; € [0,1], z.; > 0. For these measures

Z 'L
‘WEHQ ZHWMHQ—QZh _sinh? 5

and log-likelihood ratio l¢ z, = log (dPx./dFy) is of the form

671'5 ZlOg 1+ha zf(wzaza z))

Remind that the function &(z, ) is defined by (3.11):
&z, 2) = e /2 coshzz — 1.

Note that if z is a standard Gaussian variable, then

2

Ef(x,2) =0, E(&(x,2))? = 2sinh? %, miné(z, z) = e 21> 1 (5.3)
and for any integer k > 1 one has
E(&(w,2))*" < C1(k) exp(Ca(k)2*)(B((x, 2))%)" (5-4)

where Cj(k) >0, Ca(k) > 0 are constants (see Lem. 1 in Ingster [13]).
Put the assumptions:
Al. sup;|7meq|| =o(1), ||7e] =< 1.
A2. Ase — 0 and B — 0,
S il —o.
i:ze ; >B
B1. For some small enough §y and any §; such that dy > d; > 0 one has

=0(e%), 6 < ||7] =O0@E%).

B2. For any § >0
> I7,il1? = O().
1:z¢,;>04/loge—1

For ellipsoidal case we use
B3. For any 1 € (0,1)

Y exp(n2Z)llme,ill* = O(|I7 ).

For Besov body case with i =27 +1, 1 =1,...27 we use
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B3a. There exist such n € (0,1) that

> exp(nz2,)|meill? = O(|[71?).
i
If 2 s = %e j, hes = hej do not depend on [, then one can rewrite B3a in the form

> Y exp( ))llmell® = OUTN®) , I17l® =) 277 411
' i

J

Note that assumptions B1 and either B3 or B3a imply B2 and A2.
Consider the functions

Len‘rE == H’]_TE||71 Z hs,if(xia Zs,i)' (55)

Theorem 9. 1. Let ||7.|| — 0. Then B(a, Pre) — 1 — a for any a € (0,1).
2. Assume A1, A2

Blev, Pre) = ®(To, — ||7]) + o(1) (5.6)

and for any © € R
Po(ler, < ||| + |7:]%/2) = @(2) + o(1), (5.7)
Py(Le s, <x)=(z)+ o1). (5.8)

3. Assume B1, B2. Then for small enough 6 > 0

8;151 |Po(le v, < a||7| + [|7:]?/2) — ®(2)] = O(°) (5.9)
and
sup |Py(Ler. <) — ®(x)| = O(9). (5.10)
reR!

Proof. The statements 1, 2 of Theorem 9 are proved in Ingster [13], Theorem 1 and Lemma 1 where wider class
of sequences 7. had been considered. The proof of the statement 1 is given in the beginning of this Section.
For completeness we give the outline of the proof of the statement 2.

The relation (5.6) follows from (5.7) by

To
Bla, Pre) = Epy(exp(ler. )i, 7. <t..2)P33 + 0(1) = / exp(—||7.[|*/2 + x| e[|} dD< () + o(1)

—00

where . o is (1 — a)-quantile of the statistic I, z and ®. is the distribution function of the statistic (l. 7z +
|7112/2)/||7<|| under Py-distribution.

To proof (5.7) and (5.8) by assumptions A2 and (5.3) it is enough to consider “truncated” statistics [ z and
L. » with z.; < B for large enough B > 0. The relation (5.8) follows directly from the Central Limit Theorem
under Lyapunov conditions: using (5.4) for k = 2 and A1l one has

4

Z h?,iEPO (f(fﬂz‘, Za,z‘)4) < 01(2) GXP(—02(2)BQ) Z ||7T€,i|
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< C1(2) exp(~C2(2)B?) Z 7.1 Sup [7,il|* = o(1). (5.11)

The relation (5.7) follows from (5.8) and from Taylor expansion (up to second terms) of the function I »: it is
possible by assumptions Al, A2, by the properties (5.3, 5.4); the estimations are analogous to (5.11).

The proof of the statement 3 follows the same outline with the truncation of “tails”. It is possible by
assumptions B1, B2 which give the accuracy of the rate o(¢®) for small enough § > 0: we use the von Bahr-
Essen inequality to proof (5.10) and also the Taylor expansion to proof (5.9). The estimations are analogous to
(5.11).

Corollary 5.1. Let n°(V.) — 1. Then under assumption A1, A2
Bla, Vo) = O(To — [|7c]l) + o(1).

5.3. Upper bounds

To obtains the upper bounds, in what follows we assume that p < co and that p > h, g <t for Besov bodies
case (these assumptions are enough to our study).
For small enough 6§ > 0 let us consider tests of the form:

Vet = Ve r. (ha, 55) = 1{L5,7r5>t5}UX£
which are based on the statistics (5.5) and on the threshold procedure
X, = {sup|xi|/TE,i > 1}-
K]

We consider two different variants of thresholding.
First one is used for ellipsoid case. Put, if |7, ;|| = 0, then T, ; = oo, and if |7 ;|| > 0, then

Tei=1/(2+20)Aci, Aci=log(||lmei]| %) —22,(1-6). (5.12)

Second one corresponds to Besov body case with p > h or ¢ < t (the study in Sect. 7 later corresponds to
t = 00). We assume 7. ; = 7. ; do not depend on ! and

Tepj=Tey = /(2 +26)log(lme 5 -2). (5.13)

For t. = T, these tests are the same that in Section 4.2. Note that EqL. = 0, EgL? = 1 and

Ze,iVi

_ ) _
E’uLa = (7?6751;)/”7?5” = W Z ha,i smh2
el

Here d, is the sequence (8y,, ... ,0u,,-..) and (7., d,) is a scalar product in the sense of Section 5.1.
For ellipsoidal case and for thresholding (5.12) put

Re={i: A.;i/9< ,2'62Z <9A.}, Ro(v) = {z e R |vi| > ( A /(1 —|—35)> /2}

and consider the sets

V.=Lwely: sup [v|/Te,i < 1+, Z exp(—Agi/(2+ ) < 1 (5.14)
g 1ER (v)
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where &g is any constant such that 0 < §y < §*, 6* =2((2"/2 —1/2)2 — 1) = 0,4 is an absolute constant. For
v € Iy define the sequence v*: if v € V, then v* = v, and if v € V_, then

oF — Vi, if Z'QNE(’U)
o, if ieN.(v).

(2

Theorem 10. 1. Assume A1, B3 and t. = O(1). Then for small enough § > 0 in (5.12) one has:

a(ter.) = ®(=te) +0(1), B(Yer.,v) = (te — (Te, 00-)/[|7ell) + o(1).

2. Assume B1, B3 and t. = o(¢=%") for small enough 6; > 0. Then for small enough & > 0 in (5.12) and
some 09 > 0 one has:

a(Per.) = P(—t) + 0(e™)
and uniformly on v € o

Ber.,v) < @(te — (Te, 800 )/|Te])) + 0(%).

Proof of Theorem 10. Statement 1 is contained in the proof of Theorem 2.2 in Ingster [13]. The proof of the
statement 2 follows from the analogous considerations. For completeness we give the outline of the proof of the
statement 2.

First, note that using B3 one has for some §, > 0:

Yoexp(=T2/2) = Y [lmel P exp(22 (1 - 6%))
23 el

(3

? exp(22,(1 — %)) = ofc™)

< sup || ;|
K3

which implies

sup exp(—12;/2) = supexp(—A.i(1+6)) = o(c”), (5.15)

Py(X2) <23 @(—Ts) = o(e™).

By
PO(LE,ﬁ‘a > ta) < a(ws,ta) < PO(LE,ﬁ‘a > ta) + PO(X€>
these relations and Theorem 9, the statement 2 yield the relation for the first kind error probability a(v). . ).
To estimate the second kind error probabilities note that

ﬁ(we,t577)) < min(P'u(Xa)a PU(LE,T?E < te))

where X, is the complement of the set X.. Put

o
[

{velgz sup|vi|/TE,i>1+5},
Veo = {velg\VE,l:né%xﬂv”/ A57i/(1—|—35)§1}-

Using (5.15) one can see that for some d3 > 0 uniformly on v € V, 1

Py(Xe) < [[(®@(—vil + T..)) < ®(—0inf T, ;) = o(%).
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Let v € V5. Consider the representation
. ) - 3 = v
LEJ"E - Ls,ﬂ'a + (7T67 671)/||7r€|| + ALE
where

L:,TI'E = H,]_TEHilzhsA,ig(xi 7”1‘;26‘,1');
ALY = D ALY =77 reavi),
[ [

Te.i(vi) = 2he i sinh? (v;2c 1 /2) (exp(—22/2) sinh(z2. ; — vize i/2) — sinh(v;z. i /2)).
Note that P,-distribution of LY , is Py-distribution of L. .. and E,(ALY) = 0. By Theorem 9 and Chebyshev
inequality it is enough to show that uniformly on v € V; o for some d; > 0 the following relation holds:

Ey(ALY)? = o( (1 + (e, 8u) /| 7<1)). (5.16)

Using the inequalities sinh¢ < exp |t|, cosht < exp |t| and sinh(#?/2) > exp(t?/2)/4 for t > 1 one can obtain:
for z.; > 1

Eﬂ(rm-(’ui))2 = 4h§,i sinhQ(vz/Q)[sinh 224+ sinhQ(’uz/Q)(exp 22— 1] < 4exp(2,2'57i|vi|)||7rm-||2 (5.17)
Ey(rei(vi))® < 4(meiy bu,) exp(2e ilvil + 22;/2) | me il (5.18)

By inequalities (5.17, 5.18) and the definition of the set V. 2 the relation (5.16) follows from the inequalities:
for some 63 > 0

sp exp (+ Aa,z-/<1+35>) Imeal? = ofe®),
i Aa’i/ngiigAa’i
7 <+2 2Aa,z-<1+6>) Imeall® = oe®), (5.19)
i zg,iSAE,i/Q

> P (Z Aw'/(1+35)> Ireill® = o(e™),

it A <22 <9A;

Z exp (QZW- 2A (1 +6)> |meill? = o(e%). (5.20)

% z? 294

One can easily see that the values under the supremum of (5.19) are of the form exp(—nA. ;) with some n > 0.
Thus inequalities (5.19) follow from (5.15). Also the values under the sums in the left-hand side of (5.20) are
of the form exp(nz2 ;)| ||* with some 7 € (0,1). Thus inequalities (5.20) follow from B3.

To prove the Theorem we need to consider alternatives from the sets V; 3:

Ves = {v €ly: supl|vi|/Te; <140, m%x2|vi|/ Ac;/(1+35)>1 }
7 [ASH 48
Let v € V. 3 and

> exp(—Aci/(2+60)) > 1.

1ER, (v)
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This relation and (5.15) imply that for any 61 € (g, 0*), B > 0 and small enough £ > 0 one has

Z exp(—A.i/(2+61)) > Bloge™*.
1€X. (v)

Then

Bten.,v) < Po(Xe) < H(l = O(|vi| = Tz4))

IN

exp (- Yo (—\/Ze,i (\/2(1 o) —1/2V17 35))) = o(c%)
for some d5 > 0 because for small enough § > 0, d; > 0 one has

ZCID (*\/Zs,i (\/mf 1/2\/1+—35>) > Z exp(—A¢i/(2+ 1))

1€X, (v)

Let v € V. 3 and
D exp(—Aci/(24 b)) < 1
1ER: (v)
(it is the case v # v*). Note that v* € V, 2 which implies the inequality of n. 2 of the theorem for 5(¢). ¢, v*).
Note also that the admissible sets of the tests 1) ;. and all the coordinate cross-sections of these sets are convex
and symmetric. Applying Anderson’s lemma (see Ibragimov and Khasminskii [8]) to these admissible sets one
has the inequality
ﬁ(d]a,ts , 'U) < ﬁ(we,ta s U*)

which implies the inequality of the theorem. Theorem 10 is proved.
For Besov body case and for the thresholding (5.13) put

‘Z- = {’U €ly: sup|vl7j|/TE7j <1496 }, je = {j D Zej > (50T€,j} (5.21)
i

where dg is small enough absolute constant. Define the sequence v*: if v & V., then v* = v, and if v € V., then
I PR
L0, if ieJ..
For simplicity we formulate next Theorem analogously to Theorem 10, n. 1 only.

Theorem 11. Assume A1, B3a and t. = O(1). Then for small enough 6 > 0 in (5.13) one has:

a(Qer.) = ®(=te) +o(1), B(Yer.,v) = (te — (Te, 0u-) /|| 7ell) + o(1).

Proof of Theorem 11 corresponds to the beginning of the proof of Theorem 10. At first, using B3a, Al we show
that 3, 27®(—T. ;) = o(1) which implies relations for the first kind errors and that we can reject alternatives

v € V. by the thresholding. Let v € V.. Using Anderson’s lemma we get B(et.,v) < B(hey.,v*). To estimate
B(te 1., v*) we check (5.16) using (5.18), by if v} = 0, then r.; = 0, and if v} # 0, then 2. ; < §oT;, ; and

exp(2z¢v; + Zii)HWs,iHQ < exp(TEQJ((Q +28)00 + 63 —1/(24596))) =o(1)

for 62 + 269 < 1/2 and small enough § in (5.13). Theorem 11 is proved.
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Let us discuss the assumptions of Theorems 10 and 11. Note that if

sup z¢,; = O(1), (5.22)

then the assumptions B3, B3a are fulfilled, . = J. = 0, and v* = v for any v € ly. In this case under
assumption Al for any V. C Il Theorems 10, 11 imply the relations

o) =@+ o), Bbe Vo) = (To = inf (b} 171 ) + o)
and to find the asymptotically best tests we can consider the problem of maximization
we = Sup 7jiél‘ffg(frg, 5o )/ 17| -

If the extreme sequences are the sequences of three-point measures and satisfy Al and (5.22), then the values
w, define the upper bounds for minimax asymptotics.
However for considerable problems relation (5.22) does not hold for p > ¢, A > 0 (see Sects. 6 and 7 later).
We use the following remark in this case. If alternatives V; = V.(H. 1, H2) are defined by relations

Ve={vely: fi(v)> H.1, fo(v) < Hepa},

then often v* € VE(H;J, H. 5) with H;,l = (1—-0.)H:1 and §. > 0, §. — 0. In this case we can obtain the
analogues extreme problem for V. = VE(H;I, H. 2).
More exactly, let us consider ellipsoidal case, when fi(v) = >, i"P|v;|P, with H.1 = (p-/)P; and Besov

bodies case, when
h/p

e3¢} 27
Fi) =" D2 vyl , Hey = (p=/e).

j=0 \I=1

Note that f2(v) are monotone functionals: fa(v*) < fa(v), if |vF| < |v;| Vi.

In ellipsoidal case put the assumption:

B4. Either (5.22) holds or for some families n. — oo, N. — oo, logn. = log Ne, for the values &y, §' €
(0,80/(2 + &9)), where dg is determined by (5.14), any i € R. and for small enough § > 0 one has:

|A.; —log No| < 0'A.;, N7° <i/n. < N°, n’PNY? = O(H. N?).

Proposition 5.1. In ellipsoidal case under assumption B4 for allv € V.(He 1, He2) and for some 61 > 0 one
has: v* € VE(H;J, H, 2) with H;l = (1—-6:)H. 1 and 6. = O(N%).
Proof of Proposition 5.1. By definition v* one has: fa(v*) < f2(v). By

1> 7 exp(—Aci/(2 4 6)) = N2 VO (. ()
1€R: (v)

for all v € V. under assumption B4, we get:
#R.(v) < N/ A=00C+0) = N1/2=301 5, 5,
For 6" € (0,61/(1+ |rp|)) one has:

ST JilPit? < BrZP N2 I (log NP/ (#R. (v)) = O(NZ* H..1).
1€R. (v)
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Thus Vv € Z(Hgyl, H. >) one has:

) =Y i = Y il > fi(v) = O(NZ% He ) > Hey(1— O(NZ))
i 1ER, (v)
which implies the Proposition.

Remark 5.1. It follows from the proof, that §; is bounded away from 0 on any compact K C Z, if assumption
B4 holds uniformly on K.

In Besov bodies case put the assumption:
B4a. Either (5.22) holds or

27

sup Z fii(v) = o(He 1), where fj1(v) = (Z 2j”7"|vlj|”)h/p.

vEVsjEjE =1

Proposition 5.2. In Besov body case under assumption Ba for all v € V.(H.1, H.2) one has: v* €

/

Vo(H.,, H.p) with H., = (1 —o(1))He 1.
Proof of Proposition 5.2. If v & V., then v* = v, if v € V., then
A = i) = fi1(0) > Hea(1-o(1)).
jEJe
Thus, we obtain the following

Corollary 5.2. Let the families h. = ho(7,p.), Z. = Z.(7, p:) be given and the tests Ve r.pet. are considered
for alternatives V. = V.(1, pe) defined by (1.1, 1.2) with p < oo:

1. Under assumptions A1 and either B3, B4 in ellipsoidal case or B3a, Bja in Besov bodies case one has:
(Ve rp.,1.) = @+ 0(1),

B (YerpeTor V) = @ (Ta - 16115 (m,&)/llmll) +o(1).

2. Under assumptions B1, B3, BJ in ellipsoidal case one has: (e r p.1.) = ®(—tc) + 0(€°),
B(Werpetes Ve) = @ (ta - len‘f, (77&511)/|7ra|> + 0(€6)-
v €

Here VE/ = Ve(r, p;), p; = p.(1 —nZ%). If assumptions B1, B3, BJ hold uniformly on K, then the values
6, 01 are bounded away from 0 on any compact K C = X R1+.

Remark 5.2. Assumptions B3, B4 seem to be cumbersome enough. However without assumptions of these
type the asymptotics of the likelihood ratio and the asymptotics of error probabilities may be not Gaussian but
degenerate or infinite divisible of special type, see Ingster [14].

5.4. Extreme problem

Using the results of Section 5.3 for the finding of best tests, we obtain the maximin problem:

w, = sup inf (7,8,)/||7|| = sup inf (7,d,). (5.23)
7 weV, |7]|=1veV,
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We can replace the set A = {5,, v € V.} C II in (5.23) onto any wider set II. C II, A_ C II. and consider
some different maximin problem:

u; = sup inf (7,7) < w; (5.24)
[[7l|=1 eI

Let the supremum in (5.24) is attained on the family 7. = 7./||7.|, 7. € II, where 7. are sequences of
three-points measures satisfying to assumptions A1, B3, B4. Then by Corollary 5.2 we obtain upper bounds

Bla, V) < (T — u) + 0(1).

