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A NEW LARGE DEVIATION INEQUALITY FOR U-STATISTICS OF ORDER 2

JEAN BRETAGNOLLE!
Abstract. We prove a new large deviation inequality with applications when projecting a density on
a wavelet basis.

Résumé. Nous prouvons une inégalité de grandes déviations applicable & la projection d'une densité
sur une base d’ondelettes.
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1. INTRODUCTION AND MAIN RESULT

Let F be some law on R. When g is a measurable function from R to R, E(g) and Var(g) denote expectation
and variance with respect to the Probability F®¢. Let f be a bounded and symmetric function from R? to R.
Following Arcones and Giné [1], we construct its canonical projections: £ and 1 being independent with law F'

mof (@,y) = f(x,y) — Ef(z,n) — Ef(&y) + Ef(§,m) - (1)

Let &,1=1,2,---,n be a n-sample of F' (n > 2). We consider the U-statistics (without any normalisation)

U (f) = Sacinjenf (&) -
UM (m1f) = Srcicnmi (&) -
UP (m2f) = Sr<igjenmaf (6 &), thus
UD(f = Ef) =2(n = UM (w0 f) + UP (n2f) - (2)

We are interested in a large deviation inequality for the latter U-statistic when f is centered and bounded.
First, if | f| < c and Ef? = 02, the usual Bernstein type inequality is

PUP(f—Ef)>n(n—1)t) < exp (—[n/2Jt?/{20% + 2ct/3}). (AG1)
But we can consider U,(ll)(m f) (which is a sum of i.i.d. R-valued random variables) as the main part and it can

be interesting to bound separately the second part U,(LQ) (maf). Now, as mo f is canonical of order 2, if |mo f| < ¢
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and 0% = E(myf)?, there exist two constants c¢;, cz such that
PUP (mof)| > (n — 1)t) < ¢1 exp(—cat/{o + /3t /3n~1/3}) (AG2)

((AG1) and (AG2) can be found in Arcones and Giné [1]).
The normalized version of inequality (AG2) can be restated

PUP (maf)]) > az Max (noz, cv/nz/?)) < aq exp (—z). (AG2)

The aim of the paper is to give a new large deviation inequality (Th. 1 and Cor. 1 later). To every partition D
we associate two functionnals || f||p and vp(F') (see Def. 4 later) such that

P(UP (m2f)| = dse||f ]| p Max (ny/vp(F), 1)) < dj exp (~2v/x) (3)

where all a3,a} are universal constants. For a comparison between the two inequalities, see the discussion after
Theorem 2 infra.

We need now some definitions: let (I | A € D) be a Borelian partition of R finite or enumerable, where Iy
denotes the subset and its indicator. Let 7 be a permutation of D. Its graph g, is {(A,7(X))|A € D}, a subset
of D x D. A collection G is an enumerable set (75 | s € G) of permutations such that D x D C Useggr,. H is
the family of collections. For any matrix M = (ax,, | A € D; u € D) we set

|Ml|lc = Zica Sup yeplarr oyl and [[M|p = Inf genl|M|q.

Let f be a bounded real valued function defined on R x R. We set

M(D,f) = (ax,) where ax, = Sup (f(z,y)Ix(2)1.(y))
A5 = IMD, o
vp(F) = X,\P(¢ el

Our main result is

Theorem 1. There exists some constant C' (C = 807 holds) such that for every integer k > 0, for every
partition D, for every symmetric f

E(UP (maf)*F) < C*F x (BN)* x || fI|35 Maz (n** (up(F))*, n*vp(F)).

where N denotes the standard normal distribution.

Corollary 1. There ezists some constant C' such that for every partition D, for every symmetric f, for every
x>0

P(|UP (m2f)| = Ca|| f| pMax (ny/vp(F), 1)) < exp(6 — 2V/x).
As we will see in the following Discussion,
Remark 1: The classical inequality (AG) is strictly better whenever z < no?/c?.
Remark 2: Nevertheless, our inequality can work when the classical one does not.
Remark 3: Finally, up to some logarithm, 1/z is the best possible rate.

Main application: Let (¥1,¥)be a wavelet and €y, ¢, be the associated basis:

ex(@) = Uy (2 + N) /|| V1|2, een(z) = 2720 (2% + N) /|| ¥2(X € Z, ¢ € N).
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Let p be some density of Probability on R equipped with Lebesgue measure dzx, assumed to be square integrable
in applications.

