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A NEW LARGE DEVIATION INEQUALITY FOR U-STATISTICS OF ORDER 2

Jean Bretagnolle
1

Abstract. We prove a new large deviation inequality with applications when projecting a density on
a wavelet basis.

Résumé. Nous prouvons une inégalité de grandes déviations applicable à la projection d’une densité
sur une base d’ondelettes.
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1. Introduction and main result

Let F be some law on R. When g is a measurable function from Rd to R, E(g) and V ar(g) denote expectation
and variance with respect to the Probability F⊗d. Let f be a bounded and symmetric function from R2 to R.
Following Arcones and Giné [1], we construct its canonical projections: ξ and η being independent with law F

π1f(x) = Ef(x, η)−Ef(ξ, η) ·
π2f(x, y) = f(x, y)−Ef(x, η)−Ef(ξ, y) +Ef(ξ, η) · (1)

Let ξi, i = 1, 2, · · ·, n be a n-sample of F (n ≥ 2). We consider the U -statistics (without any normalisation)

U (2)
n (f) = Σ1≤i6=j≤nf(ξi, ξj) ·

U (1)
n (π1f) = Σ1≤i≤nπ1f(ξi) ·

U (2)
n (π2f) = Σ1≤i6=j≤nπ2f(ξi, ξj), thus

U (2)
n (f −Ef)) = 2(n− 1)U (1)

n (π1f) + U (2)
n (π2f) · (2)

We are interested in a large deviation inequality for the latter U -statistic when f is centered and bounded.
First, if |f | ≤ c and Ef2 = σ2, the usual Bernstein type inequality is

P (U (2)
n (f −Ef) ≥ n(n− 1)t) ≤ exp (−[n/2]t2/{2σ2 + 2ct/3}). (AG1)

But we can consider U (1)
n (π1f) (which is a sum of i.i.d. R-valued random variables) as the main part and it can

be interesting to bound separately the second part U (2)
n (π2f). Now, as π2f is canonical of order 2, if |π2f | ≤ c
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and σ2 = E(π2f)2, there exist two constants c1, c2 such that

P (|U (2)
n (π2f)| ≥ (n− 1)t) ≤ c1 exp(−c2t/{σ + c2/3t1/3n−1/3}) (AG2)

((AG1) and (AG2) can be found in Arcones and Giné [1]).
The normalized version of inequality (AG2) can be restated

P (|U (2)
n (π2f)|) ≥ a3 Max (nσx, c

√
nx3/2)) ≤ a4 exp (−x). (AG2’)

The aim of the paper is to give a new large deviation inequality (Th. 1 and Cor. 1 later). To every partition D
we associate two functionnals ‖f‖D and vD(F ) (see Def. 4 later) such that

P (|U (2)
n (π2f)| ≥ a′3x‖f‖D Max (n

√
vD(F ), 1)) ≤ a′4 exp (−2

√
x) (3’)

where all a3,a′3 are universal constants. For a comparison between the two inequalities, see the discussion after
Theorem 2 infra.

We need now some definitions: let (Iλ | λ ∈ D) be a Borelian partition of R finite or enumerable, where Iλ
denotes the subset and its indicator. Let τ be a permutation of D. Its graph gτ is {(λ, τ(λ))|λ ∈ D}, a subset
of D ×D. A collection G is an enumerable set (τs | s ∈ G) of permutations such that D ×D ⊂ ∪s∈Ggτs . H is
the family of collections. For any matrix M = (aλ,µ | λ ∈ D; µ ∈ D) we set

‖M‖G = Σi∈G Sup λ∈D|aλ,τi(λ)| and ‖M‖D = Inf G∈H‖M‖G.

Let f be a bounded real valued function defined on R× R. We set

M(D, f) = (aλ,µ) where aλ,µ = Sup (f2(x, y)Iλ(x)Iµ(y))

‖f‖2D = ‖M(D, f)‖D
vD(F ) = ΣλP (ξ ∈ Iλ)2.

Our main result is

Theorem 1. There exists some constant C (C = 80π holds) such that for every integer k > 0, for every
partition D, for every symmetric f

E(U (2)
n (π2f)2k) ≤ C2k × (EN 2k)4 × ‖f‖2kD Max (n2k(vD(F ))k, n2vD(F )).

where N denotes the standard normal distribution.

Corollary 1. There exists some constant C such that for every partition D, for every symmetric f , for every
x > 0

P (|U (2)
n (π2f)| ≥ Cx‖f‖DMax (n

√
vD(F ), 1)) ≤ exp(6 − 2

√
x).