Let the values u. correspond to II. and A; c II.. If u; = u. 4+ o(1) (or u; — 00, as us — 00), then we can
replace u_ onto u. in (5.24).

To describe the sets II. C II what we use, let us note that if ¢ < oo, then the alternatives in ellipsoidal case
(1.1) and in Besov bodies case (1.2) are of the form

Fi(¢1(v)) > Hety Fo(¢2(v) < Heo, v €l
Here ¢y, = (Pk1s--- Phyis--- ), k=1,2 are the sequences of symmetric nonnegative functions on the real line:
¢1i(x) = [2]P, ¢i(z) = |2]?, = € R

For ellipsoidal case (1.1) the functionals F;(g) and F5(y) for ¢ < oo are linear:
Fi(g) =iy, Fay(y) =) i"y

and He 1 = (pe/e)?, He o = Rl 1.
For Besov bodies case (1.2), if h,p < 00, t,q < oo, then

Y] h/p Y] t/q
B@=> 2" >y , B@=> 2" v
j 1=1 j 1=1
with H. 1 = (p/e)", H.2 = Rle™t; if ¢ <t = oo, then
27
Fy(y) = sup 27 Z Y
J =1
with H. o = R%~7. We consider functionals Fj, (%) on convex set of nonnegative sequences {§ = (Y1, ... ,¥%i,--- )}

(of pyramidal structure for Besov bodies case).

We use an approach which is close to Pinsker [22], Donoho and Johnstone [4] in estimation problems. In
hypothesis testing problems this approach had been used by Ermakov [6], Ingster [11—14].

Put @4 (7) = (®p1(m1),... , Pri(m),...,) where @y ;(m;) = Er,¢r; are m-moments. Define the sets Il =
I (1, p:) CII by the moments inequalities:

II, = {ﬁ' cll: Gl(ﬁ') > He,l, Gg(ﬁ') < HE,Q },

where

Gi(7) = Fi(®1(7)), Ga(T) = Fo(®o(T)).
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Denote by |7| a half of the length of symmetric convex support of m:

|7| =inf{z > 0: 7(A) =0VAC (R'\ (~z,2))}
For ¢ = oo in ellipsoidal case we consider functionals

Go(T) = supi®|m].
i

In Besov bodies case for ¢ =t = oo we consider functionals

Go(7) = sup 27¢ max |71
J

In these cases H. 5 = Re~!. It is not difficult to see that functionals G may be defined on ' (they do not
depend on an element of equivalence class). Note that the functional Gy is concave and the functional Gy is
convez and the set Il. is convex for ellipsoidal case and for Besov bodies case with p > h, ¢ < t. Also it is clear
that A, C II..

Let us consider extreme problem

Ue = ue(T, pe) = 7_rienli Izl (5.25)

Lemma 5.1. Assume: 37, = T(T, pe) € Ilc such that ue = ||7|| > 0. Then

e
\Ii’wglﬁlerlﬂe(r’w) ﬁlélns(rf’ﬂ) Ue

where 7. = T /|| 7e||-

Proof of the Lemma is contained in Ingster [12], Section 5.3 in some different terms. This simple proof is based
on convex properties of the set II. only. One can obtain the Lemma from minimax theorem (see Sion [23], for
example), however in this case some topological properties are used.

Remark 5.3. If there exists 7. such that u. = |||, then it is unique. In fact, if u. = |7} = ||72||, then it is
easy to see that ||(7} + 72)/2|| < ue, if ||(7! — #2)|| > 0.
Remark 5.4. One can easily obtain the following properties of functions wu. (7, p.) defined by (5.25).

1. we(7) is convex function of variables (Hz 1, He2).

2. Let ue = ||7c||. Then G1(7s) = He 1. Assume inf{||7|| : G1(7) > H. 1} = 0 (it is the infimum without the
constraints on G, it corresponds to He 2 = 00 ). Then Ga(7:) = H. ».

Define p., = bp.. Put the assumptions
C1. There exist such B > 1, C > 1 that Vb € (B~!, B) one can find such 7.(7, pc ) € (7, pep) that
ue(T, pe,p) = [|7e(T, pep)l| > 0 and cl< ue (T, pep)/ue(T, pe) < C.

Remark 5.5. From Remark 5.4, n. 1 we get: under the assumption C1 the function u.(7, ps) is Lipschitzian
function on b € (B~!, B) with a constant L = L(B,C) > 0.

C2. Assumption C1 is fulfilled and Vb € (B~!, B) the sequences 7. (T, pc5) are the sequences of three-point
measures

he i (T, pe,p)
Weﬁi(Ta Peﬁb) =(1- hs,i(Ta Psyb))(SO + ‘SZ(%(&ZE,%(TJJE,E)) + 5_25,1'(7—7/)5,17))

which satisfy: either A1 or B1, and B3, B4 in ellipsoidal case; A1, B3 and B4a in Besov bodies case.
From Lemma 5.1 and Corollaries 5.1, 5.2 we obtain the following
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Theorem 12. 1) Assume C2. Then

Bla, V(T pe)) < @(To — ue(T, pe)) + o(1)

and there exists such family b — 1 that this bound is provided by the family of tests we,ﬁs,ba,ia,bg'
2) Assume that there exists such family Te1 of sequences of three-point measures satisfying to assumptions
Al, A2 or B1, B2 that
[7e1ll = ue (T, pe) +o(1), mi(Ve(r, pe)) — 1.
Then
Bla, Ve(T, pe)) = ©(To — us(7, pe)) + o(1).
Theorem 12 translates our problem to the study of extreme problem (5.25) and to checking of assumptions A
and B.

6. EXTREME PROBLEM FOR ELLIPSOIDS

In what follows we assume that k € E¢ = U}_,E¢,. First, we consider the case p = ¢, where the main
properties of the problem are shown and the methods are more simple. The assumption K € Zg means
p <00, rp, <1 < s in this case.

6.1. The case p=¢q < 0

It is not difficult to see that extreme problem (5.25) can be separated by the following way. Denote by Prob
the set of probability measures on the real line.

First, let us consider one-dimensional problems of minimization of ||x||, @ € Prob under the moment
constraints:

R(\,p) = inf{||7||?>: 7 € Prob, Ey|v|P = \P}- (6.1)
Then

=inf S RO\, AP > (p. NP < (R A > 0. 6.2
lg;( p) Zz (pe/e)? Zz (R/e)P, Ni > (6.2)

For the case p = ¢ one-dimensional problems have been studied in Ingster [11,12]. These methods have been
generalized in Suslina [27] and we have the following

Lemma 6.1. 1. If p < 2, then the infimum in (6.1) is attained by the two-point measure m = %((L +0_2)
with z = \.
2. If p > 2, then the infimum in (6.1) is attained by three-point measure m = (1 — h)do + 2(5. + 6_.) (or
two-point measure, if h = 1). Let the parameter z(p) > 0 be defined by the relation:

2*(p) = ptanh z°(p)/2, p > 2 (6.3)

and A < z(p). Then z = z(p), h = (\/z(p))P.

Proof of the lemma is presented in Ingster [11] for p > 2 and in Suslina [27] for p < 2 (the case p < 2 also
non-directly follows from Ingster [11,12]).

Using lemma and assuming sup; A; = o(1) (this assumption is equivalent to the first Assumpt. A.1l and is
checked later) we obtain from (6.2) the extreme problems: if p < 2, then

1anZsmh2 (22/2) : Zz”)zp > (pe/e)?, ZZszp < (R/e)?, z >0, (6.4)
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and if p > 2, then
1nf2smh2 G ZhQ Zz”’h > (pe/e)?, 2P(p Zz”’h < (R/e)P. (6.5)

Using the asymptotics 2sinh?(2%/2) = 2%/2 + O(2®), z — 0 and assuming 3, 28 = o(1) (we will check this
assumption later for the solutions of extreme problem) we can replace the extreme problem (6.4) onto the
following:

: 1 T p S P
1121f§Zz Zzpz > (pe/e)?, Zz”z < (R/e)?, z; > 0. (6.6)

One can easily check that the infimum is 0 in extreme problems analogous to (6.6, 6.5) except for the second
constraints:

o1 4 -
0 = 1r21f§ Zzi : Zz Pzl > (pe/e)?, (6.7)
0 = 1nf2smh2 ZhQ 2P (p) Zz'”)hi > (pe/e)? (6.8)

(these estimations are contained in Ingster [12], nn. 4.2, 4.3 in the proof of Th. 2.5). Therefore by Remark 5.4
we can assume the equalities in the constraints. Using the Lagrange multipliers rule it is easy to obtain from
(6.6, 6.5) the relations for z; and h;. Let us consider differently the cases p < 2 and p > 2.

6.1.1. Proof of Theorems 4, 6 and 8, n. 1 forp=q <2

If p < 2, then the values z; which minimize (6.6) are defined by the some positive parameters zg = z¢,9, M =
me by the relations:

2 = 20((i/m)"" — (i/m)*)}/ 477 (6.9)

where the values m = m,., zg = 20 are defined by the equalities:

(pefe) = 2bm™ T ™t Y ((/m)"™ = (ifm)P) D (i fm)P )

1<i<m

(R/e)”

S anl Z ((i/m)"™ — (i /m)P )/ 4=P) (j /) *P (6.10)

1<i<m

and
2 4
2ug ~ g Z -
i

By (6.9) we have

ug 2 mT Y ((ifm)"P = (ifm) )Y (6.11)

1<i<m
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Let r > rp, = 1/4 —1/p. Assume zy — 0, m — oo. By replacing sums onto integrals we obtain relations
(3.5-3.10) (more detailed consideration follows to the scheme of Sect. 6.3.2 later). It is easy to check that if
pe — 0, uc = O(¢7%) for any & > 0, then for small enough &; > 0

20 = 0(e%), m™t = 0(e%), sz =0 (ug supzf) =0(e™).
. i
Let r =7, =1/4 —1/p. Then s > r,, the first sum in (6.10) and the sum in (6.11) are of the rate

m~ Z ((i/m)™ — (i/m)** /=P (i /m)™P ~ logm,

1<i<m

m* Z ((i/m)" — (i/m)*P) =P~ logm. (6.12)

1<i<m

Assuming zg — 0, m — oo we obtain the relations (3.26, 3.27) with c¢o(k) = ¢1(k) = 1 and ca2(k) defined by
(3.10). Tt is easy to check that if p. — 0, u. = O(¢~?) for small enough § = §(x) > 0, then 25 — 0, m — oo.

To prove Theorems 4, 6 and 8, n. 1 for the case r > r, = 1/4 — 1/p it is enough to check the assumptions
of Theorem 12. Assumption C.1 follows from asymptotics (3.26, 3.27). If u. = O(¢~?) for small enough & > 0,
then we obtain B.1, by

sup z; < max{z, zom P/ 4P} = o(%) (6.13)
i

for small enough 01 = 01(k,d) > 0. Assumptions B.3, B.4 follow from (6.13). Therefore we can use upper
bounds of Theorem 12, n. 1.

By h; = 1 and using the relations (6.9), (6.10) we have 7.(Vz) = 1. Therefore we can use lower bounds of
Theorem 12, n. 2 with original family 7. ; = 7..

The case r =r, = 1/4 — 1/p is considered by analogous way. If u. = O(1), then we obtain A.1, B.3, B.4 by

sup z; < max{zo, zom**} = O((logm)~*) = o(1). (6.14)

Theorems 4, 6 and 8, n. 1 are proved for the case p =g < 2.
6.1.2. Proof of Theorems 4, 6 and 8, n. 1 forp=q > 2

If p > 2, then the values h; which minimize (6.5) are defined by the some positive parameters hg = he o, n =
ne by the relations:

hi = ho((i/n)™ — (i/n)*")+
where the values n = n.,, ho = ho. are defined by the equalities:

(pe/g)p

PPhon™ {07t Y7 ((i/n)" = (i/n)*")(i/n)P | |

(R/e)’ = 2P(p)hon*?™ [ n7! Z ((2/n)"? = (i/n)*")(i/n)*" (6.15)
and
u? = 2sinh?(2%(p)/2)nh3 [ n~* Z ((i/n)™ — (i/n)P (6.16)
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let r > r, = —1/2p. Assume hg — 0, n — co. By replacing sums onto integrals we obtain relations (3.12, 3.13)
(more detailed consideration follows to the scheme of Sect. 6.3.2 later). It is easy to check that if p. — 0, us =
O(e7?%) for small enough 6 = §(k) > 0, then hg = O(*), n~! = O(’*) for small enough d; > 0.

Let r =r, = —1/2p, s > r,. Then the first sum in (6.15) and the sum in (6.16) are of the rate

ST (/) = /)T /n)T ~ Togn,

1<i<n

nt Z (i/n)™? — (i/n)*F)*> ~ logn, (6.17)

1<i<n

and assuming zp — 0, n — oo we obtain the relations (3.26, 3.27) with ¢o(k) = c1(k) = 1 and ca(k) defined
by (3.13). It is easy to check that if p. — 0, u. = O(¢~°) for small enough § = §(k) > 0, then hg — 0, n — oco.

To prove Theorems 4, 6 and 8, n. 1 note, that assumptions C.1, C.2 of Theorem 12 follow from asymptotics
(3.26, 3.27) and from sup, z; = z(p).

To construct the families 7. which provides to the assumptions n. 2 of Theorem 12, it is enough to assume
ue < 1. This yields: hg < n™/2 for r > 7, and hg < (n logn)~Y/2 for r = Tp.

Let us consider the values 6. = (loge™)~% and put

e = me(k, (1 + 6c)pe, (1 — 62) R). (6.18)
Using the inequality
7= (Ve)

7 (F1(¢1(v)) > He 1, Fa(¢2(v)) < He o)
1= 7°(Fi(¢1(v)) < Hep) — 7 (Fa(d2(v)) > Hepo),

and Chebyshev inequality, we get the relation 7°(V.) — 1 from

Bz F1(¢1(v)) = (1 +06:)P He 1, Bre Fo(¢2(v)) = (1 = 0:)P He 2 (6.19)

Y

and from
VarzeFi(¢1(v)) = o(HZ102), Varze Fa(¢2(v)) = o(HZ 502). (6.20)

By H.o =< hon'tP, H.1 < hon'*"P if r > r, and H. 1 < hon't™Plogn, if r = rp, it is enough to check (6.19).
We have:

n 1
Var;raFg(c;_ﬁg W) = 2p Z hi(1 2sp - 1+23ph0/ 2(25+7)P 0
i=1 1/n
= (H2262)7
Varz-Fy ((;;1 (’U)) = 21” Zhl 1 _ 27“1) = 1+27“ph / 257P dor
i=1 1/n
= (Hf? 152)a

for small enough § > 0 by for s > r one has: 2sp+rp+1> —1/2 and

1 1, it (2s+7)p+1>0,
/ a5y < log n, if(2s+r)p+1=0,
L n=CsH0p=1 i (25 4 1)p + 1 < 0.

Theorems 4, 6 and 8, n. 1 are proved for the case p =g > 2.
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6.2. The case p # q: Separation equations system for the extreme problem
It is not difficult to see that the extreme problem (5.23) can be separated by the following way.

6.2.1. One-dimensional problems

Let us consider the one-dimensional problems of minimization of ||r||, @ € Prob under the moment con-
straints.
If ¢ < 0o, put for A >0,v >0

R(\,v;p,q) = inf{ ||| : 7 € Prob, Ey|v|’ > X, E.|v|? <v?}- (6.21)
Then
u? =ixn£ZR(Ai,w;p, Q) Y, AP = (pe/e),
Y
>, i < Rl (6.22)
If g =00, put for A >0,v >0
R(\,v;p,00) = inf{||7||*> : 7 € Prob, Ex|v|P >\, |n| <v}- (6.23)

Then

u? = ianR(/\i,Vi;p,oo) s> 1PAY > (pe/e)P,
i

sup; v; < Re L. (6.24)

In (6.22, 6.24) the infimums are taken over the sets of nonnegative sequences A, 7 under the formulated con-
straints.

6.2.2. Solution of one-dimensional problems

For the case p # ¢ one-dimensional problems have been studied in Suslina [27] and we have the following

Lemma 6.2. If the sets under constraints are not empty, then the infimum in (6.21, 6.23) is attained by three-
point measure m = (1 fh)50+%(6z+5,z) (or two-point measure, if h = 1) with the parameters h = h(\, v, p, q) €
[0,1] and z = z(A\,v,p,q) > 0.

Proof of the lemma is presented in Suslina [27] The relations for h = h(\,v,p,q) € [0,1] and z = z(\, v, p,q) > 0
are given in this paper as well, however these relations are not of importance for us at the moment.

Using lemma we can reduce the extreme problems (6.22, 6.24) to the following relations (the infimum is taken
under constraints h; € [0,1], 2z > 0):
if ¢ < 00, then

Bl

u? = 'nf2th sinh?(22/2) 1 Y2, i"Phi2? > (p./e)?,
»Z P

Yo %hizl < Rl (6.25)
and if ¢ = oo, then

u? = inf 2 Zh? sinh®(22/2) 1 Y, i"Phizl > (pe/e)?,

Z

Sl

)

sup;, 4%z < Re ' (6.26)
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6.2.3. System of equations for extreme problem, q < 0o

Using the Lagrange multipliers rule we obtain the following system of equations on the variables h;, z; which
attain the infimum in (6.25):

2

4hisinh2%i = APl — Bi®1z] — O,
2 22
4h; sinh® =& h = Api"Pzl — Bqi*z. (6.27)
tanh 2

Here
A=A.>0,B=B.>0,C;=C.; >0
and if C; > 0, then h; = 1 (for simplicity we do not consider the Lagrange multipliers which correspond to the
constraints h; > 0, z; > 0 assuming that we will find only the positive solutions).
Omne can easily check that the infimum is 0 in extreme problems analogous to (6.25, 6.26) except for the
second constraints (this follows from the relations (6.7, 6.8)). By Remark 5.4 unknown values A, B,C; are
defined by the equations:

Zz”’h 2 = (pe/e)P, Zzsqh 2zl = (R/e)™. (6.28)

From the Remarks to Lemma 5.1 one can easily see, that any solution of systems (6.27, 6.28) provides the
solution of extreme problem (6.25):

u? =2 " h?sinh?(27/2). (6.29)

In what follows we solve the system (6.27) under some assumptions either on A., B. or on other parameters
defined by A., B.. Then we find these parameters by solving (6.28) and then we check these assumptions.