Let By be [ p(x)ex(z)dz and ve,x be [eg(z)p(z)de.
We set pr, = Eafxexr + Be<rXave,ree,x (the projection of p up to level of resolution L) and want to estimate
its square norm

0 = [IpLll3 = ZaB3 + Se<r(Ea772)) - (4)

When (& | 1 < ¢ < n) is a n-sample with density p (n > 2), the empirical estimators of coefficients are
Ban = Ziex(&i)/n, Yean = Bicea(&i)/n. Let prn be

DL = 2B n€x + o< ZAYe, A nEe .

The “natural estimator” for 0, is
Zkﬁi,n + ZZSL(Z/\’YZ/\JL)'
But the latter has positive bias, and the unbiased estimator is

Or.n = (n(n— 1)) ' Cicizjca{Baen(E)en() + Se<r(Sreen()een(§))} - (5)

Let Ay p = ng — 01. According to (5), A, can be decomposed into canonical U-statistics in the following
way: let @1 be ¥;1/||Ty]|2 and let ® be ¥/||¥|2,

fla,y) = S\@1(z + N@1(y + A), fe(z,y) = Sa@(2% + @2y + \) (3)
b = (2/n)UN (w1 f) + (1/n(n — D))UP (2 f) (4)
e = (22 /) UM (m1 fo) + (2 /n(n — 1)U (2 fo). (6)

Then A,, 1, = 0, + X¢<r.0¢,n. In the decomposition above, the sum of U-statistics of order 1 is equal to the part
up to level of resolution L of [ p(p, — p). It can be bounded in Probability by classical Bernstein’s inequality.
The control of each U-statistic of order 2 will be performed by our inequality. This is very useful, either to
estimate 67, [3], or in model selection: in this problem, the authors consider a wide family of finite dimensional
projections. Our study is quite general, but we observe that if U1 and ¥ are with compact support, for every
L the family (8x,aq,x | £ < L) is in fact with finite dimension, and hypothesis (H) infra holds. Thus our result
can be used in adaptive estimation of quadratic functionals in a density model (see for example [4] where white
noise is treated), where the theory needs good bounds up to 2¢ = O(n?). These bounds cannot be obtained by
classical Hoeffding’s bounds (see the chapter “Discussion”).

We assume in the whole paper
Hypothesis (H).
|(I)(£C)| < ZuEZWu]-ugz<qu1 with Xy ezw, < 00
and we set M?(®) = B (,0,w) €28 Wy Wy Wy 4w (H)

In the particular case when the law has density p, for the normalised U-statistic, we have

Theorem 2. We assume that the function ® with ||®||2 = 1 satisfies hypothesis (H), and that the law F has a
density p with ||p||l2 = ([ p*(z)dx)/? < co. Set

(k+1)27*¢
Ipll2e = 2% |Zyez (/ p(:v)dx>
k2-¢

91 1/2
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0 = (2" /n(n — 1))UP (ma fo) where fo(x,y) = Sx@(2'z + N2y + A)

Zym = /n(n —1)279252).

Then, if n||pllz.c > 2%, we have, for C as in Theorem 1
P(|Zpn| > 2C x M(®) x z) < exp(6 — 2y/x)-

In this formula, Var(Z,,,) does not depend on n. Moreover, there exists positive and finite constants a(®), b(®)
depending only on ® such that

lim ¢ oo ||pll2,e = [|Pl]2-
lm 4 o0||m2fe]| o = () and a(@)HpH% <lim inf oo Var(Ze ,)-
7 felloo < 4M(®) and Var(Zen) < |pll3M*(®)-

Remark 4: Such a result is interesting only if it works, for given n, ¢, uniformly for large classes of densities.
Obviously we need some uniform control of |[p||2, but this is not sufficient in view of condition n||p||2,, > 2¢/2.

Thus we need some extra condition. If for example we assumme that the support of p is contained in some
interval [z, x + M] we get ||p|l2.c > 1/(M + 1) and the bound works if n? > (M + 1)2°.

I would like to thanks the two anonymous referees whose remarks and suggestions have much improved the presentation.

2. DISCUSSION

a) About Corollary 1.

We consider inequality stated in Corollary 1 and assertion (AG2”). We assumme || f||oc = 1. Without further
knowledge about the law F', we can only bound o2 = Var(m(f)) by Ef? and ¢ = ||72f| s by 4. Up to some
change of ag, (AG2’) is restated

P <|U7(L2)(7r2f)| > a3 Max (nac\/EfQ, \/ﬁx?’/Q)) < ay exp (—x).
On the other hand, we have the obvious inequality

Ef? < || flbop(F).