As we will see in the following Discussion,

Remark 1: The classical inequality (AG) is strictly better whenever x ≤ nσ2/c2.
Remark 2: Nevertheless, our inequality can work when the classical one does not.
Remark 3: Finally, up to some logarithm,

√
x is the best possible rate.

Main application: Let (Ψ1,Ψ)be a wavelet and ελ, ε`,λ be the associated basis:

ελ(x) = Ψ1(x+ λ)/‖Ψ1‖2, ε`,λ(x) = 2`/2Ψ(2`x+ λ)/‖Ψ‖2(λ ∈ Z, ` ∈ N).
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Let p be some density of Probability on R equipped with Lebesgue measure dx, assumed to be square integrable
in applications.

Let βλ be
∫
p(x)ελ(x)dx and γ`,λ be

∫
ε`,λ(x)p(x)dx.

We set pL = Σλβλελ + Σ`≤LΣλγ`,λε`,λ (the projection of p up to level of resolution L) and want to estimate
its square norm

θL
.= ‖pL‖22 = Σλβ2

λ + Σ`≤L(Σλγ2
`,λ)) · (4)

When (ξi | 1 ≤ i ≤ n) is a n-sample with density p (n ≥ 2), the empirical estimators of coefficients are
βλ,n = Σiελ(ξi)/n, γ`,λ,n = Σiε`,λ(ξi)/n. Let pL,n be

pL,n = Σλβλ,nελ + Σ`≤LΣλγ`,λ,nε`,λ.

The “natural estimator” for θL is
Σλβ2

λ,n + Σ`≤L(Σλγ2
`,λ,n).

But the latter has positive bias, and the unbiased estimator is

θ̂L,n = (n(n− 1))−1Σ1≤i6=j≤n{Σλελ(ξi)ελ(ξj) + Σ`≤L(Σλε`,λ(ξi)ε`,λ(ξj))} · (5)

Let ∆n,L = θ̂L,n − θL. According to (5), ∆n,L can be decomposed into canonical U -statistics in the following
way: let Φ1 be Ψ1/‖Ψ1‖2 and let Φ be Ψ/‖Ψ‖2,

f(x, y) = ΣλΦ1(x+ λ)Φ1(y + λ), f`(x, y) = ΣλΦ(2`x+ λ)Φ(2`y + λ) (3)

δn = (2/n)U (1)
n (π1f) + (1/n(n− 1))U (2)

n (π2f) (4)

δ`,n = (2 · 2`/n)U (1)
n (π1f`) + (2`/n(n− 1))U (2)

n (π2f`). (6)

Then ∆n,L = δn + Σ`≤Lδ`,n. In the decomposition above, the sum of U -statistics of order 1 is equal to the part
up to level of resolution L of

∫
p(pn − p). It can be bounded in Probability by classical Bernstein’s inequality.

The control of each U -statistic of order 2 will be performed by our inequality. This is very useful, either to
estimate θL [3], or in model selection: in this problem, the authors consider a wide family of finite dimensional
projections. Our study is quite general, but we observe that if Ψ1 and Ψ are with compact support, for every
L the family (βλ, α`,λ | ` ≤ L) is in fact with finite dimension, and hypothesis (H) infra holds. Thus our result
can be used in adaptive estimation of quadratic functionals in a density model (see for example [4] where white
noise is treated), where the theory needs good bounds up to 2` = O(n2). These bounds cannot be obtained by
classical Hoeffding’s bounds (see the chapter “Discussion”).

We assume in the whole paper

Hypothesis (H).

|Φ(x)| ≤ Σu∈Zωu1u≤x<u+1 with Σu∈Zωu <∞
and we set M2(Φ) = Σ(u,v,w)∈Z3 ωuωvωu+wωv+w. (H)

In the particular case when the law has density p, for the normalised U -statistic, we have

Theorem 2. We assume that the function Φ with ‖Φ‖2 = 1 satisfies hypothesis (H), and that the law F has a
density p with ‖p‖2 = (

∫
p2(x)dx)1/2 <∞. Set

‖p‖2,` = 2`/2

Σk∈Z

(∫ (k+1)2−`

k2−`
p(x)dx

)2
1/2
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δ
(2)
`,n = (2`/n(n− 1))U (2)

n (π2f`) where f`(x, y) = ΣλΦ(2`x+ λ)Φ(2`y + λ)

Z`,n =
√
n(n− 1)2−`/2δ(2)

`,n.