First, we try to find the solutions h;, z; of (6.27) assuming C; = 0. If we obtain h; < 1, then the solutions
are correct. If we obtain h; > 1, then it is not possible to find such solutions, we put h; = 1 and obtain the
equation

2 2
sinh® 2 | — 2L ) = ApiPzP — Bgi®ex (6.30)
tanh %

with the constrain (which corresponds to C; > 0)
52
4 sinh? 7’ < Ai"PZP — Bitiz]. (6.31)

Next, we solve (6.30, 6.31). Later we realize this outline.

6.3. Solution of the system (6.27) with C; =0
If C; = 01in (6.27), then we obtain the system

2
2 (22 _ptanh %
4hisinh2'%z # = (p—q)Bi%,
2} tanh 2 5
2 (22— gtanh
thisinn? 5 (A2 = (p - q)ai. (6.32)
2! tanh 3
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The equations (6.32) imply the solutions of (6.27) with C; = 0:

P tanhi B
gpmafi PG B g
? 22
22 — qtanh 3+
2
P Z;
2k — q) tanh =+
hi= At — <(pQ %) Z§> (6.33)
4sinh® 5 \ 27 — qtanh 5

with the constraints

2
Vri
22 > ptanh 7’, if p>gq,

2
22 < ptanh %i, if p<q. (6.34)

The constraints (6.34) imply: z; € Z, 4, where Z, ; C R} are the sets:

0, ifp<2, p<yq,
g _Je>z)) ifp>2p>¢
Pz <)) ifp>2,p<q,
{z > 0}, ifp<2 p>q.

Here the values z(p) are defined in Lemma 6.1.
Introduce the functions

2% — ptanh El 2P (p — ¢) tanh 7
zZ) = Zp_q72; zZ) = 2 . 635
Pp.q(2) 22 — gtanh 2 ¥ralz) 4sinh® 2 \ 22 — gtanh & .

It is convenient to replace the unknown parameters A > 0, B > 0 onto another unknown parameters n >
0, hg > 0 for A # 0, or onto m > 0, zg > 0, for A # 0:

n=n.(k) = (A/B)Y* ho=ho.(k) = An"™; x =z, =i/n, i > 1 (6.36)
or
A4—q /A A3 1/A
m=m.(k) = (m> , 20 = 20,e(K) = <B'“P) s y=y =1i/m, i >1, (6.37)

where we put A = sq —rp, A =sq(4—p)—rp(4d—q). It is clear that if A # 0 and A # 0, then one has
m=nhy™ V2, 2 =h)/2, y=hy P P, (6.38)

It is convenient to use parameters n,hy and variables x for the case when we have solutions with C; = 0.
However it is more convenient to use parameters m,zy and variables y for the case when we operate with
solutions with C; > 0 (this case is considered in the next subsection). As a rule we have the solutions of both
types. Therefore we need to consider at the same time both types of parameters.

We can rewrite (6.33) for A\ # 0:

¢qu(zi) = l’)\a hi = hOxrpw;Dy‘J(zi)a { > 1
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FIGURE 9. p>gq, p > 2. FIGURE 10. 2 <p < ¢q < 0.

or for A # 0 one has

bpg(zi) =y 2B, by = 20 Py Py g(z), 0> 1.
It is possible to check, that if p > g, then ¢, 4(2), z € Z, 4 is monotone increasing from 0 to oo, and if p < g,
then this function is monotone decreasing from oo to 0. Therefore it is possible to define the inverse function
¢pe(x), x>0 with the values in Z, ;. The solutions of (6.27) with C; = 0 are of the form: for X # 0

z; = ¢;é(x)‘) = z(x, k), hi =hox"™Y, 4(2(x,K)) = hod(z, k), (6.39)
where
z(z, k) = d)I;}J(xA), 0z, k) = ™Yy ¢(2(2, K)), (6.40)
and if A # 0, then
zi = 20y, Ky 20), hi = ho(y, Kk, 20) (6.41)

where
ZO(ya R, ZO) = ¢;(11(Zg_qy)\)a hO (ya R, ZO) = yrpzé_pd]p,q (Zo(ya R, ZO))

Denote, as above, Z¢ = U_;Z¢,. Put (see Fig. 9-12)

= {Kk€Eg: p>2,p>q},
{k€EZg: p>2,p<yq},
{k€Eg: p<2,p>q},
= {K€Eg: p=2,p>q} (6.42)

w N =

(11 (1 [l [

iy

Denote A = A(k) = 2(sq — (8 — q)r), C(p) = 2P(p)/4sinh*(2(p)/2),

B lg — 2| (p—4)/(p—9q) Ip— 4| B lg —2| 1/(p—q)
CI%Q - < |2 . q|a C(pa q) - )

p—2| p—2|

and C,; = (6(2 —q))'/6~9. Note, that if x € =i, k # 3, then A = A(k) > 0 and if x € Z4, then I > 0 (it follows
from definitions of the sets E¢, in Sect. 3).

The following proposition describes the properties of the functions z(z, ) and 6(x, k), >0, Kk € Zg, k =
1,...,4 (if k € =3, then we assume A # 0), and of the functions 2 (y, k, z0), ho(y, k, z0), for A < 0 (note that
r <0, s<0, A>0, k€ E3 in this cases).
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Proposition 6.1.
A). The functions z(x, k) and §(z, k) are uniformly continuous positive smooth functions on compacts K C

= X Rl+ which have no intersection with {\ = 0} x R}H Uniformly on any compact K of such type the following
rate relations 1 — 4 hold:

1. Letp>2, p>q (k €E1). Then z(x, k) is increasing on x and

2(z, k) ~ {Z(p)’ yo =0,

x/\/(p7Q)’ fo — 00;

PN 0 - @)arr 2w, m) exp(— 2z, 1)), if @ — oo

2. Letp>2, p<q (k€Z3). Then z(x, k) is decreasing on x and

z(p), if z — 0,
AN O, a0, ifz— oo

Cp g™/ =0 if r — .

3. Letp<2, p>q (k€E;3). If \ <0, then z(z, k) is increasing on x, if A > 0, then it is decreasing on x;

6(x, k) ~ {C(p):v”’, if ¥ — 0,

z(x, k) ~ ;
l‘)‘/(p_Q)7 Zf T — 00 ;
5z, k) Cpqr~ 2/ (p=a), if £ — 0 for A\ >0 or x — oo for A <0,
T, K) ~ ;
(p— q)xrpzp’Qe*ZQ, if x — 00 for A\>0 orax — 0 for A <O0;
where z = z(x, K).
4. Let2=p > q (k € Z4). Then z(z, k) is increasing on x and

z(z, K quA/(qu)’ ifx — 0,
' N (2=a), if x — 005
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C2=2/(6=9) ifx—0
6(z,k) ~q 1 o o ) ’
(1 - q/2)a% exp(—2(w, k), if 7 — oo.
B). Let A < 0 (remind that k € Eg, A > 0 in this case). If X = 0, then z9(y, K, z0) is constant. If
A\ < 0, then it is decreasing continuous on y. If zg — 0, zom™"™P/(4=P) 0, y > m™', m — oo, then
ZO(ya K, ZO) = ZOTO(ya K, ZO) where

70(y, K, 20) ~ T0(y, K) = C(p, )y P~V ho(y, k, z0) ~ Cpﬂy*A/(pfq).

Proof of Proposition is based on the standard properties of inverse functions and on the standard asymptotic
relations

sinhx ~ tanh 2 ~ 2;2? — tanh2?/2 ~ 2%/12, as z — 0.

Denote
EA=EU{k€ZUE3:A<0}U{k€Es:A<0}; Ef =Z¢\Ex.

The partitions of the sets Z; onto sets 2, = &, N E, and Efr =5nN EX, l = 2,3,4 are presented in

Figures 10-12. Note that if x € =3, then the inequality A < 0 yields: » > 0, A > 0.
From Proposition 6.1 we obtain:

Corollary 6.1. 1. Assume k € 5 and
n— 0o, hg — 0; n="Phg — 0 if p > 2. (6.43)
Then for small enough € > 0 the relations
z; = z(i/n, k), hi =hod(i/n,K) (6.44)
define the solutions of the system (6.27) for alli.

2. Assume k € Z§ and X\ > 0. Then the relations (6.44) define the solutions of the system (6.27) for i € Iy
where the integer set In = Ip(k) is defined by the relations:

I i i <nre =my., Iifk€Zy, A>0,
0=19. . ) - %
i i>nre=my., Iifc€Z3, A>0, A>0o0rkey A>DO0.

Here x. = (m/n)y. is defined by the equality: hod(x.,k) = 1. If p # 2, then we have:
Ye = Ye(K) ~y1(K) = CI(,f’(;Q)/A, as 7z — 0.
If p=2, then (by (6 — q)/A > (2 —q)/A for k € 24) one has
Ye = Ye(Kr) ~ (k) = (C'q)(2‘1_12)/Al1867q>/A7(27’1)/A — 0, ashyg — 0, kEZ, .
3. Assume Kk € EX, 20 — 0, m — 00, zgm NP9 — 0 and A <0 (it means k € E3). Then the relations

zi = zo70(8/m, K, 20), hi = ho(i/m, K, z0) determine the solutions of the system (6.27) for i € Iy = {i >
—q)/A

mya}7 Ye ~ C;z();f)q o/ .

Remark 6.1. Note that by Remarks 3.2 the assumptions n — oo, hg — 0; n”"Phy — 0 if p > 2 and

20 — 0, m — 00, zgm~M®~9 — ( for k € 25, A < 0 follow from the assumption u. = 0(5_5) for small enough
0> 0oru =0(1).
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6.3.1. Solutions of extreme problem for k € Z

By the Corollary, it is enough to find the values n, hg, to obtain u. from the relations (6.28) and (6.29) and
to check assumptions (6.43). We give the outlines of proofs and omit simple calculations which one can easy
restore.

First, assume r > r,. In this case kK € Zg, and we can rewrite the relations (6.28) and (6.29) in the form:

(pe/e)P = hon”}"'lCl,E(/ﬁ, n,ho) = hon”’"’l(cl (k) + O(n_‘s)),
(R/e)? = honsq+10275(li, n,hg) = honsq“(cQ(n) + O(n_‘s)),
ug = h8n0075(l<3, n,ho) = h%n(co(n) + O(nf‘s)), (6.45)

for some ¢ = §(k) > 0 where C.(k,n,ho), | =0,1,2 are continuous functions of k,n, hy which are bounded
away from 0 and oo for small enough n=!, hg. The relations (6.45) are uniform on all compacts K C {x € E} :
r > 1, + 6} for any § > 0. Here the functions ¢(x), { =0, 1,2 are defined by the relations:

a(k) = /000 O(z, k)2P (z, k)P dx
co(k) = /000 §(z, k)21 (z, k)x*dx (6.46)

00 2
2/ 6%(x, k) sinh? wdx.
0

co(K)

Here the functions z(z, k), §(x, k) are defined by (6.35), (6.40).
Using Proposition 6.1 and definition of the set E¢,, one can check that the integrals in (6.46) are finite. In
fact, for all integrals ¢;(k), { = 0,1,2 one has

> * 5@ exp(—ba if g =
/ (o = {fl x®exp(—bz)dx, b>0, ¢ >0 if K € =Zg, _ o). (6.47)
1

[ e/ =) =lqg, I >0, if K € 2y

If K € 21 UZy UEy, then for integrals ¢;(x), { = 1,0 one has:

/01{...}65:5 ~ /01 22 dz = O(1) (6.48)

and for ca(k)

/1{ 1 fol 2Pty =< 1, if Kk € 21 UEy, (6.49)
0 o atr TN G0 dr < 1, if € By

If k € E3, then for all integrals ¢;(x), [ =1,2,0 one has by I > 0:

1 1
/ {...}dxx/ I/ P=a)=1 gy — O(1). (6.50)
0 0
These relations imply the existence of the solutions of (6.45):
ne = ne(1l + O(ﬁgé»a ho,e = iLO,E(l + O(ﬁgé))a

and the relation R
uZ = hg fie(co(k) + O(RZ°))
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where 1. and ?1075 are defined by the relations
(pe/€)P = ho P+ re(k), (R/)T = ho it ea(k).
In fact, introduce variables
21 = (n/fie) TPho/hoe — 1, 22 = (n/f) T *ho/ho,e — 1,
and consider the continuous function f(z) = (fi(2), f2(2)) : 2 = (21, 22) — R%:
fi(z1, 22) = (p</€) Phon P 1Cy c(kyn, ho) — 1 = 21(1 + 81(21, 22)) + 01(21, 22),

fQ(Zl, 22) = (R/&)_qhonsq—i_lCQ,g(Ii, n, ho) —-1= 22(1 + (52(2’1, 22)) + 52(21, 2’2).
It follows from (6.45) that & (21,22) = O(RZ°%), | = 1,2 for some § > 0 uniformly on any ball D?(a) C R? with
a = O(1). Thus we have the relation || f(z) — z|| = O(RZ%) for any 2 € D?(a). We can rewrite the first and the
second equations in (6.45) in the form:

f1(21,22) =0,
Ja(z1,22) =0

and it is enough to use the following simple topological

Lemma 6.3. Let f: D*(a) — R*, k > 1 be such continuous map that ||f(z) — z|| < b < a on the boundary
sphere z € S¥=1(a). Then there ewists such zg € D*(a) that f(zo) = 0.

Proof of the lemma. It follows from assumptions that the families of maps
foz) =tz + (1= 0f(2) 2 — R = R*\ {0}

provide the homotopy of the restriction f = fo on the sphere S*~1(a) to the unit map f;(z) = z which generates
nontrivial homotopy group of R¥. Therefore it is not possible to continue fo to the map f : D¥(a) — R* which
implies the existence of zy such that f(zy) = 0.

Thus we have the existence of solutions hg = hoe,n = n. of the first and the second equations (6.45) with
asymptotics (3.8, 3.7) for r > rp,.

Next, let 7 = rp,. In this case we have: p > 2, r, = —1/2p, s > —1/2q for k € 2 and k € E¢,. The second
relation in (6.46) is of the same form, however the integrals ¢;(k), co(k) diverge in (6.46) and the relations for

(pe/e)P, u? in (6.45) could be rewritten in the form

(pe/e)P = h0n1/2< 1 5($,fi)z”(x,/€)xUde—l—O(l))

1/n

2 —1
~ 22 (p)hon'/? logn (4 sinh? %(m) , (6.51)

1

2
u? = 2nhi (/ 62(x,ﬁ)sinh2@da:+0(l)>
1/n

~ h2nlogn <ﬂ> ) (6.52)

. 2 22
8 sinh #

m

which provide the relations (3.28, 3.29).
By Remark 3.2 the assumption u. = O(1) implies hg = o(1), n=' = o(1).
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6.3.2. Proof Theorems 4, 6 and 8, n. 1 for k € E

Observe that 2, C E¢, UE¢,. Assume 0 < b < u. and u. = O(e7°) if K € E¢, for small enough b > 0, § > 0,
ue = O(1) if kK € E¢,. To proof theorems it is enough to check the assumptions of Theorem 12.

Assumption C1 follows directly from asymptotics (3.7) and (3.28). Assumptions B3 and either Al or Bl in
C2 can be easily checked using Proposition 6.1, asymptotics (3.7, 3.8) and (3.28, 3.29).

Let us check B4. It is enough to consider the case when z; — oo (it is possible for p > ¢, A > 0 only).
Put n. = n, N, = hO_Q. It follows from Proposition 6.1 that A.; = log N. + §z2 + O(log 2;) as z; — 00
which imply i/n =< log N. uniformly for i €< (log N.)*, a > 0 uniformly on i € R.. For small enough &,
the relation ngi"NEl/2 = O(Hglegl) follows from the relations: for small enough § = §(x) > 0 if » > r,, then
0<b<u?=xnNt=0("0), and if r = rp, then b < u2 < nN-log N. = O(1), by logn. =< log N. < loge™*
and H.; = (p-/e)P < n PN Y2 or Hoy = (p- /)P < n+P N2 logn..

Let us construct the families 7. 1 such that ||7. 1] = ue +0(1), 75(Vz) — 1. Analogously to Section 6.1.2 let
us consider the values 6. = (loge™!)~? and put

e = Te(k, (1 4 02)pe, (1 — 6c)R).

If r > rp, then consider “two-side T.-truncated” sequences 7.1 = {m¢ 1} for T, = ¢~* with small enough a > 0:

e i T <i/n<T,
7(-571"’1 — £,0 ] e —= / — & , Tef — T671
do, in other cases,
and if r = 7}, then consider “one-side T.-truncated” sequences:
Foi T <i/n<T.
Teil =14 . .5 " /n<Te T =1/n.
do, if i/n > T,
It is clear that 7. ; satisfies assumptions B1, B2. The relation |7 1|| = ue + o(1) follows from asymptotics (3.7,

3.28) and (6.46-6.51). The relation 7§(Vz) — 1 follows from Chebyshev inequality and relations (6.46-6.51)
analogously Section 6.1.2. In fact,

Ere Fi(61(v)) = (14 6. — O(e* )P Heo 1, Ere Fy(da(v)) < (1+62)9He

for some A; > 0. One can easily check that
Vare:Fy(¢a(v)) = > 27%hi(1— hy)i*

T
= n1+25qh0/ 8(x, k)2 (w, k)2 1dz = o( H2,02), (6.53)
T

VaTw§F1(d31 (U)) = ZZ,?phl(]. — hi)iQTP

T
= n1+2”’h0/ 8(x, k) 2P (x, k)a*Pdx = o(HZ,62). (6.54)
T
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To check the last relations in (6.53, 6.54) note that

I n'tPhy ifr>ry,,
= nl/Qhologho_l,/feEl UZe ifr=r,=-1/2p,
H.o = n'"%h, (6.55)

and it is enough to show that for both integrals I1 2 in (6.53, 6.54) one has: if r > r,,, then I; 5 = o(nhod?), and
if 7 = r,, then I; o = o(nhg log hy '62).
Let r > r,. Then nhy < n'/2u, = e for some § > 0, and these relations follow from estimations:

T
{..}dz = O(T#2) = (™)
71!

with some As = As(k) > 0 and one can make d; > 0 arbitrary small by choose small enough a > 0.
Let r =7,. Then p > 2,7, = —1/2p,k € Z1 U=y and nhg 1ogho_1 = (nlogho_l)l/Qu6 = e %loge~! for some
& > 0. Therefore we have:

/HTEI{...}d:c < O(T4) + /11{...}dx

3

and
1 1
/ §(z, k)2 (z, k) 2*Pde =< / 2P dx =< n'/?, (6.56)
1/n 1/n
1 1
§(z, k)22 (2, k)x**dr < / 22 g = o(n'/?). (6.57)
1/n 1/n

Theorems 4, 6 and 8, n. 1 are proved for the case k € Zj.