Proof of Remark 1: Let us assumme z < no?. Thus Max(noz,cy/nz®/?) = nox < n||fll2x < z|f||p Max
(ny/vp(F),1) and, up to constants (AG2’) is always better than the bound of Corollary 1 whenever z < no?.

Nevertheless, our inequality provides a possible alternative if there exists some partition D such that n2vp > 1
and || f||%vp(F) ~ Ef? (up to constant). We exhibit two extremal cases in the case when the law is the uniform
one:

1) f(z,y) = Lo<z<po<y<p, Where 0 < p < 1. We set ¢ = 1 —p. We have | f| = 1, Ef? = p?>. Choosing
I =(0,p) I =)p+(A=2)¢/K,p+(A—1)g/K) for 1 <X\ < K+1, we get vp = p*>+¢*>/K and, for a convenient
choice of G, || f||% = 1. Moreover Var(maf) = p*¢* and || f||oc = maz(p?, ¢?).

When p is small, up to constants, in the classical inequality we can use either precise true parameters or
rough estimates (|| f||oo and Ef? for |72 f]||oc and Var(maf)) and we get

P(UP (maf)| > a Max (nap, vnz®/?)) < aq exp (—x) (AG2)
Our result is

P(UP (maf)| > Cx Max (np,1)) < exp (6 — 2v/7). (Cor 1)
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In this setting, we can assume x > 1, n large.

If 1 < o < np?, the classical inequality is better, but (up to constants) only with respect to the exponent
of x.

A contrario the classical result does not work in the case when np? = o(1) but not our one provided that np
is large, and this justify the Remark 2.

We will see that it is a quite general result in the main application.
Remark 3: Assuming np = 1 and denoting f,, the corresponding function, when n — oo, it is easy to prove that

7(3)(#2 fn) converges in law to Y2 — 3Y + 1 where the law of Y is the Poisson law with parameter 1. Thus

lim inf , o lim ,{— Log P(UP (mafn) > z)/vz Log (Vz)} >1

proving that the power 1/2 is the best possible.

2) Let be g(z,y) = Lo<z<1; 0<y<1 — Lp<a<i—p; p<y<i—p ( p small) and e(z ) T,<1/2 — 1y/2<, and finally
f(z,y) = e(x)e(y)g(z,y). Then, for the uniform law, f = w2 f and Var(maf) = Var(f) = 4p(1 — p). Obviously,
for every D, ||f||% = |D| and vp(F) > 1/D, thus | f|| pmax(n\/vp(F), 1) n (and n is obtained by the

partition with one element).
The classical inequality gives for some universal a

P(JUP (m2f)| 2 a Max (ny/pr, vina®?)) < as exp ()
and, whatever be p, our inequality provides only
P(|UP (o f)| = Can) < exp (6 —2V/x)
a very poor result!

b) About the main application:

bl) We consider firstly the case of the Haar basis (®(z) = Lo<z<1 or ®(2) = Lo<zcr/z — Lij2<z<1), With
uniform law on the interval ]0,1]. In the first case, at the level £, setting D = ([\27%, (A + 1)27¢[| X € Z),
fo = Sacz®(2%2 + N\)®(2% + N), we have M(®) = || fellp = 1, ||m2(fo)llec = (1 —27%), vp(F) = 27¢ and
Var(ma(fe)) = (1 —27%)227¢

Thus for every £ > 1 we have

2%p(F) = [|fllp = 1.
1/2 < Var(Zen) = 2Var(mafe) <1
1/2 < |1 mafellee <1

and, whenever 2¢ < n?, Theorem 2 provides
P <|Zg|/ Var(Zen) > 203:) < exp (6 —2V/).
The classical one provides
P <|Zg|/ Var(Zeyn) > as(x + (2€/n)1/2x3/2)> < ay exp (—x)

and does not work if n = 0(2).

Remark 5: Massart (private communication) thinks that using Talagrand’s inequality the best possible band-
with is 2¢ = O(n®/?) and this is the principal motivation of this work.



156 J. BRETAGNOLLE

b2) Finally, let H%’Z the chi-square (with 2¢ — 1 degrees of freedom) associated to the partition: with Ny =

Yi<i<nlyo—tcg <(Ar1)2-¢
/ﬁ:i,z = ZA(N)\ - EN)\)Q/EN)\

The centered and normalised /fi,z is equal to Zy/+/Var(Zey,). Thus our result provides a large deviation

inequality for 1‘{727,74 even in the case when n =~ 2¢/2. Remark that the mean number of visits ENy can be O(1/n)!