Then, if n‖p‖2,` ≥ 2`/2, we have, for C as in Theorem 1

P (|Z`,n| ≥ 2C ×M(Φ)× x) ≤ exp(6− 2
√
x)·

In this formula, V ar(Z`,n) does not depend on n. Moreover, there exists positive and finite constants a(Φ), b(Φ)
depending only on Φ such that

lim `→∞‖p‖2,` = ‖p‖2·
lim `→∞‖π2f`‖∞ = b(Φ) and a(Φ)‖p‖22 ≤ lim inf `→∞V ar(Z`,n)·

‖π2f`‖∞ ≤ 4M(Φ) and V ar(Z`,n) ≤ ‖p‖22M2(Φ)·

Remark 4: Such a result is interesting only if it works, for given n, `, uniformly for large classes of densities.
Obviously we need some uniform control of ‖p‖2, but this is not sufficient in view of condition n‖p‖2,` ≥ 2`/2.

Thus we need some extra condition. If for example we assumme that the support of p is contained in some
interval [x, x+M ] we get ‖p‖2,` ≥ 1/(M + 1) and the bound works if n2 ≥ (M + 1)2`.

I would like to thanks the two anonymous referees whose remarks and suggestions have much improved the presentation.

2. Discussion

a) About Corollary 1.
We consider inequality stated in Corollary 1 and assertion (AG2”). We assumme ‖f‖∞ = 1. Without further
knowledge about the law F , we can only bound σ2 = V ar(π2(f)) by Ef2 and c = ‖π2f‖∞ by 4. Up to some
change of a3, (AG2’) is restated

P
(
|U (2)
n (π2f)| ≥ a3 Max

(
nx
√
Ef2,

√
nx3/2

))
≤ a4 exp (−x).

On the other hand, we have the obvious inequality

Ef2 ≤ ‖f‖2DvD(F ).

Proof of Remark 1: Let us assumme x ≤ nσ2. Thus Max(nσx, c
√
nx3/2) = nσx ≤ n‖f‖2x ≤ x‖f‖D Max

(n
√
vD(F ), 1) and, up to constants (AG2’) is always better than the bound of Corollary 1 whenever x ≤ nσ2.

Nevertheless, our inequality provides a possible alternative if there exists some partitionD such that n2vD ≥ 1
and ‖f‖2DvD(F ) ≈ Ef2 (up to constant). We exhibit two extremal cases in the case when the law is the uniform
one:

1) f(x, y) = 110≤x<p;0≤y<p, where 0 < p < 1. We set q = 1 − p. We have ‖f‖∞ = 1, Ef2 = p2. Choosing
I1 = (0, p) Iλ =)p+(λ−2)q/K, p+(λ−1)q/K) for 1 < λ ≤ K+1, we get vD = p2 +q2/K and, for a convenient
choice of G, ‖f‖2D = 1. Moreover V ar(π2f) = p2q2 and ‖π2f‖∞ = max(p2, q2).

When p is small, up to constants, in the classical inequality we can use either precise true parameters or
rough estimates (‖f‖∞ and Ef2 for ‖π2f‖∞ and V ar(π2f)) and we get

P (|U (2)
n (π2f)| ≥ a Max (nxp,

√
nx3/2)) ≤ a4 exp (−x) (AG2’)

Our result is

P (|U (2)
n (π2f)| ≥ Cx Max (np, 1)) ≤ exp (6− 2

√
x). (Cor 1)
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In this setting, we can assume x > 1, n large.
If 1 < x < np2, the classical inequality is better, but (up to constants) only with respect to the exponent

of x.
A contrario the classical result does not work in the case when np2 = o(1) but not our one provided that np

is large, and this justify the Remark 2.
We will see that it is a quite general result in the main application.

Remark 3: Assuming np = 1 and denoting fn the corresponding function, when n→∞, it is easy to prove that
U

(2)
n (π2fn) converges in law to Y 2 − 3Y + 1 where the law of Y is the Poisson law with parameter 1. Thus

lim inf x→∞ lim n{− Log P (U (2)
n (π2fn) ≥ x)/

√
x Log (

√
x)} ≥ 1

proving that the power 1/2 is the best possible.
2) Let be g(x, y) = 110≤x≤1; 0≤y≤1 − 11p≤x≤1−p; p≤y≤1−p ( p small) and ε(x) = 11x≤1/2 − 111/2<x and finally
f(x, y) = ε(x)ε(y)g(x, y). Then, for the uniform law, f = π2f and V ar(π2f) = V ar(f) = 4p(1− p). Obviously,
for every D, ‖f‖2D = |D| and vD(F ) ≥ 1/D, thus ‖f‖Dmax(n