6.4. Solution of the system (6.27) with C; >0

The inequality C; > 0 means h; = 1 and the equations (6.27) are of the form (6.30) with the constraint
(6.31). Using the notations (6.36) we can rewrite (6.30, 6.31):

2 2
dzytsinh® = [ 2 ) + qy*(2/20)" = pyP(2/20)", (6.58)
2 tanh 5
with the constraint
2 2
425 *sinh 5 + y°U(z/20)? < y"™P(z/z0)P. (6.59)

By Corollary 6.1 we need to solve (6.58, 6.59) for k € = = =g \ Ex:

Ef=Z0U{k€EUS: A>0}U{ke€Ey: A >0}

where Zg = {k € Eg : p < 2,p < ¢q}. Observe that if k € Ey4 : A >0, then A > 0. Therefore A > 0 for any
=t

KE€Zp-
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We need to consider i € I (k), y € Ye(k), where integer set Iy = I;(k) is the complement of Iy defined in
Corollary 6.1:
{i=1,...,n,...}, ifreZ=,,
L =L(k) =< {i>my.}, ifkeZy, A>0,
{i <my.}, ifreZ3, A>0o0rk €=y, A>0,
and
(0,00), if k € Ey,
YI,E(K) =Y = [ymOO% if k € Zo, A> 0,
(0,9.], ifxeZ3 A>0o0rkeZy, A>0;

the values y. = y-(k) ~ y1(k) are defined in Corollary 6.1. Denote by Y the complement of the set Yi:
Yo = R}|r \ Y7 and consider the set of parameters z corresponding to Yy:

X (KJ)_ (O,LEE], ifkezy, A>0,
o [z, 00), if keZ3, A>0o0rkeZy, A>D0.

Let hg — 0. If k € 25, A > 0, then 2. — o0, and if Kk € Z3, A >0, A >0o0r k € 24, A >0, then z. — 0
(note that zp — 0 in these cases). Let z9 — 0. If K € 23, A > 0, A <0, then z. — oc.

Proposition 6.2. 1. Letk € EX, i € I;(x). There exists the unique solution of (6.58, 6.59) z; = z1(y, K, z0) =
207 (Y, 20, k) > 0 where T(y, 20, k) is continuous positive smooth function on 29, y € Y1, k € EX and the
boundary continuity condition holds:

ZOT(yE7207K‘) = Zo(ytEa"iyZO) = Z(xeﬂ‘{‘)-

2. Assume 2o = o(1) and if p < 2, r <0, then zom™"P/4=P) = o(1). Uniformly on 29, y € 1., K € =X one
has: z; ~ zoT where T = 7(y, K) is the solution of the equation

2747P 4 qutirdTP = py"P, 27T S dTP < P, (6.60)

The function T(y, k) is continuous smooth function on the sets Y1 (k) with the asymptotical properties:

)1/ (4=p)yrp/(4=P) 5. _, ) ; 0, k€ZgUZ3UZy ;
T(y,n)w{gp/) Y =0y =0 ke US USRS (6.61)

p/q)l/(q—p)y—)\/(q—p)’ i — 07 ny — 0, K€ E0 U EQ .

Proof of the Proposition. We give the outline of the proof only. We can rewrite the equation (6.58) in the form:
f(2) = py™z3 P where

F(2) = f(z1y, 20, k) = 227 Psinh(2?) + qy*9z5 12977,

Note that f(z) — oo as z — oo. If p < 4, ¢ > p, then the function f(z) increases on z >0, f(z) — 0as z — 0.
Therefore if p < 4, ¢ > p, then there exists unique solution of (6.58): z; = z(y, K, z0) > 0.

Let as show that if ¢ > p >4 or ¢ < p < 2, then the equation (6.58) has a positive root z;" = z(y, x, z0) > 0
and z = zj‘ satisfies (6.59) (note that if p # 4, then there exist two positive roots z; < zj‘ , however z = z;~
does not satisfy (6.59)).
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In fact, let h; > 1, Z; > 0 be solutions of (6.32). Then for z = Z; > 0 the following relations hold:

2 2
f(2) = py™Pzg P = 427 P sinh? % (t Zh — ) +  hoqr®izTP — hopz"™ < 0;
anh Z-
2
2 2
g(z) = %1977 (22 — gtanh %) — ' <22 — ptanh %) =0. (6.62)

By f(z) — 0o as z — 0o, there exists the solution z;* > Z; > 0 of the equation (6.58). Therefore the constraint
(6.59) at the point z; is equivalent to g(z;7) < 0. By g(%;) = 0, using monotone properties of the functions
vq(2), 2 € Z, 4 (see Sect. 6.3) and the sign of the values 2% — ptanh‘;—2 we have: g(z) < 0 for z > Z; and

z) >0 for z < Z;.

Using the asymptotics sinhz ~ x, tanhz ~ x, as * — 0 one can easily obtain the asymptotics of n. 2 and
(6.60) from (6.58, 6.59). If ¢ > p > 4 or ¢ < p < 2, it is possible to check that the point §.(x) which provides
the minimum of the function in left-hand side of the equation (6.60) is bounded away from the set Y7 ¢ (k) which
implies the smoothness at the point y.(x).

From Propositions 6.1 and 6.2 using the relations (6.38) between variables z,n and y,m, the assumptions:
either u. = O(¢7%) or u. = O(1) and Remark 3.2 we obtain the following

e o

Corollary 6.2. Assumek € Ez and the assumptions on zg, m of Proposition 6.2, n. 2 hold. Then the solutions
of (6.27) are defined by the relations:

1. If A > 0, then we can express the values z;, h; in terms of variables x = i/n:

2= {Z(i/nvlﬂa Zf iGIO;

z(i/n, Kk, ho) = z1(i/m, K, z0), if i€ I,
where z(x, Kk, ho) = 21(y, K, 20),

h (p/2)"/ (=P g/ AP gre/@op) - if 5 0, k€ Zg U E;,
s ho) (p/q)t/ P g=2lamr), if & — 00, k€ EgUEy,

and for k € Z4 one has:
z(x, ky, ho) ~ h(l)/Q:Er, ifx <axer~ (Cq’Qho)(‘a’q)/A;

here

1, if i€l .

The properties of the function 0(x, k), z(x,k) are determined by Proposition 6.1.
2. Let A < 0. Then we can express the values z;, h; in terms of variables y = i/m:

By — {ho(s(i/nvﬂ)a Zf i€ IO )

zo(i/m, K, 20), if i€ Iy,
2, =
! z1(i/m, Kk, 20), if 1€ I,

and
b ho(i/m, k,20), if i€ I,
t ]-a ’Lf (NS Ila
where the functions zo(y, k, 20), ho(y, k, 20) are determined by Proposition 6.1, B). The properties of the
function z1(y, k, z9) are determined by Proposition 6.2.
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6.5. Solution of extreme problem for x € EZ

Propositions 6.1, 6.2 and Corollaries 6.1, 6.2 determine the solutions of equations (6.27) for k € EX as

functions of unknown parameters zg, m or hg, n, if A # 0. These parameters should be determined from
relations (6.28) and (6.29). Let us consider differently cases I >0, I =0, I <0.

Note that the relation I > 0 corresponds to the case when solutions with C; = 0 have main part in the sum
for u2 (this holds for k € Z3); the relations I = 0 or I < 0 correspond to opposite case: solutions with C; > 0
have essential or main “mass” in the sum. This defines different types of asymptotics in these cases.

As above we give a scheme of investigations and omit elementary calculations which one can easily restore
using Propositions 6.1, 6.2 and Corollaries 6.1, 6.2.

6.5.1. The case I >0

Note that A > 0 and k € Z5 UZ3 U Z4 in this case. Assume n — oo, hg — 0. Then zg — 0. We can rewrite
the relations (6.28, 6.29) in the form

(pe/e)P = hon™*(C1 (k) + hy/® D1 c(k)),
(R/e)? = hon® T (Coc(k) + hl/2 Do (k) (6.63)
u? = h3n(Coc(k) + he/® Do (),
where
Cie(k) = n7'> (i/n)"?2"(i/n, k)(i/n, k),
i€l
Coclrk) = n='> (i/n)*"2%(i/n, k)3(i/n, k), (6.64)
i€lp
Coelr) = 207" &2(i/n,k)sinh*(2%(i/n, k) /2);
i€l
and

Dic(k) m=t Y (i/m)Pr (ifm, k)(1+ O(=5)),

Dy (k) = m~! Z(i/m)sqrq(i/m, k)(1+4+ O(zg)), (6.65)
Doe(r) = (2m)~* Z 7(i/m, k)(1+ O(27))

(the relation for Dy (k) corresponds to the asymptotics 2sinh?(22/2) = 124(1 + O(2?)), as z — 0.)
Let r > rp, (it means that x € Zq,). Using the asymptotics of Propositions 6.1, 6.2 and of Corollary 6.2, the
estimations of Section 6.3.1 and replacing the sums onto integrals, we can check that

Cre(k) = (k) + O(n*‘s + hg), [=0,1,2

for some § = §(x) > 0. Here the values ¢;(k) are defined by (6.46) and the integrals are finite by the constraints
on kK .



100 Y.I. INGSTER AND I.A. SUSLINA

In fact, we can replace the sums onto integrals over the sets X. with the accuracy O(n?). The difference .
with ¢;(k) is of the rate

f 2/ (=) =1y if Kk €2y
5 = foxa 2/ (=) =1y if kK € 23
=T Oms z¥dr, r > —1/4, ifkeZy,1=0,1

ot C=dgy > —1/4, A >0, ifk€Ey, =2

Using the properties of the values z. one can see that J. = o(¢°) for some 6 = §(x) > 0.

Also one can check that D; . = O(1). In fact, if K € Zg, then, by > g —p, A > 0,y. < 1,m = 7“Lh(()pﬂ1)/A —
o0, one has:

Do = /OO y’(“JFA)/(q’p)dy =1, D. = /OO y*u/(qf;n)dy =1,1=1,2.
Let K € 23U Ey. If m = o(1), then Iy = ) and D; . = 0; if m = O(1), then D; . = O(1) by y. < 1. If m — oo,
then, by > r, =1/4—1/p, A > 0 one has

Ye Ye
Dy =< / y(4”’+A)/(4_p)dy =1, D= / y4”’/(4_p)dy =1,1=0,1.
0 0

These relations imply the relations analogous to (6.45). The considerations analogous to Section 6.3.1 show
that these relations provide the existence of the solutions hy = hg e, n = n. with asymptotics (3.8, 3.7).

By Remark 3.2 the assumption u. = O(¢7%) implies hg = o(¢?), n~! = o(¢?). The accuracy of the
asymptotics (3.8, 3.7) is of the rate (£°2) in this case for some § = d2(,d1) > 0 for small enough §; > 0.

Let r =17, = —1/2p. By I > 0 this means p > 2, k € Ea, k € Zg;. By s > —1/2¢ in this case, one can check
that the integrals for co(k), c1 (k) diverge. However the relations (6.51) and all estimations for D; . above hold
true.

6.5.2. The case I <0

Assume 7 > 7, (this corresponds to k € Z¢,), m~! = o(%), 20 = 0(e®) and if p < 2, then m~"P/(4=P)z; =
0(£?%) for small enough 6 > 0. Also note that if u. = O(¢7%) for small enough §; > 0, then these assumptions

holdandnzmzo(p DX 2=8 for A > 0. If k € =23, A <0, then hg — oo, . — 00, n — 0.
Let k € Eg. The sets Iy are empty in this case and we can rewrite (6.28, 6.29) in the form

(pe/€)? 2m"™" Dy o (),
(R/e)? = 2Im*T™'Dy (k), (6.66)
u? = zZymDoc(r)(1+O(z)),

where

Dy.(r) 12 i/m)"P7? i fm, k) / K)yPdy + O(m™?),
Das(r) — 12 i Jm) 1R (i fm, k) = / K)ytdy + O(m™), (6.67)

/0 4y, r)dy + O(m™).

[\9|H

Dy.(k) = ZT (i/m,k) =
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Therefore
o0
p— '
CI(H) - / Tp(ya H)y ;Ddy’
0
oo
S
(k) = / 1y, k)y*dy,
0

co(k) = %/OOO ™ (y, K)dy.

101

(6.68)

Let us show that the integrals in (6.68) are finite under the constraints on k. In fact, by 4rp/(4 —p) > -1, p >

q—p, A >0 for k € Z, using Proposition 6.2 one has the asymptotics for the integrals in (6.67):

1 Lo Arp/(4=p) g if1=0,1
Y Y, 1 )
/ {..}dy = fol (4rp+A)/(4—n) _ =0(1);
0 Jo v dy, ifl=2

o _ floo yfﬂ/(qu)dy’ if l = ]_7 2 B
/1 {bdy = {fl‘x’ y~ /P gy ifl=0. o)

The relations (6.66—6.68) imply asymptotics (3.5, 3.6).
Let k € 23 UZ3. Then for A > 0

(pe/e) = ZBm™PHY(Dy (k) + 2 " C1e(k),
(R/e)T = 2im YDy (k) + 2 "/ Cac(k)),
w? = zim(Do(r)(1+0(=0)) + 25 Coc (k)

where Cj (k), D; (k) are defined in (6.64, 6.65). It is clear that

Dio(r) = / (g, K)yPdy + O(),
Y

Dao(r) = / 29y, R)yldy + O(e),
Y1
1

Docw) = 5 [ 7 mdy+ O,

(6.69)

(6.70)

(6.71)

(6.72)

for some 0 > 0 and the integrals are finite. In fact, if x € Z3, then 4rp/(4 —p) > —1; if kK € Zy, then p > g — p.

Therefore

oo .
, y M a=P)dy if k€,
/ ™y, k)yPdy = fyyi arp/(4—p) gy ; - =0Q),
v fo y dy, if k€ =3

o0 —k/(a=p) g if ke=
a 5q _ M v =
/YIT (y, K)y*dy = {foya yWrpHD)/(A=p) gy if k€, o
o0 —(u+A)/(a—p) 4 if keZ=
Yy Y, I K =2
/ Ty, w)dy = fyi arp/(4—p) i g, ~ oW
. fo y dy, if kezg

(6.73)
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Let us show that

Crew) =5 01) = EZlen et + o)
(}2,8(’{) = Z(;I/ACQ,E(K) = |p|;| q| C1 (p7 q)c‘zlz,—ZI/A + O(gé); (674)
Coclw) = 5" Coct) = 2Lt 0)c2172 1 0).

Let k € 2. Then Iy = {i < nz. = my.}, z. — oo. Using Proposition 6.1 and Corollary 6.1 one can check

Ci. = n_lZ(i/n)”)zp(i/n,fi)é(i/n,fﬁ)

i€l

1 Te
/ xP2P(x, k)(z, K)dx + / 2P 2P (x, k)6 (x, k)dx + O(n~?).
1/n 1

Observe that

1 1
/ x"P2P(x, k)o(z, k)dr =< / 2"Pdr = O(1);
1/n 0

/ 2P (x, k)o(x, k)de < / 2/ P= D=1 gy = ZOI/)\ — 0.
1 1

Consider the family z.; — oo such that for small enough d > 0
Te 1
Te,1 = o(xe), / 2!/ ==L gy = zé//\(Hd). (6.75)
1

Then using the asymptotics of the functions z(z, k), 6(z,k) as © — oo for estimation of the integral on the
interval [z¢ 1, 2] we get:

/ PP (x,k)d(x, k)dr = Zé/AuCp(n q)C;,JgI/A + O(Zé/)\(l-f—d))
1

|1

which imply the first relation in (6.74). The second and the third relation can be proved by similar way.
Let k € E3, A > 0. Then Iy = {i > nz. = my.}, z. — 0. Using Proposition 6.1 and Corollary 6.1 analogously
to above consider the family z.; — 0 such that

1
Te1/xe — 00, / 2/ D= gy < zé//\(Hd). (6.76)
Te,1
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Then we use the relations

Cre = n' S (i/n)P2(i/n, R)S(i/n, k)

i€lg

1 00
/ PP (z,k)o(x, K)dx + / 2" 2P (x, k)0 (x, k)dr + O(n~%);
Te 1

/100 2P (z, k)d(x, k)dx = O(1);

1 Te,1
/ x"P2P(x, k)o(x, k)dx ~ CP(p, q)Cp,q/ /=0 —1 g, Zé//\ oo,

The estimations analogous to above imply the first relation in (6.74). The second and the third relation can be
proved by similar way.

Let K € E3, A <0. Then Iy = {i > my.}, ye ~ CIS{’;’J)/A. Using Proposition 6.1, n. B and Corollary 6.1 we
can rewrite the relations (6.28, 6.29) in the form

e/ = A PC(s) + Dy,
(R/e)? = zgmsqul(nge(n) + D . (k)), (6.77)
Ug = ng(CO,E(“) + Do c(k)),

where

Cie(k) = m™" > (i/m)™P8(i/m, K, z0)ho(i/m, K, z0),

i€lp
Coc(k) = m™t Z(i/m)qug(i/m, K, z0)ho(i/m, K, 20),
i€lp
Coc(k) = (2m)~! Z h2(i/m, K, z0) T (i/m, K, 20) (1 + O(2));
i€l

(the last asymptotics correspond to 2sinh?(22/2) = 12414+ 0(2?)), z—0.)

The values D (k) are defined in (6.65). The sharp and rate asymptotics of these values are presented in
(6.72, 6.73).

The values C~'l75, 1=0,1,2 satisfy (6.74). In fact,

Cl,s = mil Z(Z/m)TpT(Z))(Z/ma K, ZO)hO (Z/ma K, ZO)

i€1p

= m Y i/ m) PO (p q) i m)™ POy (i/n) A PO (14 O(m ™))
i€1p

_ / Yy P D=1y 4 O(m™°) = |p|I|Q| C?(p, q)C;,JgI/A +0(m™).