√
vD(F ), 1) ≥ n (and n is obtained by the

partition with one element).
The classical inequality gives for some universal a

P (|U (2)
n (π2f)| ≥ a Max (n

√
px,
√
nx3/2)) ≤ a4 exp (−x)

and, whatever be p, our inequality provides only

P (|U (2)
n (π2f)| ≥ Cxn) ≤ exp (6− 2

√
x)

a very poor result!

b) About the main application:

b1) We consider firstly the case of the Haar basis (Φ(x) = 110≤x<1 or Φ(x) = 110≤x<1/2 − 111/2≤x<1), with
uniform law on the interval ]0, 1]. In the first case, at the level `, setting D = ([λ2−`, (λ + 1)2−`[| λ ∈ Z),
f` = Σλ∈ZΦ(2`x + λ)Φ(2`y + λ), we have M(Φ) = ‖f`‖D = 1, ‖π2(f`)‖∞ = (1 − 2−`), vD(F ) = 2−` and
V ar(π2(f`)) = (1− 2−`)22−`.

Thus for every ` ≥ 1 we have
2`vD(F ) = ‖f‖D = 1.

1/2 ≤ V ar(Z`,n) = 2`V ar(π2f`) ≤ 1.

1/2 ≤ ‖π2f`‖∞ ≤ 1

and, whenever 2` ≤ n2, Theorem 2 provides

P

(
|Z`|/

√
V ar(Z`,n) ≥ 2Cx

)
≤ exp (6− 2

√
x).

The classical one provides

P

(
|Z`|/

√
V ar(Z`,n) ≥ a3(x+ (2`/n)1/2x3/2)

)
≤ a4 exp (−x)

and does not work if n = o(2`).

Remark 5: Massart (private communication) thinks that using Talagrand’s inequality the best possible band-
with is 2` = O(n3/2) and this is the principal motivation of this work.
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b2) Finally, let κ2
n,` the chi-square (with 2` − 1 degrees of freedom) associated to the partition: with Nλ =

Σ1≤i≤n11λ2−`<ξi≤(λ+1)2−`

κ2
n,` = Σλ(Nλ −ENλ)2/ENλ.

The centered and normalised κ2
n,` is equal to Z`/

√
V ar(Z`,n). Thus our result provides a large deviation

inequality for κ2
n,` even in the case when n ≈ 2`/2. Remark that the mean number of visits ENλ can be O(1/n)!

The second case is the best possible: for every ` we have ‖f`‖∞ = 1, f` is canonical and ‖f‖2DvD(F ) =
V ar(Z`).

b3) We consider now the general case in the main application:
Using the final assertions of Theorem 2, we see that we have asymptotically the same conclusion as in the

case of b1: whenever ` is large, our Z, up to constants depending only on Φ and the law p, is the normalised
U -statistic of order 2 corresponding to some canonical function the Sup norm of which is equivalent to 1.

Thus we get a large deviation inequality which cannot be obtained using the classical result for 2`/2 � n� 2`.

3. Proofs

The proof is based on De la Peña′s inequalities [2]. As all bounds are continuous with respect to ‖f‖D,
vD(F ), it suffices to prove that, if G is a collection such that Σi∈G Sup λ∈D Sup (f2(x, y)Iλ(x)Iτi(λ)(y)) = 1,
then

E(V 2k
n ) ≤ C2k × (EN 2k)4 × Max (n2v, (n2v)k) (8)

where, to simplify notations, we set

Vn = Σ1≤i6=j≤nπ2f(ξi, ξj) and v = vD(F ) · (9)

1: Symmetrization
Let εi, ε′i,Ni,N ′i , ξi, ηi be six independent n-samples: the common law of ε’s is the law of the centered sign,

the common law of the N ’s is the normal N (0, 1), the common law of ξ’s and η’s is the law F .
Using the first Theorem of De la Peña, as π2f is canonical, we get:
For every Γ even, increasing on R+ and convex

EΓ(Vn) ≤ EΓ(4Σ1≤i,j≤n;i6=jπ2f(ξi, ηj))·

Using the classical symmetrization inequalities (see [2] again), we have

EΓ(Vn) ≤ EΓ(16Σ1≤i,j≤n;i6=jεiε
′
jπ2f(ξi, ηj)).

As the εi, ε′i can be viewed as conditional expectations of
√
π/2Ni,

√
π/2N ′i , using convexity again we get

EΓ(Vn) ≤ EΓ(8πΣ1≤i,j≤n;i6=jNiN ′jπ2f(ξi, ηj)).

We set now

Wn = Σ1≤i,j≤n;i6=jπ2f(ξi, ηj)2. (10)

In law, (Σ1≤i,j≤n;i6=jNiN ′jπ2f(ξi, ηj))2 = N 2Σi(Σjπ2f(ξi, ηj)Nj)2) or N 2ΣkλkN 2
k , where Σkλk = Wn with

λk ≥ 0, thus, by convexity:

Lemma 1. For every k ∈ N, we have

EV 2k
n ≤ (8π)2k(EN 2k)2EW k

n .
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2: Bounds for functions
k is a natural integer. The current indexes i,j of the sample belongs to [1, n]. The current s belongs to G,

other current indexes as λ, µ,.. belong to D. We have |f | ≤
√
h where

h(x, y) = Σλ,µaλ,µIλ(x)Iµ(y). (11)

Thus |π2f(x, y)| ≤
∫ ∫

(
√
h(x, y) +

√
h(x, t) +

√
h(z, y) +

√
h(z, t))F (dz)F (dt) and finally

π2f(x, y)2 ≤ 4
∫

(h(x, y) + h(x, t) + h(z, y) + h(z, t))F (dz)F (dt)·

Thus by convexity

Lemma 2. For h defined in (11) and natural integer k we have

EW k
n ≤ (16)kE((Σ1≤i6=j≤nh(ξi, ηj))k). (12)

3: Bounds for moments
We define the numbers of visits of Iλ by each of the two samples as

Xλ = Σ1≤i≤nIλ(ξi) and Yλ = Σ1≤i≤nIλ(ηi) · (13)

Let τ be the current permutation of G and πτ be Sup λaλ,τ(λ). We have obviously

Σ1≤i6=j≤nh(ξi, ηj) ≤ Στπτ (ΣλXλYτ(λ))·

As Στπτ = 1, by convexity again and (13) we obtain

EW k
n ≤ (16)k Sup τE((ΣλXλYτ(λ))k)·

Appendix 1 contains the proof of the main technical result, namely:

Lemma 3.With previous notations, for every τ , for every integer k ≥ 1, we have

E(ΣλXλYτ(λ))k ≤ 6kMax (n2v, (n2v)k)(EN 2k)2.

Collecting the previous bounds, proof of Theorem 1 is achieved. �
4: Proof of Corollary 1

A) We assume that n2v ≥ 1. Let X be U (2)
n (f)/C‖f‖Dn

√
v.

Appendix 2 contains the proof of the quite obvious

Lemma 4. If for every natural integer k we have EX2k ≤ (EN 2k)4, then

P(|X | ≥ x) ≤ exp
(
6− 2

√
x
)
.

B) Now, if n2v ≤ 1, let Y be U (2)
n (f)/C‖f‖D. For the same reason we have

P(|Y | ≥ x) ≤ exp
(
6− 2

√
x
)
.

This achieves the proof. �
5: Proof of Theorem 2

Let ∆ be some positive integer and D be the partition (Iλ,D = (λ/∆, (λ + 1)/∆(| λ ∈ Z). In what follows
indexes λ, u, v, s belong to Z.
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Let pλ,D be P (ξ ∈ Iλ,D) and pD be the density pD(x) = Σ∆pλ,DIλ,D. Expectation with respect to pD is
denoted ED. We have

lim ∆→∞‖pD − p‖2 = 0, ∆vD = ‖pD‖22 and thus lim ∆→∞∆vD = ‖p‖22·

We set Φ(x) = Σu∈Zγu(x − u)11u≤x<u+1, where the support of γu is included in [0, 1[ (thus defining the γu’s);
we have ‖γu‖∞ ≤ ωu. As ‖Φ‖2 = 1, there exists some uo with ‖γuo‖2 > 0.

We set fD(x, y) = ΣλΦ(∆x+ λ)Φ(∆y + λ).

a) Bounds for Ef2
D(ξ, η) and ‖fD‖D:

We begin by bounding from below the quantity Ef2
D(ξ, η).