5

The second and the third relations in (6.74) can be proved by similar way.
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The relations (6.71) or (6.77) joint with (6.72-6.74) imply the asymptotics (3.5, 3.6) with

pP—4q T
at) = Erleracys [ oy
Y1
pP—4q s
et = Erlopagcyis + [ o (6.78)
Y1
P—4q 1
wi) = LAlespgor L [ P
1 .

where Y7 is either (0,41] or [y1,00), y1 = Cg(f;qu.

Let r =7, = 1/4—1/p. This means kK € E¢,, p<2orp=2, ¢ >p; s> 1/4—1/q. The value ca(x)
is defined by (6.78) for p < 2 and by (6.68) for p = 2. However the integrals for D (), Do (k) diverge and
these relations must be replaced onto following:

1

Die(k) ~ (p/2)”/(4_”)/ y~tdy = (p/2)"/ P logm,
1/m

1
2Do(k) ~ (p/2)4/(4*p)/ y~tdy = (p/2)"“ ") logm,

1/m

which also imply asymptotics (3.26), (3.27) with

e1(s) = (p/2P/4P), cofw) = 5(p/2)¥/ 7).

6.5.3. The case I =0

In this case we have: kK € Sg,, K € Z2UE3, A >0, r>1r,, m — 00, n — 00 0r K € Zg,, K € Zg, A >
0, r=rp,=-1/4, s>1/4—1/q, m — o0, n — 0.
Let r > r,. Then the relations (6.63) - (6.65) hold with D, ; = O(1) and

Cie(s) = CpoC(prq) /X e ldr + O(1)

*
€

~ CpqC?(p,q) |pZI| log hy' = c1(k), (6.79)

Coe(k) = Cp7qu(p,q)/ x_ldx—l—O(l)

~ CpgC(p, q)——log hy ' = ca(k), (6.80)
1
Coe(k) = 5057(104(17, q)/ z7 dr + O(1)
1 - _
~ 5057(104(17, q) |PA al log hg! = co(k), (6.81)

where

Xt = {[xe(/ﬁ),l], if kK € 23,

Let r :rp = 71/4 Then Te 4’0, Ye — 0.
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The considerations analogous to Section 6.3.1 show that the relations (6.79-6.81) provide the existence of
the solutions hg = hg., n = n. with asymptotics (3.24, 3.25) where

1 Ye 2 _
(p</€)* ~ hon'/? (/ :c‘ldchr/ y_ldy+0(1)> ~ thonl/Qlogh(?l,
T 1

E /m

1 ! ve 2 —
u? ~ —h2n /$_1d93+/ y~ldy+0(1) | ~ qh%nloghgl.
2 . . 2A

/m

At last observe that by
ya
honsq"’ng,E(n) = zgmsq“Dg,E(/i) = ngsq+1 / YR dy = o(hon*T™h).
1/m

we get (R/e)9 ~ hon®?T1cy(k) where c2(k) is defined by (6.46).
These relations imply the asymptotics (3.28, 3.29).

6.5.4. Proof of Theorems 4, 6 and 8, n. 1 for k € EZ

To proof the Theorems it is enough to check the assumptions of Theorem 12 assuming 0 < b < u2 = O(e7?).
Assumption C1 follows directly from the asymptotics (3.5, 3.7) and (3.28). Assumptions B1, B3 in C2 can be
easily checked using Propositions 6.1, 6.2, Corollaries 6.1 — 6.2 and asymptotics (3.5, 3.6) or (3.28, 3.29).

To check B4, analogously to Section 6.3.2, it is enough to consider the cases of unbounded z;. It is possible
for p > ¢, A > 0. As in Section 6.3.2, put n. = n = mzo_(p_q)/k, N, = haz = zO_QA/)‘. It follows from
Proposition 6.1 that A, ; = log N + dz; + O(log z;), as z; — oo, which imply i/n =< log N, uniformly for i € &..

Let I > 0. Then for small enough &; > 0 the relation ngi"NEl/2 = O(Hglegl) follows from relations:
for small enough § = (k) > 0, if r > 7y, then 0 < b < u2 < nN-! = O(e7%), and if r = rp, then
0<b<u?=xnN7'logN.=0O(1)and H.1 = (p:/e)P = n;"’”’N;l/Q logn.. The case I = 0 can be considered
by similar way.

Let I < 0. Then for small enough 5/1 > 0 the relation ng”]\fgl/2 = O(HEJNgl) follows from relations: for
-5

small enough § = §(k) > 0 if r > rp, then 0 < b < u2 < mzt = O(e7°), and if 7 = 7, then 0 < b < u2 =<
mzglogm. = O(1) and H. 1 = (p- /)P < mT"Pzl logm and logm = loge™! .

Let us construct the families 7. 1 = {7 ; 1} such that ||7. 1| = ue +0(1), 75(Vz) — 1. It is enough to assume
ue = O(1). First, note that if k € Eg, then 75 (V) =1 by h; = 1 for all 4 in this case and we put 7. 1 = 7.

Let k & 9. Analogously to Sections 6.1.2 and 6.3.2 let us consider the values 6. = (loge™)~% and put
e = Te(k, (1 4 02)pe, (1 — 6c)R).

IfI=0, Kk €Z4, r=rp, =—1/4, then we put 7.1 = 7.

In other cases let us consider families T, = ¢~ with small enough a = a(x) > 0.

Let r > r,, I > 0. Then we consider “two-side T-truncated” sequences 7. 1:

- ﬁ-E,ia if Tg_l < Z/n <T,
e,4,1 — .
o, in other cases.

Let either r =1, or I <0 (k ¢ Z4). Then we consider “one-side T,-truncated” sequences of following type. If
I>0,r=rporl<0, k¢ =y, then

{frm-, ifl/n<i/n<T.forI >0, r=rporl/m<i/m<T, forl<0,
Te,i,l =

o, in other cases.
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If I <0, k € Eg, then
ﬁ'&-,i, if Z/mZ Te_l
Te il =
snl do, in other cases.

We assume that for I <0, XA > 0 the values 7. and 7. ! satisfy conditions (here the values z.  are determined
by (6.75, 6.76)):
1) Let k € Zo. Then T ! = y.x 1 /x5 also if T+ p # 0, then T e/ e=a) - o(md?), and if I + p = 0, then
log(T:) = o(md2);
2) Let k € Z3. Then T, = y.x.1/2; also if T + p # 0, then T;Iﬂt)/(p*q) = o(mé?), and if I + pu = 0, then
log(T:) = o(mdZ).
Observe that the relation ||7e 1| = ues +o0(1) follows from the estimations which are given in Sections 6.5.1-6.5.3.

Analogously to Sections 6.1.2, 6.3.2 the relation 7§(V.) — 1 follows from Chebyshev inequality, from the
relations (6.19, 6.20) and from relations:

Ers F1(¢1(v)) = (148 — O(™)PHe 1, Brg Fy(62(v)) < (1+0:)7He

for some A; > 0. Also we use the following estimations of variances:

I+2sqp T ifA>0
. 2q - 2$q _ - n 041,
Varw o ¢2 ZZ hi(l = hi) = {m”Qqungz, ifA<0
i€lp
— o(H2,02), (6.82)
- / Sla k)3 (o k)a® e T = [ holy. ) . )y (6.83)
rzeX’ yeYy

+2rpp0 I ifA>0
Vars: Fi( PR (1~ hy) = N
arqe Fy (¢ (v ZZ i) {m1+2rngp12, iFA<0
i€lp
= O(H§,15§)7 (6'84)
I :/ 5(x,m)z2p(x,n)x2rpdx, I, = / ho(y,&,zo)qu(y,/f)yQSqdy, (6.85)
e X[ yeyy

where

X.N[I-NT,  1>0, 7>,

X.N[n 4T, it >0, r=r,

xX;={x., if1=0, k€24,
XNz, 00), ifI1 <0, kK € 2o,
XN Yaooy), fI1<0, k€Z3 A>0;
Yy =Yon[m T

To show the equalities in (6.82, 6.84), first, assume I > 0. Then A > 0, log hal = logn and

o nttTPhy, ifr>rpand I >0,
=1 n'*Phologhyt, ifr=r,or =0,

7 nitsapg, ifI>00rI=0,r=r, k€Zy,
=2 n'tsihgloghgt. if I =0, k¢ 2y .

It is enough to show that for both integrals I7 » in (6.83, 6.85) one has: if r > r,, then I; » = o(nhod?), and if
r=r, or [ =0, then I, 5 = o(nhgloghy *62).
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Let r > 7p,I >0 . Then nhy < nY2y, > 7% for some §; > 0 and these relations follow from estimations:
/ (Yo = O(TA) = o(e=)
X N[T1 T

where Ay = A3(k) > 0 and one can make ¢ > 0 arbitrary small by choose a > 0 small enough.
Let r =71p,,1 > 0. Then p > 2,7, = —1/2p, k € E3 and nhg log hgl = (nlog hal)l/QuE = e %loge~! for some
6 > 0. We have: .
/ (e <oT) + [ {.)de
XNn—1,T¢] n—1

and analogously to (6.56, 6.57) one has:

1 1

8(z, k) 2% (z, K)2?Pdx =< / 2P dx =< n'/?, (6.86)
1/n 1/n
1 1
§(z, k)22 (2, k)x**dr < / 22 g = o(n'/?). (6.87)
1/n 1/n

Let I =0, r > r, (this means k € Z9 UZ3, A > 0). If kK € g, then X = [z.1, 2], p > 0 and we calculate the
variances directly:

Varg: Fi(¢1(v)) < hon® P! / ) 2P 2P (2, k)0 (x, K)dx (6.88)

= hon?Pt! /IE g P=D=1 gy = hon?PHo(1) = o(n?P+  log ™2 hyt); (6.89)
Te,1

Vargs Fa(¢2(v)) < h0n23q+1/ ) 2292 (2, K)6(z, k)dx (6.90)

= hon?*t! /ﬂfe 2/ = D=Ly = hon?59+1o(1) = o(n®* T log' =% h3l). (6.91)
T

If k € B3, then X§ = [z¢, 2. 1] and it is possible that 4 = 0. By repeating the estimations (6.89, 6.91) we
obtain the same results (small difference is at the point s =r = —1/4 where u = 0, which implies unessential
additional log-factor). Remind that H2 = n?rPHl]og ho , HE2 = p2satl logh in these cases.

Let I =0, r =1, = —1/4 (this means x € Z4). Then

Vars: Fi(é1(v)) = Y 2P Phi(1 — hi) < ho / 1 2IA=8)/(6-0)=1 g,
i€l T
ho, if 4\ —A>0
= {hologhg!, if 4A-A=0 = o(logn);
i A, if AA—A<0
Varge Fa( (¢a(v Z Z2q 250,;(1 — hy) < hon2s1t! /1 2 BAA)/(6-0)~2 4,
i€lp Te
hon?sat1, if A+8\—6+¢>0
= S hon®loghyt, i A+8\—6+¢=0 = o(n*"*! [logn);

RPN Ap2satl i A4 8A— 64 g <0
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(remind that H2, < logn, HZ, =< n?*9*!/logn in this case).

Let I < 0 (this means x € Z2 UZ3). Then

14rp P ~
.o~ Jm tregh, if r > rp,
&1 - 14rp Pl f —
mitrPblogm, ifr=r,,
H.o = m!tsz] (6.92)

and the relations (6.82), (6.84) follow from estimations: if A > 0, then:

h0n27’p+1/ P2 (1, k)6 (@, k)dr = m2r;n+lz(2)l>/ yUHm/(p=a))=1 g,
Xz Yo

= o(m?Pr2Ps2), (6.93)

h0n2sq+1/ 2259229z, k)0 (2, K)dr =< m2sq+1z(2)<I/ y(+m)/ (=) =1 g,
Xz Yo

€

= o(m?125252), (6.94)

if A < 0, then using Proposition 6.1, B we directly obtain the relation analogous to (6.93, 6.94). These
estimations hold for I < 0,7 = r,, (this means that x € E3) as well.

Theorems 4, 6 and 8, n. 1 are proved for the case k € EZ.
6.6. Extreme problem for ¢ = 0o

For the case p < ¢ = oo from (6.26) we obtain to the following system of equations:

2

4h; sinh® ’% = AP -
o 22 22
4hisinh® - | —— | = Api"Ph;z] — Bii®z (6.95)
tanh <
and the constraints are
(pe/e)? = Zhizfi"p, sup z;4° < R/e. (6.96)
. 7
7

Here
A=A.>0, Bi=B.;>0, C;=C.; > 0;

and if C; > 0, then h; =1, if B; > 0, then z; = i " *Re L.
First, we try to find the solutions h;, z; of (6.95) assuming B; = C; = 0. It is possible for p > 2 and we
obtain the relations:

zi = z(p), hi = AC(p)i""; C(p) = p(2(p)), (6.97)
where

Pp(2) = 2P /4sinh?(2%/2). (6.98)
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If 0 < h; <1, i *Re™! > z(p), then these relations determine the solutions of (6.95). Let either p < 2 or
p > 2 and (6.97) do not satisfied. If p <2, then we put h; =1, B; =0, and, assuming z; = o(1) and using the
relations sinh x ~ tanhx ~ x, as * — 0, we obtain the equation and the constraint:

zi ~ (Api™/2)V/47P) < =5 Re~1 (6.99)

(the inequality C; > 0 holds by p < 2). If p > 2 and (6.97) do not satisfy, then we put z; = i *Re~1,C; = 0
and we obtain the equation and the constraint:

hi = Ai"p(z) < 1 (6.100)

(the inequality B; > 0 holds by p > 2).
The realization of this outline gives the following results.

6.6.1. Proof of Theorems 4, 6 and 8, n. 1 forp <2

In this case we have s > r+1/p, r > 1/4 —1/p, s > 1/4. Introduce variables m = m¢(k), z0 = z0,c(x) by
the relations

zom® = R/e, zom™ P/ 4P = (Ap/2)1/4=P) (6.101)
and assume zg — 0, m — oo and zgm~"?/(4=P) — (0. Then we have: h; = 1,

. 20(i/m)™P/(A=P) | if 4 <m
' zo(i/m)~*, if i >m.

The constraints (6.96) imply the relations

ifr>r,=1/4—1
(pE/E)pNZ(I)erp—i-l cl(”)a 1 T_rp_ / /p,
logm, ifr=r,=1/4—1/p,

and we have:

E— co(K), ifr>r,=1/4-1/p,
c ) (logm)/2, ifr=r,=1/4—1/p,
where
1 00
_ (s 4—p 1
= 4rp/(4-p) 4 P(=7) gy —
c1 (k) /Oy y+/1 y A vy Bl e g £
IR 1 [ 4—p 1
colk) = = p/(4-p) g +_/ —as g, _ N
o() 2/0 4 YT Y YT s a—p) T 2045 1)

which imply asymptotics (3.5, 3.6) for r > 7, and (3.26, 3.27) for r = r,. By Remark 3.2 the relations
20 — 0, m — oo follow from the assumptions u. = O(¢~%) for small enough & > 0.

It is not difficult to check the assumptions of Theorem 12 (note that 7¢(V.) = 1 by h; = 1 for all 7).
Theorems 4, 6 and 8, n. 1 are proved for ¢ = 0o, p < 2.
6.6.2. Proof of Theorems 4, 6 and 8, n. 1 for p > 2

Note that » > —1/2p, s > 0 in this case. Put A = A(k) =s(d—p)+rp, I =2s(p—2) —2rp—1,

n=ne(k) = (R/2(p)e)"*, ho = ho (k) = An"P
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and assume hg — 0, n — oo.
First, consider the case A < 0 and note that I > 0 in this case (see Fig. 10). For x = i/n we have:

ifr <1

n o= P, ifes (6.102)
z(p)z=s, fx>1

hi = hox™Y,(z) = hod(z, K); (6.103)

here and later 6(x,x) = 2"P¢,(z;), where the function 1,(z) is determined by (6.98); &(x,x) ~ z(p)P~4z2
as x — 00.
The constraints (6.96) imply the relations

2P (p)p(2(p)) logn, ifr=r,=—1/2p,
9 32 {CQ(K), ifr>mr,=-1/2p,

(Ps/a)l’ ~ hon"pﬂ {Cl(ﬂ)a ifr> rp = *1/2p,
Ua n 0 Tpp(z(p))@ logn, 1f r = T‘p — 71/2}7,

where

1 00
) = L) [ Tt [ s
= 2P(p)p(z(p))/(2rp +1) + I,
P 1 oo 22
co(k) = wp(z(p))—ép)/o JcQ"pdm+2/1 52(x,/£)sinh2< (p)>dx

2128
= o) L e 1)+,

and the integrals are finite: [; < B [~ 2~ !~'dz = B/I, 1 =0, 1.
These imply asymptotics (3.7), (3.8) for r > r, and (3.28), (3.29) for r = r,; by Remark 3.2 the relations
ho — 0, n — oo follow from the assumptions u. = O(¢~?) for small enough & > 0.

Let A > 0. Then we put m = nh&l/A, Z0 = z(p)h(s)/A. We have for z =i/n, y =1i/m:

ifx <1
u = 7P nE=a (6.104)
z(p)r=® =zoy~®, ifx>1

hoC(p)z™, ifx<1
hod(z, k), fl<az<az, (6.105)
1, if x>z,

h;

where . is defined by the relation: hod(z.,x) = 1. Using the asymptotics of d(x, k) as x — oo we get:
— A _ _
Te = (Mm/N)ye ~ hgy 1/ (2(p)FP/A 00,y ~ (2(p)EPV/A,

As in Section 6.5, we need to consider differently cases I > 0, I =0, I < 0. Using the considerations analogous
to ones used in Section 6.5 for k € Zo and the relations (6.104, 6.105) we also obtain the required asymptotics
(3.5, 3.6-3.28, 3.29). Checking of the assumptions of Theorem 12 can to be carried out analogously to Section
6.5.4 as well (note that we need to estimate 7§-variation of the functional Fj only).

Theorems 4, 6 and 8, n. 1 are proved for ¢ = 0o, p > 2.
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6.7. Some additional properties of the solution of (6.27)

In this section we formulate two propositions which will be used to study the adaptive problems. For
simplicity assume g < co.