We have Ef2
D(ξ, η) = Σλ,µ(EΦ(∆ξ+λ)Φ(∆η+µ))2 ≥ Σλ(EΦ2(∆x+λ))2, thus Ef2

D(ξ, η) ≥ Σλ(Eγ2
uo(∆ξ+

λ−uo)Iuo−λ,D)2. A classical computation gives (EgIµ,D)2−(EDgIµ,D)2 ≥ −2‖gIµ,D‖∞‖gIµ,D‖2pµ,D(
∫
Iµ,D

(p−
pD)2dx)1/2 then Ef2

D(ξ, η) ≥ Σλ(EDγ2
uo(∆ξ+λ−uo)Iuo−λ,D)2− 2ωuo(‖γ2

uo‖2/
√

∆)
√
vD‖p− pD‖2. As (EDγ2

uo

(∆ξ + λ− uo)Iuo−λ,D)2 = p2
uo−λ,D‖γuo‖

4
2, we get

∆Ef2
D(ξ, η) ≥ ∆vD‖γuo‖42 − 2ω3

uo‖p− pD‖2
√

∆vD and

lim inf∆→∞∆Ef2
D(ξ, η) ≥ ‖p2‖2a(Φ) := ‖p‖22‖γuo‖42 > 0 · (15)

On the other hand,|fD(x, y)| ≤ g(x, y) := Σλ|Φ(∆x+λ)Φ(∆y+λ)|. Using (H), we have g(x, y) ≤ Σλ,u,vωu+λωv+λ

Iu(x)Iv(y).
Setting

√
as = Σuωuωu+s, g(x, y) ≤ Σλ,s

√
asIλ(x)Iλ+s(y), then

g2(x, y) ≤ Σsas(ΣλIλ(x)Iλ+s(y)) · (16)

But Σsas = Σu,v,sωuωvωu+sωv+s = M(Φ)2 ≥ Σu,vωuωvωuωv = (Σuω2
u)2 ≥ 1 because ‖Φ‖2 = 1. Taking for G

the collection of λ:→ λ+ s, we get

‖fD‖2D ≤M2(Φ) and M2(Φ) ≥ 1 · (17)

We recall the obvious upper bound

Ef2
D ≤ vDM2(Φ) ≤ ‖p‖22M2(Φ)/∆ · (18)

b) Bounds for ‖fD‖∞:
Obviously, ‖fD‖∞ does not depend on D, and is less than M(Φ):

There exists some b(Φ) with 0 < b(Φ) = ‖fD‖∞ ≤M(Φ). (19)

d) Bounds for ‖π2fD‖2 and ‖π2fD‖∞:
As for ∆ large, Sup λpλ,D = o(1/

√
∆) we have |EΦ(∆η + λ)| = o(1/

√
∆). Thus ‖Ef(x, η)‖∞ :=

Sup x|Ef(x, η)| → 0. We have π2fD(x, y) = fD(x, y)−Ef(x, η)−Ef(ξ, y) +Ef(ξ, η), and asymptotically we
have

lim ∆→∞‖π2fD‖∞ = b(Φ) (and obviously by (19) ‖π2fD‖∞ ≤ 4M(Φ). (20)

We have E(fD)2 ≥ V ar(π2fD) ≥ Σλ(V arΦ2(∆ξ + λ))2 = Σλ(E(Φ2(∆ξ + λ) − E(Φ(∆ξ + λ)2)+)2. Using the
fact that ∆E(Φ(∆ξ + λ)2 goes uniformly to 0 and (15), we get

a(Φ)‖p‖22 ≤ lim inf∆→∞∆V ar(π2fD) (21)
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∆V ar(π2fD) ≤ ‖p‖22M2(Φ).
e) Proof of Theorem 2

We set now ∆ = 2`. Using nC/
√
n/(n− 1) ≤ 2C, n2vD ≥ 1, ‖fD‖D ≤M(Φ) and ∆vD ≤ ‖p‖22, Corollary 1

gives the exponential upper bound.

Appendix 1: Proof of Lemma 3

In this appendix where partition D is fixed, we use notation

vD = v, pλ = P (ξ ∈ Iλ) , ηλ = E(Xλ) = npλ thus Ση2
λ = n2v·

We recall that τ is some permutation of D, and that λ is the current point of D.
We consider two laws on ND×ND, the current point of which is (X,Y). In all cases, X and Y are independent

with the same law.
In the first case, the law of X is M(n,p) (n ≥ 2), the Multinomial where p = (pλ), with associated

expectation E.
In the second one, the Xλ are independent, with Poisson law, and mean value Eη(X) = η, where η = (ηλ) =

np. The associated expectation is Eη.
We consider the mapping U from ND ×ND to R defined by U(X,Y) = ΣλXλYσ(λ). We will first prove that

for every positive integer k E(Uk) is less than Eη(Uk) and then furnish an upper bound for this moment.

1: Reduction to the Poisson case

In what follows, Eµ denotes the expectation associated to the Poisson law with parameter µ. X [k]is the
Polynomial X(X − 1) · ·(X − k + 1), for which EµX [k] = µk.