6.7.1. Continuous properties of the solutions of extreme problem
Denote
Ec,={k€Zq, UZqg,: p#q, p#2, X#0, A#0}
and
EGor =26, NEGy, B = 2, NEG,-
For L1 > 0, Ly > 0 and ko € Eg,, (or Ko € Eg,, respectively) let A(kg, L) be the set of such € Eg, and
>0, hg >0 (or m >0, Zp > 0 ) that

1

[k — koll = [r —rol +|s — so| + [p —pol + la™" — g5 '] < L1

and

|/n — 1) + |ho/ho — 1| < L or |m/m — 1|+ |20/2z0 — 1| < La.
Here n = n(e), ho = ho(e) (or m = m(e), 20 = zo(¢)) are the values that correspond to the solutions of (6.27,
6.28) for k = kg. Let hg = he(ko), Zo = Ze(ko) be the_sequences_hi(/io,n, ho), zi(ko,m,ho) or, respectively,
hi(ko, m, 20), zi(Ko,m,zo) for these solutions. Let also (h*, z*) = (h} (ko), 2} (ko)) be the sequences

hi = _sup hi(k, 7, ho), Zi = _sup zi(K, 7, ﬁO)
(k,7,ho)EA(Ko,L) (k,7,ho)E€A(Ko,L)
or, respectively,
h:‘ = sup hi(,‘i,’ﬁ%,éo), /Z\z = sup Zi(’iamng)
(Iiﬁ’ﬁ’l#go)EA(I{o,L) (Iiﬁ’ﬁ’l,go)EA(lio,L)

and zf = 2i12i<3\/m’ B > 0, where the sequences h(k, 7, ilo) and Z(k, 1, ilo) are the solutions of (6.27)

for the values A, B which correspond to k, 71, ho according to (6.36) or the sequences h(k,m, Zo) and Z(k, M, Z)
are the solutions of (6.27) for the values A, B which correspond to k,m, Zy according to (6.37). Remind that
the rate properties of these sequences are defined by Propositions 6.1, 6.2 and by Corollaries 6.1, 6.2. Put

ur, = u(hy(Ko), 2L (Ko)), Uo = Uo,e = u(ﬁo, Zo)

where

u?(h,z) = ZuQ(hi, zi) =2 th sinh?(22/2).
i i
Let K C Eg, be a compact.

Proposition 6.3. Let 1 < ug = 0(5_5) for any 6 > 0. There exist such positive value 8y (which depends on a
compact K ) that for any B > 0, Ly = o(1/logloge™1), Ly = o(1), ko € K one has: ur/ug <1+ O(L + Ly).

Proof of Proposition 6.3 is based on simple estimations. The scheme of the estimations is following. We estimate
the difference u?(h, z) — u?(ho, Z9) between the sums over “the middle” cn < i < Cn (or em < i < Cm) and
between the sums over “the tails” i < cn, i > Cn (or i < em, i > C'm) for small enough ¢ and large enough C.
By Propositions 6.1, 6.2 and by Corollaries 6.1, 6.2 all items over “the middle” are uniformly Lipschitzian on
# and on ii/n, ho/hg (or on 7/m, Zo/z). Also one can construct the uniform majorantes for the difference
between the sums over “the tails”. These estimations imply the proposition.



112 Y.I. INGSTER AND I.A. SUSLINA

6.7.2. Correlation properties
Let

T Ty, hiqhigsinh®(z; 12 0/2
p(/{l,KQ;E) — (7 K1,€1 7/{215) — Z’L (2 (3 ( (3 1 / )
I cllesell /57, 02, sinn (22, /2) /52, B2 sink (22, /2)
where 7y, . is the sequence of the three-point measures corresponding to the sequences he(kp) = {hi i}, Ze(k1) =

{zi1}, | = 1,2 which are the solutions of (6.27, 6.28) for x = k;, | = 1,2. Let n; = n; or m; = my be the
values which correspond to these sequences. Let K1 C Zg,, or K2 C Eg,, be a compact.

Proposition 6.4. Let k) € Ky (or k1 € Ko ), 1 <y = ||Tn, || <e7% 1 =1,2. Then there exist such positive
values €9, o, 01, 02, Lo >0, B (that may depend on a compact K1 or Ks) that for any e < gg, § < dp, L <
Lo, ||k1 — ke|| < L one has: if Ky € Ko, 1 =1,2, and nq < no, then

01
p(K1,k23e) < B ((ﬂ> +562> ;
na

if ki € Ky, 1 =1,2 and m; < mg, then

Proof. Let k; € Ko = K. Note that
I(K1) > 0, ||[7nycll = ue(sr) = hoyn)’>.
Using the estimations of Section 6.3.1 for some o > 0, C7 > 0 uniformly on K for small enough € one has

Z h?, sinh2(zi2,l/2) < Crul(ky)e®
1€ (ky)

where the sets Iy = Ip(k), I1 = I1(k) are determined in the Corollary 6.1 and in Section 6.2. By this relation
and Cauchy inequality we can consider the items in the numerator with i € Iy(k1) N Io(k2) only. Also one can
choose such Cy > 0 that for every x; € K, I =1,2 and i € Ip(k;)

(i/n)m= Y2 i i<y

;1 sinh(22,/2) <
hasinh(zi,/ )—CQhO’l{(z'/nl)bzm it >

where a; > 0, b; > 0 are bounded away from 0 uniformly on k; € K. In fact, by Proposition 6.1 and by
Corollary 6.1 we can put

Tlpl+1/2, if Ke=E1UZUZEy
1= . —
I(k1)/2(pr — @), if ri € Es,
bl . I(Hl)/Q(pl — ql), if K] € EQ
D, if Kie=21UE3UE,
with any D > 0 by the exponential decrease of the items for x; € =1 UZ3 U Zy4.
It is enough to assume n1/ns < ¢, ny > C for small enough ¢ and large enough C. Let X1, X5, X3 be the
sums Y, hi1hi sinhQ(Zi,lzi72/2) over i € Ip(k1) N Ip(ke) with, respectively, i < ny, n1 <1i < ng, i > ny. Using
the estimations above we have uniformly on x; € K:

%1 < C2ho1hoa(n /ng)®2 =42 Z (i/n1)® 927 < hg 1ho o (n1n2) /2 (n1/ng)?2,

1<ni
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Y5 < C2ho 1hoa(ng/ny) 12 Z (i/n2) 0170271 < hg 1 hg o (n1ng) /2 (ng /ng)b2.

1>MN9

Also if as < by, then

Yo < C2ho 1hoa(n /ng)?2 =42 Z (i/n1)%2 =1 < hg 1 ho 2(nan2) Y2 (01 /ng) 2,

i>na

if ag > by, then

Yo < 022/10,1/10,2(712/711)_b1_1/2 Z (i/nz)a"’_bl_l = h0,1h0,2(n1n2)1/2(n1/n2)b1

i§n2

and if as = by, then

Yo < C2ho1hoa(ng /ng)?2 =42 Z (i/n1) "' = ho1hoa(ning)?(ny /ng)® log(na/n1).

ian

These relations imply the statement of the Proposition for k; € Ko.
Let k; € K1 = K. In this case we have:

I(kt) <0, [T el = ue(rr) = 22,m) ">,

Put I.(6,1) = {i : =zi; > ¢}. Using the estimations analogous to Section 6.3.3, Propositions 6.1, 6.2 and
Corollaries 6.1, 6.2 one can choose such positive d2, C7, d. — 0 that for small enough & uniformly on K

Z hf,l sinhQ(zﬁl/Q) < Clug(m)552.
i€l (6e,0)

By this relation and Cauchy inequality we can consider the items in the numerator with i € I (0, 1) N I (¢, 2)
only.
Then one can choose such Cy > 0 that for every k; € K, [ = 1,2 and i € I.(d,1)
i/m)@ Y2 i i<m
hisinh(z2,/2) < Coz2 (/m) !
1,1 ( z,l/ ) = L2201 {(i/ml)bll/Q if i>my
where a; > 0, b; > 0 are bounded away from 0 uniformly on x; € K. In fact, by Propositions 6.1, 6.2 and by
Corollaries 6.1, 6.2 we can put

_J@np/E=p)) +1/2, i m €EUE,
I(k1)/2(p1 — 1), if K €2,

(2)\(&1)/((]17]?[))4’1/2, if K €=.
Then the estimations are analogous to above. The Proposition is proved.

{Il/2(pl - ql)a if Kl E ZoUZ3

7. EXTREME PROBLEM FOR BESOV BODIES

We give the proofs of Theorems 5 and 8 in this section. It is clear that we need to prove Theorem 8, n. 2
which implies upper bounds of Theorem 5, and to obtain lower bounds of Theorem 5 in this section. We
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consider the Besov bodies with p < 0o, h < p, ¢ <t by the required convex properties of Section 5.4 assuming

Kk € E¢ = 2g, UEqg,. By the symmetry on [ = 1,...,27 for all j > 0 the extreme problem is of the form:
if ¢ < 00, t < 0o, then

u(7) IX fZ2 RO\j,vipq) Yo, 200MHRPINY > (p (1) /),
Yo, 26D < (Re) (7.1)
if ¢ <t = o0, then

1}522 RO\, viip @)t 25 2j(rh+h/p))\? > (pe(7)/e)",
j

sup; 2/t T < (R/e); (7.2)
and if ¢ =t = oo, then
u?(7)

g

gZQRAJ,vJ,p, 0o): 3 2PN > (p (1) /)",
J

>/\’"

sup;, 2°v; < Re™. (7.3)

Here the values R(\, v;p, q) are determined by the relations (6.21, 6.23).
Using Lemma 6.2 we can reduce the extreme problems (7.1-7.3) to the following ones (the infimum is
considered under constraints h; € [0,1], z; > 0): if ¢ < 00, t < 00, then

52
gQZ?hQSmhz ]: > Qj(rh'*'h/”)h?/pzyz(pE(T)/s)h,
J

u(r) =

m"‘

) 21(8t+t/q)ht/‘1 !t < Rle” (7.4)

if ¢ <t = 00, then
) o 22 o
u?(r) = 1nf2z2]h§ sinh? ?j D 23( h+h/p)h?/pzjh > (p=(1)/e)",

sup; 2/t 2% < (R/e)Y; (7.5)

and if ¢ =t = oo, then

52
f2z2jh28mh2 i : Zj 2j(rh+h/p)h?/pzjh2(pg(T)/E)h,
J

ul(r) =

m’“

sup;, 2%z < Re™. (7.6)

The outline of the proof of Theorem 8, n. 2 is following. We consider the “widest” sets t = oo and assume
0 < h < p (it is enough to assume h is small enough). We show that the analogous to either (3.5, 3.6) or (3.7,
3.8) rates hold in this extreme problem. These imply the inequality: us(7) > ¢(7)uc(k, R, pe) for small enough
e > 0, where the values uc (%, R, pc) are determined by (3.2) with d(x) = 1 and either (3.3) or (3.4).

We study the extreme problem for p # ¢ < oo only (the considerations for p = ¢ < oo or for ¢ = oo are
more simple). Using Lagrange multipliers rule we obtain from (7.5) the following system of equations on the
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variables h;, z;:

2

22 h; sinb® = (h/p) A2t h/D R (RP)=h g ogilsatl) 0 ¢

2 2
272, sinh? 2 [ = hADICIEND R, Byl 1, (7.7)

22
tanh -

Here A=A, >0, Bj=DB.; >0, C; =C.; > 0; if C; >0, then h; =1 and if B; > 0, then 2j(8q+1)hjz? =
(R/e)? (for simplicity we do not consider the Lagrange multipliers corresponding to the constraints h; > 0,
zj > 0 assuming that we consider positive solutions only). The values A = A(k,h) are determined by the
relation

S 2 p DR — (o (r) fe)", (7:8)
J

(this follows from Rem. 5.4 to Lem. 5.1, Sect. 5.4). In Sections 7.1.1-7.1.4 we describe the solutions of (7.7)
using some different parameters hg,n = 27° or zg, m = 271 (as in Sect. 6). Using (7.8) we obtain the asymptotics
of these parameters and the asymptotics of u.(7). Then we use Theorem 12, n. 1. which imply the statement
of Theorem 8.

It follows from convex properties of extreme problem and by the solution is unique (see Sect. 5.4) that it is
enough to find any solution of the system (7.7) under constraints above.

To obtain the lower bounds we construct such families 7. = 7.(x) that ||7|| < ue(k) and 7¢(Vz(k,t,h)) — 1
for all positive ¢, h. Then we use Corollary 5.1 and obtain the lower bounds of Theorem 5.

7.1. Study of the system (7.7)

We consider differently the cases of zero and of positive values C;, B; in (7.7).

7.1.1. The case C; = B; =0

In this case we have from (7.7) the equation
ij = ptanh(z?/Q)
which have the solution z; = z(p) for p > 2 only. Define the values hg, n = 270 by the relations
RGP = (/) AC(p)2" P ()2 TP, S ()2 1) = (R/e) (7.9)
where C(p) = 2P(p)/4sinh?(22(p)/2). Assume
jo — 00, ho2j°/2j0_‘S — 0 for small enough 6 = §(k, h) > 0. (7.10)
We have the equations:
zj = 2(p), h; = ho2°U=9); p>2 (7.11)
where

a=(rh+h/p—1)/2—h/p). (7.12)
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Note that @ > 1/2 by 2rp > —1 for k € Eg, p > 2. The constraints h; < 1, z?thj(SQH) <(R/e)1for0<j <7
are of the form

ho20U=d0) < 1, 2°0=J0) < 1: b=a+sq+1, 0<j < jo. (7.13)

These constraints hold under assumptions above for small enough § > 0 by s¢ +1/2 > 0, rp+1/2 > 0 for
K €Eqg, p>2andb>0for h/p e (0,1].
Note that

o 2 . h/
224500 (o) sinb® L = C(p, h) (20730 H2) (1 /o)) "

where C(p, h) = 4sinh?(22(p)/2)(z(p))~".

7.1.2. The case C; =0, B; >0

In this case we have from (7.7) the equations and the constraints:

hi = (R/e)12; 927700, 6y 00 (2)) = (0 — q)(h/p)A(R /) 1E-M/PIe
< if

o<1, zj < z(p), ifg>p (7.14)
22 2(p), ifq<p,

where

22 22
bp.qn(z) = 45 —2a+(h/P)(a—p) ( - q> sinh? 2
tanh % 2
and ¢ = 2sq+ 1+ (rp—sq)h/p > 0 for p > 2,k € E¢. The constraints on z; in (7.14) follow from the assumption
Bj > 0. By the constraints on z; in (7.14) these solutions are not possible for p <2, g > p.

It is easy to check that if z > z(p),p > ¢ (we assume z(p) = 0 for p < 2), then the function ¢, 4 (%) increases
on z from ¢, 4.1 (2(p)) > 0 to 0o, and if 0 < z < z(p), 2 < p < ¢, then it increases from —oo to @p q.n(2(p)) < 0.
If p > 2 and the values hg, jo are defined by (7.9), then the values hg, z(p) are the solutions of (7.14) for j = jo
and ¢ > 0 in the right-hand side of (7.14) (note that we can consider (7.14) for all real j).

Therefore there exist the solutions of the equation in (7.14) with the constraints on z; for j > jo, when p > 2
or for 5 > 0, when g < p < 2.

To define the asymptotics of the values z;, hj, introduce the values:

by =c/d, d=2(q—2)—h(g/p—1), a1 = qby —sq— 1. (7.15)

It is easy to check that d > 0,b; >0 for ¢ >p>2 and d < 0,a; <0 for g <p < 2.

Also let k € Z¢. One can check, that if a3 <0 for ¢ > p > 2, then I > 0, and if b; > 0 for ¢ < p < 2, then
I<0.

Let p > 2. Then for j > jg

L ;2701 =do) if g >p
’ cj(1+3j—jo)/?, ifg<p’
d.2a1(i—jo) ifg>p
ho o= h j » 7.16
J 0 {djg—(sq+1)(3—30)(1 +j—jo)"9?, ifq<np, (719

and
-1

o 2 o h/
2243730 (h; fho)? sini® - = C(p, . 1) (20790079 (o)) [
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where
C(p,q,h) = 4(p — q) sinh*(2*(p) /2) (2(p)) "

2
One can check that c; increases and d; decreases on j, if 2]2 / tanh 521 < q—1for ¢ > p. Here and later we denote
¢; = ¢;(7),dj = dj(1), 7 = (k,h), h =¢Ep, to be positive values (may be, different in different relations) which
are bounded away from 0 and oo uniformly on k € K, £ € [4,1], j, € for all compacts K € G, ¢ € (0,1) and
small enough ¢ > 0.

We need to check the constraints h; < 1. It is clear that if p > ¢,p > 2 or ¢ > p > 2, a1 < 0, then these
constraints hold for j > jp under assumptions (7.10). Thus, joint with Section 7.1.1 we have obtained the
solutions of (7.7) for 2 < p, ¢ < p.

Let 2>p or 2<p<gq, a; > 0. Introduce the values 2y, m = 27t by the relations

2
97142 ginp?2 20 ( - q) = (h/p)(p — q) A2 UMD 21D — (R/e) (7.17)

(note that the values z; = 29, h; =1 are the solutions of (7.14) for j = j1).
Assume

2271 (rhth/p=1)/(4=h) & _ < 2, j; — oo for small enough § = §(k) > 0. (7.18)
Also for 2 > p > ¢ introduce the values hg, n = 27° by the relations analogous to (7.9):
heMP < Agio(rhth/p=1)  pojo(satl) = (R /)4 (7.19)

and note that

2 b1—d0) = 2 ho2 (1 TI0) < 1,

Let 2 < p < ¢, a1 > 0. Then the values h; increase on j. Therefore the constraints h; < 1 hold for j < j;. Also
uniformly for j; > j, j < j1 we have:

zj ~ 202 01 0=01) < 9=b1(G—Jjo) hj ~ 201 (i=71) = p 20 (i—do) (7.20)

Thus, if 2 < p < ¢, a1 > 0, then the constraints h; <1 hold for jo < j < j;.