Definitions: A mapping ψ from N to N is strongly positive if

ψ(X) = ΣkakX [k], with ak ≥ 0 for every k. (d1)

A mapping Ψ from ND to N is strongly positive if there exist some enumerable I, a family (ψλ,i | λ; i ∈ I), a
family (ai | i ∈ I), where each ψλ,i is strongly positive and each ai is positive, such that

Ψ(X) = ΣiaiΠλψλ,i(Xλ) · (d2)

Lemma 5. If Ψ is strongly positive, then

E(Ψ(X)) ≤ Eη(Ψ(X)). (a1)

For every k, Xk and {X(X − 1)}k are strongly positive. Moreover for k > 0, we have

Eµ{X(X − 1)}k ≤ Max (µ2k, µ2)× (EN 2k)2. (a2)

Remark: The upper bound in (a2) is increasing of k and µ (k ≥ 1 and µ > 0).

Proof of (a1): By d2, it suffices to prove the formula when Ψ(X) = ΠX [kλ]
λ . For such a Ψ, EΨ(X) = 0 if

Σλkλ > n, and (n!/(n− Σλkλ)!)Πλp
kλ
λ else, obviously less than Πλ(npλ)kλ = Eηψ(X).

Proof of (a2): The fact that Xk is strongly positive (in our sense) is well-known.
Let Tk be {X(X − 1)}k. T1 is X [2] and EµT1 = µ2. Assume k > 1; with x = X − 2, Tk = X [2]{(x+ 2)(x+

1)}k−1. But {(x+2)(x+1)}k−1 is polynomial with respect to x, with positive coefficients, thus strongly positive
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with respect to x: {(x+2)(x+1)}k−1 = Σ0≤j≤2k−2γj,kx
[j]; finally X [2]x[j] = X [j+2] and T k is strongly positive.

Moreover, EµTk = EµΣ0≤j≤2k−2γj,kX
[2+j] = µ2Σ0≤j≤2k−2γj,kEX

[j] = µ2Eµ{(X + 2)(X + 1)}k−1.
Let gk be gk(X) = Tk(X)11X>1. gk is convex, and if X is a Poisson r.v, almost surely gk(X) = Tk. For k = 1,

Eµg1(X) = µ2; let k be > 1. We have obtained Eµ{X(X − 1)}k = µ2Eµgk−1(X + 2). Let Y be independent of
X , Poisson with parameter 2; by Jensen, conditionally on X = x, gk−1(x+ 2) ≤ E2gk−1(x + Y ), thus, as the
law of X + Y is Poisson with parameter 2 + µ, we get Eµ{X(X − 1)}k ≤ µ2Eµ+2gk−1(X), thus, recursively

if k > 0, then Eµ{X(X − 1)}k ≤ [µ(µ+ 2) · · · (µ+ 2k − 2)]2.

The product µ(µ+ 2) · · · (µ+ 2k− 2) is bounded by Max (µk, µ)× (1 · 3 · 5 · · · (2k− 1)) = Max (µk, µ)×EN 2k

and the proof is achieved for a2.
Now we return to the proof. Uk being a sum with positive coefficients of products of powers of the almost

surely positive X ’s and the Y ’s is obviously strongly positive with respect to the X ’s and Y ’s; by independence
and (a1), we obtain for every k ≥ 0:

EUk ≤ EηUk · (a3)

2: The Poisson case

For every pair x,y of natural integers, we have easily

xy ≤ x(x− 1) + y(y − 1) + 11x=1 × 11y=1 · (a4)

Let us define now

Z = ΣλXλ(Xλ − 1), Z ′ = ΣλYλ(Yλ − 1)

T = Σλ11Xλ=1 × 11Yτ(λ)=1 (d3)

Using the fact that τ is a permutation, by a4 we have U ≤ Z + Z ′ + T , then, as the laws of Z and Z ′ are the
same

EηU
k ≤ 3k Max (EηZk, EηT k) · (a5)

3: Bound for the first term

As EηZ = n2v, we assume that k > 1. We set

E(k, µ) = Max (µ2k, µ2)(EN 2k)2 if k > 0 and 1 else·

By a2, we have

EηZ
k ≤ Σkλ≥0;Σλkλ=k{k!/Πλkλ!}ΠλE(kλ, ηλ) · (a6)