Let ¢ < p < 2. Then a; < 0 and the values h; decrease on j. Therefore the constraints h; < 1 hold for
Jj > j1. I by > 0, then for ji(1 — o(1)) > j we have the relations (7.20) as well. If b; < 0, then the values z;
increase on j. These relations imply h; =< hg, z; < 1 for j = jo + O(1). Note that jo > j1(1 + J) — oo under
assumptions (7.18). Thus, we have:

L ;2701 —do) if § < jo
’ ¢j(L+7—jo)'/%, ifj>jo
d;201(G—Jo) if j < jo
hi = R0\ oGt G=do) (14— )92, it > (7.21)
d;2 (47 —Jo)~ %=, if j > jo

and if j > jo
hip

2
29790 (h; /ho)? sinh® %ﬂ = (2079005 1y fho)2) 27
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7.1.3. The case C; > 0,B; >0

We consider this case for p < 2 or for 2 < p < ¢ and a; > 0. Let p < 2. Introduce the values zgg, m = 2911
by the relations

2 2
291+ ginh? 200 (_E00__ ) _ p ggini(rhah/p) ko (st (R /ey, (7.22)
tanh 2 o %
2
Assume
2002*3'“((rh+h/p*1)/(4*h))jfl — 0, p <2, j11 — oo for small enough § = d(k) > 0. (7.23)

Note that zgp =< 20,71 > j11 = j1 + O(1) for 2 > p > g where the values zp,j; are defined by (7.17). The
assumptions (7.23) equivalent to (7.18) in these cases.
In this case we have the relations:

hj=1, z = ZOQ—(S+1/Q)(j—j1) — 2002—(S+1/Q)(j—j11)

and the following constraints:

Vi(z5)d(25) < hA, ¥;(z)(q — d(25)) < h(qg —p)A/p, (7.24)

where j1, 2o are defined by (7.17) and

4 52 C/R\YR 52
Uy(zg) = 2O i T g (-) (B(z) = — ~2as 2 = 0.
€ tanh >

Here

hi=@A—-h)(s+1/¢)—1+rh+h/p>0
for k € 2g, p<2o0r2<p<gq,a >0; 0<h<pby hs =da/q Thisimplies that 1,(z;) increases on j for
zj = o(1).

The equality in the second relation in (7.24) holds for j = j1, z; = zo. If p < 2, then the equality in the first
relation in (7.24) holds for j = ji1,2; = z00. If 2 < p < ¢ and a; > 0, then this equality is not possible, the
second inequality in (7.24) implies the first one and holds for j > ji1,. If p < ¢, p < 2, then the first inequality
in (7.24) implies the second inequality and holds for j > j11. If 2 > p > ¢, then these inequalities hold for
Jj11 < j < j1 only.

Thus, joint with Sections 7.1.2, 7.1.3 we have obtained the solutions of (7.7) for 2 < p < gq.

7.1.4. The case C; > 0,B; =0

This case means hj; = 1.

2 2
29+ ginh? 2 % > | = hA2j<Th+h/p)z§L, Qj(Squl)z? < (R/e)4.

zs
tanh -

We need consider this case for p < 2 which imply the constraints z; > z(p) = 0. Using the values zgo, j11 defined
by (7.22) and assuming z; = o(1) we can rewrite these equations and constraints in the form

zj ~ 200252(1'—]'11), zj < 2002—(S+1/Q)(j—j11) (7.25)
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where
ba=(rh+h/p—1)/(4—h). (7.26)

Note that bs +s+1/g = h1/(4 —h) > 0 for k € E¢ which imply that the constraint in (7.25) holds for j < ji;.
Thus, joint with Sections 7.1.1, 7.1.2 we have obtained the solutions of (7.7) for 2 > p > ¢ and for 2 > p, q > p.
7.1.5. The solutions of (7.7)
The following proposition is combination of the results of Sections 7.1.1-7.1.4. We use here the constants

a,ay,by,be defined by (7.12, 7.15, 7.26) and the values hg, jo; 2o, J1-

Proposition 7.1. Forp > 2 or for 2 > p > q,b1 < 0 define the values jo, ho by the relations (7.9) or by (7.19)
and assume (7.10) for p > 2. For q > p > 2,a1 > 0 or for p < 2 define the values ji1,zo by the relations
(7.17) and assume (7.18). Then there exist the solutions z; > 0, h; € (0,1], 7 > 0 of (7.7) and the following
asymptotics hold

1. Let p > 2,p > q (note that I > 0 in this case). Then

! if § < jo
TN+ =g 2, if i > o,

o 22 o h/p
9ijo (h]‘/ho)Q sinh2 Ej - (2(3—10)(1+rp)(hj/h0)2§?) ijz for j > jo;
and

~

o ; suph; = o(1).
9~ (sat)G=do) (1 4 5 — jo)~ 92, if 5 > jo jp J (1)

2. Let2 <p<gq. Ifay <0 (remind that I > 0 in this case), then

200=d0), if 5 < Jo
h]‘v 0

S E O if § < jo
T2, i o <

and
9a(j—jo) i< g
hj < ho ] %f]._]q
200),if oy < j.
If a1 > 0, then

z(p), if § < jo ho2eU=d0) - if j < jo
z; < < 27b1G—do), if jo < <gi, hj={ ho20U=90)  if jo < <j
2027 (/DG if § > gy 1, if 1> 7.

3. Let2>p>q. If by <0, then

2020200, if 3 <n
zj = { 270G—d0) < 502=0G=71)  ifj < j < jo
(145 —jo)"/?, if § = jo,

. 22 o h/p
29730 (I ho)? sinh® L < (2070007 fho)2 ) 252 for > oy
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1, if 5 <71
h; = ho2a1(i—do) = Qal(j*jl)’ if 1 <7 < jo
ho2~ DU (L4 — o) =2, if j = jo
if by > 0 (remind that I < 0 in this case), then
_ R i< 1
EEREE PRGNS NP Rt A oD
and
j = i s .
2a1(3 Jl)) Zf]l <]
4. Let 2 > p,q > p (note that I <0 in this case). Then
_ =200, i< VAN
%= {ZOQ(erl/q)(jjl), ifj > Supa = ol hy=1.

J
7.2. Solutions of extreme problems and upper bounds

270 xn, 271 xm

We need to estimate the values hg, jo or zo,j1 from the relation (7.8) and Proposition 7.1. By Remark 3.2
assumptions (7.10) and (7.18) follow from the assumption u. = O(¢~°) for small enough § = §(x) > 0 by

7.2.1. The casesp >2, p>qorq>p>2anda; <0

These cases correspond to I > 0, k € E¢, and we need to obtain the rates (3.7, 3.8). Note that

ZQi(Th+h/P)h?/pz§L - Z(Qj(Terl)hjZ;?)h/p = (hOQjO(TP+1))h/p(21 +3),
J J

where
Jo
Y, = Z 9(G—jo)(a+rp+1)(h/p) — 1 (7.27)
j=1
by a+rp+1>0and

b))

X

S0, 27U (14— Go)li, ifp>2, p> g =
500 9=(i—jo) by —ar—rp=1)(h/p)
J=Jo ’

. =1 (7.28)
ifg>p>2a <0
by sq > rp for p > 2 and

pby —a1 —rp—1=1/d; (7.29)
(remind that d =2(¢—2)+(h/p)(p—q), I =2(p—2)sq—2(¢—2)rp+p—q ) which implies pby —a; —rp—1>0
for g >p > 2, I >0byd>0 in this case. Thus from (7.8) we have the rate relation for n = 270, hg:
hon™*1 < (p. /o)

(7.30)
(we omit the considerations which show the existence the solutions jo, hg).
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Let us obtain the asymptotics of the values u.. We have:

2
. Z . ’ ’
u? =2 " 2/h?sinh’ EJ = h2200 (%] + %)
J

where

Jo

Dy =y 2Umi@etl) < (7.31)
j=1
by 2a+1 >0 and
s o, ifp>2, p>gq =
TR, 27U =2a s it g s p > 2 ay <0

by Proposition 7.1 and by
4b1 — 2CL1 —1= h[/pd (732)
which implies 4by —2a; —1 >0 for g >p >2by I >0, d > 0 in this case. Thus we have the relation

hin < u? (7.33)

which joint with (7.30) and (7.9) imply the rates (3.7, 3.8).

7.2.2. The casesp <2, g>por2>p>qandb; >0

These cases correspond to I < 0, k € E¢, and we need to obtain the rates (3.5, 3.6). Analogously to above
j(r h j(r j1(r
Z2J( nkh/p) b /PZ;,L - Z(QJ( PO B YD < (B2 PRV () 4 5,
J J

where

Ji
Y = Z 9(i=g1)(pb2+rp+1)(R/p) — (7.34)
j=1

by pba +rp+1 >0 and

J=i

_ S 2= =i ((s=rp=14p/O)(h/P)  if p <2 g >p _ (7.35)
2 Z‘;‘;jl 2-(=i)(phr—ar=—rp=D)(h/P)  if2>p>gq, by >0 )

by (s —7)pg > q—p, a1 >0 for p <2, p < q and by (7.29) which implies pb1 —a1 —rp—1>0for2>p >gq
by I <0, d <0 in this case. Thus from (7.8) we have the rate relation for m = 27, zy:

2m™P < (p. /)P (7.36)
(we also omit the considerations which show the existence of the solutions zg, j1).
To obtain the asymptotics of the values u. note that sinh?(22/2) < 2* for z = O(1) and

2
. z5 . ’ ’
u? =2 E 2Jh? sinh? 5] = 20271(8] + 5,)
J
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where

J1
2'1 — ZQ(j*jl)(4b2+1) =1 (7.37)

j=1
by 4b +1 > 0 and

=1 (7.38)

s Z;?":jl 92— (—j1)(4s+4/q—1) ifp<2 p<gq
2T, 27Uk 2a sl E g > s g by > 0

by s >1/4—1/q for p <2, p < q and by (7.32) which implies 4by —2a; —1>0for2>p>qgby I <0, d <0
in this case.
Thus we have the relation

zam = u? (7.39)

which joint with (7.36) and (7.17) imply the rates (3.5, 3.6).
7.2.3. The case2 <p<gq, ay >0

This case corresponds to I > 0, k € Eg, or I <0, k € Eg, and we need to obtain the rates (3.5, 3.6) for
I <0and (3.7,3.8) for I > 0. By jo < j1 we have

, A ,
Z 21 (rhh/p) ! /PZ]h = 2(23(’"”+1)hjz§7)h/”
J J

= Z + Z + Z = A1) 4+ da(E2 + 3) < dodo + di (X1 + Xy)
Jj<jo Ji>j1  Jo<jy<ji

where the value ¥; is defined by (7.27), the value ¥ is defined by (7.35) for ¢ > p.

dy = (hg2UPHONR/p gy — (P9i(rp+1)yh/p

and _ .
J1 J1
Yy = Z 2(j*j1)(alfplerT:DJrl)(h/P)7 Yy = Z 9(j—jo)(a1—pbr+rp+1)(h/p)
Jj=Jo J=Jjo

Remind that hg/25 < 2(Pb1=a1)(51=30) and by (7.29)

dy /dy = 9(U1—do)(Pbr—ar—rp—1)h/p _ 9(j1—jo)hI/pd_ (7.40)

The estimations above show that ¥; <1 bya+rp+1>0and 33 <1 by p=pq(s—1)>q—pforqg>p>2.
Let I > 0. Then dy = o(d;) and ¥4 =< 1 which imply asymptotics (7.30). Let I < 0. Then d; = o(dz2) and
Y3 < 1 which imply asymptotics (7.36).
To obtain the asymptotics of the values u. note that

2
. z5
u§:2§ 2Jh§sinh2—23 = E +§ + E
J i<jo F>j1 Jo<i<ij1

=13 4 c2(Dy 4 Tp) = 2%y + 1(5] + )
where ¢; = h327°, ¢y = 23271, the value ¥ is defined by (7.31), the value ¥, is defined by (7.38) for g > p.
0 0 1 2
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J1 Ji
E;} = Z 9Ui—i)(2a1—4bi+1) 5 Z o(i—jo)(2a1 —4b1+1)
Jj=jo J=jo

Note that

01/62 ~ 9(1—jo)(4b1—2a1—1) _ 9hl(j1—jo)/pd (7.41)

The estimations above show that 211 =<1by2a+1>0and 2'2 =1 by 4sq > q — 4 for a; > 0.

Let 1 > 0. Then ¢y = o(c1) and ¥, =< 1 which imply asymptotics (7.33). Let I < 0. Then ¢; = o(cp) and
>3 = 1 which imply asymptotics (7.39).

These relations imply the rates (3.7, 3.8) for I > 0 and (3.5, 3.6) for I < 0.
7.2.4. The case2>p > gq, by <0

This case corresponds to I > 0, k € Eg, or I < 0, k € Eg, and we need to obtain the rates (3.5, 3.6) for
I <0 and (3.7, 3.8) for I > 0. By jo > j1 we have similarly to above

ZQj(Th+h/p)h?/pZ§L = Z + Z + Z =< doXy +di1(B2 4+ 34) X d1Xe +do(X1 + X3)

J i<ijr  3>jo  J1<i<Jjo

where the value ¥ is defined by (7.34), the value X5 is defined by (7.28) for p > ¢, d1, da are the same as above
and

Jo Jo
Y, = Z 2(j—j1)(a1—pb1+7"p+1)(h/p)7 Y, = Z 9(i—jo)(ar—pbi+rp+1)(h/p)
J=J1 J=ij1

The estimations above show that X1 <1 by pbs +7rp+1 >0, Yo <1 by sq > rp for b; < 0.

Let I > 0. Then by (7.40) where d < 0, j1 < jo we have d2 = o(dy) and ¥4 =< 1 which imply
asymptotics (7.30). Let I < 0. Then d; = o(dz) and X5 < 1 which imply asymptotics (7.36).

To obtain the asymptotics of the values u. note that

=Y 43+ Y xe¥ a4+ 3)) < al + oS + )

J<ji  3>jo  51<i<jo

where the values ¢1, ¢ are defined as above, the value X is defined by (7.37), the value ¥, is defined by (7.28)
for p > ¢, and
Jo Jo
E; — Z 2(1‘—1'1)(2(11—41;1“)’22L - Z 9(i—jo)(2a1—4by+1)
J=i J=n

The estimations above show that 2,1 =1 by 4bs +1 > 0 and 2/2 =1 by sq—rp >0 for by <O0.

Let I > 0. Then by (7.41) where d < 0, j; < jo we have ¢; = o(c;) and ¥, = 1 which imply
asymptotics (7.33). Let I < 0. Then ¢; = o(cz) and X3 = 1 which imply asymptotics (7.39).

These relations imply the rates (3.7, 3.8) for I > 0 and (3.5, 3.6) for I < 0.

7.2.5. Upper bounds

To obtain the statement of Theorem 8, n. 2 it is enough to check the assumptions of Theorem 12, n. 1.
Assumption C1 follows directly from the asymptotics (3.5) and (3.7). One can easily check assumptions B1,
B3a in C2 using Propositions 7.1 and the rates type of (3.5, 3.6) or (3.7, 3.8).

We need to check assumption B4a for p > ¢, A > 0 which correspond to sq > rp, I > 0 and to the asymptotics
type of G2 by z.; = O(1) in other cases. It follows from Propositions 7.1 and from estimations above, that
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ze,; = O(1) for j < jo, and if j > jo, then

~ (log2)(2+6)j + B(j — jo), 22, = j —jo, J C{j > (1+61)jo}, 61 >0, B=B(1) >0
for 8 small enough in (5.21). Let v € V.. Then using the inequality

9JrP Z g P < max |vlj|pfq2j(rpfsq)2jsq Z luij|9 < mlax|vlj|p’q2j(rp’SQ) (R/e)?
! !

and relations
(pe /)P = ho270(rp+1) — 9do(rp—sa) p ;9jo(sa+1) — 9io(rp—sq) (R/e)?

we get:
2J
Fial ZQ]PT|Ul )M/ < B, Th(P 0)/Po(i—jo)(rp— SOMP(p_[e)l.
=1
Therefore
sup Z fia(v) < Ba(pe /)" Z jMe=0/2po=io)rp=sh/v — o(H_ ).
vEV: e 3> (1+61)j0

Thus Theorem 8, n. 2 and the upper bounds of Theorem 5 for Besov bodies case are proved.

7.3. Lower bounds

To obtain the upper bounds of Theorem 5 by Corollary 5.1 it is enough to construct such sequences of
three-point measures @, = {7} = 7(7), T = (k,t, h) that | 7] < ue, 7(Vz(7)) — 1 and assumptions Al,
A2 hold. We can assume that b < u. = O(¢~%) for small enough b >0, § = §(7) >0

Put
5o, o |
Teij =14 0 . WI77 i<
(L= h=)00 + = (02, +0-2), ifj=]

where §, is Dirac mass at the point z € R!,
J° =jo, hj= =ho, zj+ =1, if I >0; j"=j1, hj» =1, zj« = 2, if I <0,
a}ld the Valuiss n = 290 ho, m = 271,z are determined by the relations analogous to (3.8, 3.6) with different
p. = Bp., R = R/B for any B > 1:
n"Pthg = (p. /)P, n*t T hy = (R /€)1

or
mPH = (o /e)?, m* T Al = (R Je)°.

It is clear that ||7.|| < u. where u. is deﬁned by (3.7, 3.5). By the measures 7¢ are supported on one level j*,

the relation 7¢(Vz(7)) — 1 follows from the relations

f{zw (pe /)P — 1, wf{zsqﬂ < (R/e)7} — 1. (7.42)

If I < 0, then one can easy check that these relations hold with 7¢-probability 1. If I > 0, then one can easy
check these relations using Chebyshev inequality by

27"
Bee (2773 Joige | | = 0" Tho = (Bp. /)",

i=1
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27"
Ee | 29907 Z =n*t1py = (R/Be)?
i=1
and
27"
Varge < n*PHhg = o((p:/2)*),
i=1
29"
Varg | 259 <n? 1 hg = o((R/<)*),
i=1

if nho — oo which holds for u. = O(¢~%) and small enough ¢ > 0.
Theorems 5 and 8 are proved.

8. DEGENERATE TYPE: PROOF OF THEOREMS 3, 7
8.1. Upper bounds: Ellipsoids
Let us consider the tests 1), o from Theorem 7. By
0(ta) =+ (1 = )R (Xe), Albeav) = (1 - @)P(K2),
to prove n. 1 of Theorem 7 we need to show that uniformly on k € K C Zp, B! < R< B

PO(XE) — 0,
sup P(X.) < @ (y2logn.(r) = nz"(7)pe/e) +o(1)

’UEVE
where X, is a complement of X_,
7= (r R), Vo =Vi(r,p2), n=ne(r,pe) = (R/po)"/ 7" — o0

by s >r >0 for k € Zp (r > 0 for p < co). We can assume that n > N..
Let us consider the properties of the thresholding (4.2). Using the standard relation:

O(—x) ~

exp(—22/2), as x — 00

we have the first relation in (8.1):

oo

Py(X.) < 2N.®(—/21og N.) + 2 i (—T,) =<

i=N;

0.
logN Z 1ogz i(logi)3/2 -

Let v € V(T, pe). Then

Py(X.) < min {333& (<1> (\/m - |vi|) ~ 9 (—\/210gNE - |vi|)) ,
B (BT}~ o) ~ BT, — ) | < win(B(T, — ) ~ BT, ).

N:<i i<n

By T, = v2logn + o(1), (=T, — |vi]) — 0, the second relation in (8.1) follows from the

125
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Lemma 8.1. Let n = n.(1) = (R/p)Y~") and s > r > 0, p > q, A\ = sq —rp < 0 (note that these
assumptions hold for k € Zp). Then

inf i > .

S vl 2 pefen

Proof of the lemma. For simplicity assume ¢ < p < oo (the case co = p > ¢ is simpler).
First, note that

(pe/e)? < D (i ws)? < sup{i Mo~} Y@ foil)? < supiMoi|PU(R/e)
. 3 . (2
K] K]
which imply
supi ol > P/ RIcP =,
i
Next, by |v;| < R/ei® and by definition of n we have for any ig > n and i > ig:
Mo [Pt < iPCT(R/e)P9 < pP/RIEP,
Therefore the supremum is attained at ¢ < n and these relations imply
n~* max |v;[P79 > max i~ [P~ > pP/RIePY,
i<n i<n
Thus we have the inequality of the lemma:

max |vs| > nM (P—9) (pE/R)Q/(p*Q)pE/s =n""p./c.

The lemma and Theorem 7, n. 1 are proved.

8.2. Upper bounds: Besov bodies

The consideration of this case is analogous to above: we need the relations

}%)(){E) 0;

Sup Py(Xe) < @(v2logne(r) — c(r)n " (7)pe /2) + o(1) (8.3)

for some ¢(7) > 0 and n = n.(r,s, R) = 270, R/p. = c(7)2/0(=7),
The first relation in (8.3) is obtained as above. To obtain the second relation we use the considerations
analogous to above and the following

Lemma 8.2. Letv € V. = V.(1,p:), 7 = (k,R,t,h) and s >r >0, p>¢q, A=s¢q—1p <0 and A <0, if
hq < pt. Then there exist such constant ¢(t) > 0 that

. f . > -Tr .
3o e e o 2 o/

Proof of the lemma. To simplicity assume p,q,t,h < co. Let v € V.. For a positive sequence {d;} (which is
determined concretely later) we have:

h/p h/p

h/p
(pefe) < 3 20 (Z Jvis |p> < (su_pz-kfdjl miaxwijw—%R/ew) > (dad")
j i J
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where

t/q
rj = <2jsqz |vz‘j|q(€/R)q> Y w <L
i i

This implies

—p/h
L . hq/pt
sup 2_)‘(3_30)(1;1 max |v;; [P~ > oMo pP R=4g4=P Z (djx?q/pt)
J v i
If a = hq/pt > 1, then we put d; =1, ¢(7) =1 and by Zj x?q/pt <1 we have
sup 27 NI7I0) max |v;;[P79 > 2Mo pP | RIgPTI = (2770 p_/e)PTa
j 3
and by
sup 2% max |v;;| < R/e
]‘ 3
analogously to the proof of Lemma 8.1 we have:
sup 9—Ad—do)/(p—q) max [vy;] < 2_Tj°pa/5-
J>Jjo ¢
These relations imply the necessary inequality with ¢(7) = 1.
Let a = hg/pt <1, A < 0. Put
_J2mrGde), if j < jo
T ) 2pr=9)G=do) i > .
By Holder inequality
a l—a
S < [Su | [arem ) < [ Sz 3T g/
J J J Jj<0 J>0

Put ¢(1) = (b(7))~P/*P=9)_ Then

max{maxmax|vij|, sup 20 —Jo)s max|vij|} > ¢(1)279"p, Je
ot §

J<jo 1 J>jo
and by (8.4)
sup 2079008 max |u;;| < 2790R /e = ¢(7)270 . /e.
J>Jjo v
Thus we get:

max max [v;| > ¢(7)27"p, /e.
Jj<jo 1t

The lemma and Theorem 7 are proved.

127
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8.3. Lower bounds: Ellipsoids

The lower bounds of Theorem 3 follow from the relation: if x € Zp and n. = (R/p:)"/*~") then

Bla, V(k, R, p2)) > (1 — a)®(y/Zlognz —nz"p./2) + o(L). (8.5)

To prove (8.5) we can assume

nZ"pe/e =0 (v2logn: ). (8.6)

Put
V1,e(Z) = {vr = {vpi} €la, n1 <k <n}
where
n=ne, n =n1=n(l—1/logn), = {z;, m1 <i<n},z =i "pe/e
and

{o, if k£
Vi =

It is clear that V3 .(Z) C V. which implies the inequality
B, Vo) > o, Vi (T)). (8.7)

Using Theorem 4.2 in Ingster [12], Part II, n. 4.4 with u; = x; we obtain the inequality

Bla,Vi£(2)) = (1 — a)®(R:) + o(1) (8.8)
where R, are such values that
> &(—ai— R) =< 1. (8.9)

Put R. = v/2logn. — n_"p./e + d.. Then the relation (8.6-8.8) imply (8.5), if we could choose such §. — 0
that (8.9) holds. It is clear that this possibility follows from the relations: for any § > 0

> ®(—mi— R +6) —o0, Y P(—wi—R.—5) —0. (8.10)

ny<i<n n1<i<n

By z; + R. = v/2logn + o(1) uniformly on n; < i < n, using (8.2) one can easy check the relations (8.10).
The relation (8.5) and Theorem 3 for ellipsoidal case are proved.

8.4. Lower bounds: Besov bodies

The lower bounds of Theorem 3 follow from the relation: if x € Ep and n. = 2%, jo = jo. = [ (s —
r)~!logy(R/p:) |, where [ t ] is an integral part of ¢t > 0, then

B(a, Vel R, pe)) = (1= )@ (v/21ogne = nz"p./2) + o(1), (8.11)
To prove (8.11) let us consider the level jo and the set

Vie = {vr = {vpi;} € la, 1 <k <200}
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with

o itk #i, j# jo
ST 2 pefe, ifk=4, § = jo.

It is clear that Vi . C V. which implies the inequality
Bla,Ve) > Bla, Vie) (8.12)
and (8.11) follows from (8.12) and the inequality of Ingster [12], Part II, n. 4.4 for u. = 27907 p, /e:

Bla,Vie) > (1 —a)®(y/2logn — 2*j°TpE/€) +o(1).

The relation (8.11) and Theorem 3 are proved.

9. TRIVIAL TYPE: PROOF OF THEOREM 2

9.1. Ellipsoidal case
Let
kKE€Hr, co>p>q, r2>0

(note that s < r in this case) and R > p., if s = r. If r > 0, then the set V. contains the points v,, € Iy with
only one nonzero coordinate v, ; =4~ "ps/e — 0, where i = i(n) — 0o as n — oo which implies the theorem on
this case. If r =0, co > p > ¢, consider the points v; € ls:

o pefe, iti=j,
"0, if i # j,

and the set V., = {v;, m+1 < i <m+n} C V. for large enough m. Using the inequality in Ingster [12],
Part II, p. 181 with u. = p./e we have, as n — co:

Bla, Vo) > B, Vo) > (1 —a)®(y/2logn — pe/e) +0(1) — 1 — a.

To obtain Theorem 2 for other cases for a fixed ¢ > 0, pc > 0, Kk € ZEp and R > pg, if p = 0 it is enough to
construct such sequences 7, = {7, i} = Tn,c,p.,Rr,~ that

Hﬁ'nH — 0, 77”(‘/;3) — 1 (91)

where V. = V., r(k) and " is product measure corresponding to 7,. As above we use the sequences of
three-point measures

hni
Tn,i = (1 - hn,i)50 + 2, (6271,7‘, + 6—Zn,7‘,)'

Let p=¢q < o0, s<r <0. Put forp <2

0, ifi>n
hni:]-a Zn,i = . 4 if s
’ ’ b,i"?/(4=P) if § <,

and for p > 2

0, ifi>n
Zn,i = 1, hn,i = - e
ani™, if i < n,
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where a,, b, are such values that
D ik = bh Yy it = (pefe)?, (Rfe) > Y iPhig = an i > (pe /o).
i=1 i=1 i=1 i=1

Then we can obtain the relations (9.1) by the estimations similar to the proof of Theorem 2.5 in Ingster [12],
Sections 4.2 and 4.3.

Thus, we need to consider the cases kK € =p with co > p > ¢, 7 < 0 and p < ¢. For simplicity we assume
q < oo (for p < ¢ = oo one can use similar consideration). Remind the notations:

A=sq—rp, p=pq(s—7), A =4\ —p=sq(4—p)—rp(4—q),
I'=2p—4A+p—q=2(p—2)s¢—2(q—2)rp+p—gq.
Lemma 9.1. Let

p#q¢, AJlg—p)>0,0<p/(g—p) <1, A/(¢g—p) 20.
If n/(q — p) =0, then we assume p. < R. Put

5ni—)\/(q—p)’ Zf Mn,1 << Mn,2
hn,i =1, Zn,i = .
0, in other cases

where my = mp,1 — 00, Mgy = My 2 — 00, 0, X 1, as n — oo are such values that

ma
Ap= > i P <1 (pfe)P < 67 A,, (R/e)? > 6% A,

i=m1

(if u/(q —p) > 0, then one can easy chooses such values. If u/(q—p) =0, put my =mgo =n, &, = R/e). Then
the relations (9.1) hold.

Proof of the lemma. By the assumptions

ma mo
Z Zﬁyiim =4 Z ;—n/(a—p) — S A, > (pe/e)?,

i=m1 i=m

mo ma
Z 2800 =58 Z iTHamP) = 594, < (R/e),
i=m1 i=m1

which imply 7" (V; ,_(x)) = 1. Also

mo ma ma
H7—TnH2 - Z Z;le :&rt Z Z’*(#+A)/(q7p) < ml—A/(q—P)é';ll Z Z'fu/(qu) :O(ml—A/(q—P)) =0
i:ml i:m1 i:ml
The lemma is proved.

Lemma 9.2. Let

p#q, A(g—p) <0, I/(g—p) <0, \/(g—p) >0, 0<p/(qg—p).
Put
hni:

)

{aniA/(qp)a ’Lf Mn1 § { S Mn,2

0, in other cases
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P 5nii)\/(q7p)a Zf Mnp,1 § l § Mn,2
m 0, in other cases

where my = my , — 00, Mo = Mo, — 00, 0p X 1, a, — 0 as n — oo are such values that

ma2
Ap=an Y i) <1 (p o) < 0B A, (R/e)! > 68 A,.

i=mq

(one can easy chooses such values). Then the relations (9.1) hold.

Proof of the lemma. By the assumptions

mo m2
o (vam)) = D i =l 3D =G> (o),

=m i=my
ma2 m2
.S _ q :sq __ -—1—1/(q—p) _
Eon | > i vil? | = Y bzl i =andd > i TP =514, < (R/e),
7 i:m1 i:ml

Vargm (Z i”’|vi|p> = Vargn (Z isq|vi|q>
i i

m2
= a, Z i/ @mp) /AP g

i:m1

which by Chebyshev inequality imply 7™ (V; ,. (k)) — 1. Also

mo ma
[Tnll® < Y B2 2h, =aloh Y i ) = O(a,) — 0.

=m i=m1

The lemma is proved.

Theorem 2 for co > p > ¢q, r < 0 and p < ¢ follows directly from Lemmas 9.1, 9.2 and from following
monotone property. Let k = (p,q,7,3), K = (p,q,7,8"), s < s. Then V = V.(k,R,p) C Vo(k',R,p) = V.
This yields: Bc(c, V) < Bc(c, V'). Therefore it is enough to check the triviality for large enough s from the
region =p. In fact, let oo > p > ¢, r < 0. If 0 > r > —1/2p, then we can use Lemma 9.2 by A < 0 and
uw<0,I>0,A>0 for large enough s in this case. If 1/4 — 1/p < r < —1/2p (it is possible for p < 2), then
also we can use Lemma 9.2 by I > 0 and A <0, u < 0,A > 0 for large enough s in this case.

Let p < gq. If r >1/4—1/p, then we can use Lemma 9.1 by y < ¢—pand A > 0, A > 0 for large enough s
in this case. If r <1/4 — 1/p, then we can use Lemma 9.2 by I <0 and >0, A >0, A <0 for large enough
s in this case.

Theorem 2 is proved for ellipsoidal case.

9.2. Besov bodies case

Let k € Zp. First, assume I # 0 and R > p, if s = r. Then the considerations of this case are analogous to
above. We consider only one level jo = jn0 — 00. Let kK € Ep, co >p >g¢q, 7 >0 and R > p., if s = r. Then
the set V. contains 27° points v,, € l» with only one nonzero coordinate Vnijo = Q’Tjope/z-:, i=1,...,2% which
implies the theorem on this case.

Let p=¢g<oo, s<r<0.Putforp<2andr>1/4—1/p.

Fini = 1o Znis = {2jo<r+1/p>(pe/s), ifj=jo, i=1,...,20,
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and for p>2and r > —1/2p, if s=r

B () it # Jo
n,ij = P/ Nnij = 27j0(rp+1)’ ifj=jo, i=1,... ,QJ'O.

Then we can easily obtain the relations (9.1). Note that the cases r =1/4—1/p, s=rand r=-1/2p,s=7r
correspond to I = 0. The proof of Theorem 2 is analogous to the proof of Lemma 9.5 later; if s < r, then we
use monotone property.

Let co > p # q. Analogously to Lemma 9.1 and Lemma 9.2 we have

Lemma 9.3. Let
p#q¢, A/la—p)>0,0<p/(g—p) <1, A(g—p) =0.
If u =0 or = q—p, then assume p. < R. Put

bOZjO, ij:]O; 1<i<m
0, in other cases

P =1, znij = {

where z;, = 2=90N(@=P) = 2901/ (4=P) a4 and by are such values that pefe < boaé/p, R/e > boa(l)/q and
ap>1if u=0,a0 <1 if u=q—p Then the relations (9.1) hold.

Proof of the lemma. We have

h/p p/h
> (2ij > lznis |p> ~ m2%"P (b zj, )" = aobf),

J

q/t

t/q
> <2jsq > |Zn,ij|q> ~ m270*(boz;, ) = aobg
J 7
which imply 7™(V;) = 1. Also

[7nl|? = mzj, = agbg2~702/(47P) — 0.
The lemma is proved.

Lemma 9.4. Let

p#q AJ(g—p) <0, I/(g—p) <0, A(g—p) >0, 0<p/(qg—Dp).

| - aohjov if j=7Jo, 1<i<m
" 0, in other cases,

bozj, if j=2Jo, 1<i<m
0, in other cases

where ag and by are such values that p: /e < boaé/p, R/e > boaé/q and

hj, = hOQjoA/(Q*P)7 Zjo = 2*]’0/\/(11*;0)’ m = 2j0(1+1/(qu))/h0

where hg — 0, hg > 2701/(@=P)  Then the relations (9.1) hold.
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Proof of the lemma. We have

n/p\ P/"
Eqn ( 217P Z |vw|p> ~ m27"P ho 28 agbly = aobf,

Ja\
Emn ( 2754 Z |vij|q> ~ m27°%h, 21 agbf = aobf,

i
h/p p/h
Vargn Z ( 9drp Z |vi;j |p> = m2%orPp, sz = 9—Jon/(a=p) _,
j

t/q q/t
Varn Z ( 97sq Z |vi;j |q> = m2%0%p,;, ZJQOQ = 9—jon/(a=p) _,
7 7

which imply 7"(V.) — 1 as n — oo. Also

17 |? < mh3, 25 = ho — 0.

The lemma is proved.

Theorem 2 for I £ 0 and co > p > ¢, 7 < 0 or p < ¢ follows directly from Lemmas 9.3 and 9.4 and from
monotone property noted above.

Let k € Zp, I = 0. Note (see Sect. 5.2 above or Ingster [12], Part II, Sect. 4.1) that it is enough to construct
such measures 7™ on Iy that

dPyn ? APy \?
(Vs 1, E ~— 1) =E ) —-1—-0 9.2
m(Ve) = 1, O(dPo ) O<dP0> - (©.2)
where Prn(A) = [ P,(A)7"(dv) is a mixture. For simplicity we consider the case p # ¢ only.

Lemma 9.5. Assume

I/(g—p)=0,p#q, A/(g—p) <0, A (g—p) >0, 0<p/(qg—Dp).

Let us consider the product measures 7y, corresponding to the sequences hy, Zp where

aOth ij:k71§71§2k
hii; = .
0, in other cases,

i 0, in other cases.

Here by and ag are such values that p /e < boaé/p, R/e > boaé/q and

hy = 208/(a=p) 5 — 9=3A/(a=p),

Put
2jo
™ :.70_1 Z 7_rk:7 jO :jn,O — O0.
k=jo+1
Then the relations (9.2) hold.
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Proof of the lemma. Let us consider the variables

2 2
=2 S g, 3y = 20
i=1 i=1
We have: Py, {z; =0, y; =0} =1,if j # k, and if j = k, then

Bz, (;) = ag2? P h(boz;)P = aobl), Bz, (y;) = ao2? T h(boz;)? = aob,

J

Varz,(z;) < Varz, (y;) < 9—in/(a=p)
By Chebyshev inequality these relations imply 7 (Vz) — 1 as k — oo which imply the first relation in (9.2).
To obtain the second relation note that

|7el|? < 2Fh22¢ < 1

and
dPyn 2 240 dP- dP- il dP; 2
E ™ 1) =472 E UERS | Tk 1) = j2 E Tk _q
0<dP0 ) f0 Z 0<dP0 )(dpo ) fo Z 0<dP0 )HO
J,k=jo+1 k=jo+1
by

dPTT'k ? — 12
— < — =
Ey ( i, 1) <exp(||7x]]?) =1 =0(1)

The lemma and Theorem 2 are proved.
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