First case: If for each λ, ηλ ≥ 1, then, as ΠλEN 2kλ ≤ EN 2Σλkλ , we have

EηZ
k ≤ (EN 2k)2Σkλ≥0;Σλkλ=k{k!/Πλkλ!}η2kλ

λ (5)

thus, in the first case, for every k ≥ 0

EηZ
k ≤ (n2v)k(EN 2k)2 · (A1)
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Second case: For each λ, ηλ ≤ 1:
Let A be a non-void subset of [0, D[∩Z, and M(A, k) be the subset of NA given by (ki | i ∈ A; ki >

0 for each i ∈ A; Σi∈Aki = k) . We set

S(A, k) = ΣM(A,k){k!/Πiki!}ΠiE(ki, ηi)·

The general term of S(A, k) is {k!/Πiki!}Πiη
2
i ΠiE(N 2ki)2.

Let νj be (EN 2j)2/j! (j ∈ N). Elementary computation gives

If 1 ≤ j ≤ k, then νjνk ≤ νj−1νk+1. (a7)

Thus the general term of S(A, k) is bounded by Πiη
2
iE(N 2k)2 (obtained outside of M(A, k), when all ki are 0

except one).
On the other hand, it is well-known that |M(A, k)| = (k−1

a−1), where a = |A|. Finally

Eη(Zk) ≤ Σnon voidS(A, k) ≤ (E(N 2k)2 × {Σa>0(k−1
a−1)(Σ|A|=aΠi∈Aη

2
i )}·

As Σ|A|=aΠi∈Aη
2
i ≤ (n2v)a and Σa>0(k−1

a−1) = 2k−1, we get in the second case, for any k ≥ 1

EηZ
k ≤ 2k−1 Max (n2v, (n2v)k)(EN 2k)2 · (A2)

General case: We divide [0, D[ into two (non void) subsets:
∆1 = (λ | ηλ < 1) and ∆2 = (λ | ηλ ≥ 1), and set vi = Σλ∈∆iη

2
λ. Using (A1, A2), we obtain

E(Zk) ≤ (EN 2k)2(n2v2)k + Σj>0(kj )2j−1(EN 2j)2(EN 2k−2j)2 Max (n2v1, (n2v1)j)(n2v2)k−j .

The latter bound is increasing of vi, each bounded by v. Thus finally, in any case, for k ≥ 1

EηZ
k ≤ 2k Max (n2v, (n2v)k)(EN 2k)2 · (A3)

4: Bound for the second term
We can bound Eη11Xλ=1×11Yτ(λ)=1 by b2λ := ηλητ(λ). We take notations of Second case of previous paragraph.

Setting now
S′(A, k) = ΣM(A,k){k!/Πiki!}Πib

2
i , we have EηT k = Σ

A non voidS
′(A, k).

The current term of S′(A, k) is bounded by k!Πib
2
i . Thus we obtain here

EηT
k ≤ k!2k−1 Max (w,wk) where w = Σλb2λ.

As by Cauchy-Schwartz w ≤ n2v and k! ≤ (EN 2k)2, we get again for k ≥ 1

EηT
k ≤ 2k Max (n2v, (n2v)k)(EN 2k)2 · (A4)

Using (a3, a5, A3) and (A4), the proof is finished. �

Appendix2: Proof of Lemma 4

For k ∈ N, we set uk = ekEN 2k(2k + 1)−k, rk = uk+1/uk = e{(2k + 1)/(2k + 3)}k+1 and finally ϕ(x)
= 1 + (x+ 1) Log ((2x+ 1)/(2x+ 3)) for x ≥ 0, then ϕ(k) = Log (rk). We have

ϕ′(x) = Log ((2x+ 1)/(2x+ 3)) + 1/(2x+ 1) + 1/(2x+ 3).

ϕ′′(x)/2 = 1/(2x+ 1)− 1/(2x+ 3)− 1/(2x+ 1)2 − 1/(2x+ 3)2 ≤ 0.
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As ϕ′ goes to 0 when x goes to ∞, we have ϕ′ ≥ 0. As ϕ goes to 0 when x goes to ∞, ϕ ≤ 0. Thus, for k > 0,
uk+1 ≤ uk ≤ u0 = 1: we have proved that

for every k ∈ N, EN 2k ≤ e−k(2k + 1)k. *
Let us assumme that for every k ∈ N, EX2k ≤ (EN 2k)4. If 2k+ 3 ≥ √x ≥ 2k+ 1, via Markov’s inequality and
assertion *, P (|X | ≥ x) ≤ e−4k ≤ e−2

√
x+6. Then the result is proved for x ≥ 1 and obvious for 0 ≤ x ≤ 1.

References
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