The second case is the best possible: for every ¢ we have || f¢||ooc = 1, f¢ is canonical and || f||%vp(F) =
Var(Zy).

b3) We consider now the general case in the main application:

Using the final assertions of Theorem 2, we see that we have asymptotically the same conclusion as in the
case of bl: whenever ¢ is large, our Z, up to constants depending only on ® and the law p, is the normalised
U-statistic of order 2 corresponding to some canonical function the Sup norm of which is equivalent to 1.

Thus we get a large deviation inequality which cannot be obtained using the classical result for 2¢/2 < n < 2¢.

3. PROOFS

The proof is based on De la Pena’s inequalities [2]. As all bounds are continuous with respect to ||f||p,
vp(F), it suffices to prove that, if G is a collection such that ¥;eq Sup yep Sup (fQ(x,y)IA(x)Iﬂ()\) (y)) =1,
then

E(V2k) < 0% x (EN?F)* x Max (n?v, (n%0)*) (8)
where, to simplify notations, we set
Vi = Zi<izj<nm2 (&, &) and v =wvp(F)- (9)

1: Symmetrization

Let e;, ¢}, Ni, N, &, mi be six independent n-samples: the common law of &’s is the law of the centered sign,
the common law of the A7s is the normal AN'(0,1), the common law of ’s and 7’s is the law F.

Using the first Theorem of De la Pena, as mof is canonical, we get:

For every I' even, increasing on R™ and convex

ET(Vn) < ET(451<ij<nsizimaf (§ism;))-
Using the classical symmetrization inequalities (see [2] again), we have
ET(V,) < ET(16%1<4 j<nsizjcicymaf (& n5))-
As the ¢;, ] can be viewed as conditional expectations of \/WJ\/;, \/W—/2M’ , using convexity again we get
ET (V) < ET(8781<i j<miiziNiNjma f (&, m5))-
We set now
Wi = Si<ig<nsizimaf (& n5). (10)

In law, (Elgi,jﬁn;i;éj/\[i-/\/}WQf(&)77]'))2 = NZZi(Zjﬂ'Qf(fi,nj)N})Z) or NQZk/\kaQ7 where Zk/\k = Wn with
Ax > 0, thus, by convexity:

Lemma 1. For every k € N, we have

EVZF < (8m)* (EN?*)?EW,;.
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2: Bounds for functions
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k is a natural integer. The current indexes 4,j of the sample belongs to [1,n]. The current s belongs to G,

other current indexes as A, u,.. belong to D. We have | f| < V'h where
h’(xvy) = E/\,ua)\,p,l)\(x)‘[lb(y)'

Thus |72 f(z,9)| < [ [(Vh(z,y) + Vh(z,t) + Vh(z,y) + Vh(z, 1)) F(dz)F(dt) and finally
maf () <4 [ (hGay) + hast) + hz,y) + (s, 0)F(d) Pt

Thus by convexity

Lemma 2. For h defined in (11) and natural integer k we have
EW, < (16)* B((Z1<izj<nh(Ei, m))")-

3: Bounds for moments
We define the numbers of visits of I, by each of the two samples as

X =Yi<i<ndn (&) and Yy = Zici<nn(m) -
Let 7 be the current permutation of G and 7 be Sup yay r(n). We have obviously
Yi<izi<nh(&iny) < Brmr (EaXa Y1)
As 3,7, = 1, by convexity again and (13) we obtain
EW,; < (16)* Sup . E((SAX2Y,(x)")-

Appendix 1 contains the proof of the main technical result, namely:

Lemma 3. With previous notations, for every T, for every integer k > 1, we have
E(Z2X0Y, )" < 6FMax (n?0, (n?0)F)(EN?F)2,

Collecting the previous bounds, proof of Theorem 1 is achieved.

4: Proof of Corollary 1
A) We assume that n?v > 1. Let X be Uf)(f)/CHfHDn\/E.
Appendix 2 contains the proof of the quite obvious

Lemma 4. If for every natural integer k we have EX?* < (EN2F)*, then
P(|X| > z) <exp (6-2Vx).

B) Now, if n?v < 1, let Y be UéQ)(f)/CHfHD. For the same reason we have
P(Y] > ) < exp (6 -2Vx).

This achieves the proof.
5: Proof of Theorem 2

(11)

(12)

O

Let A be some positive integer and D be the partition (Inp = (A/A, (A +1)/A(| A € Z). In what follows

indexes A, u, v, s belong to Z.
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Let px,p be P(§ € I\ p) and pp be the density pp(x) = XApx pIx p. Expectation with respect to pp is
denoted Ep. We have

lim A oollpp — pll2 =0, Avp = ||lppl|3 and thus lim A _..cAvp = ||p||3-

We set () = Tyezvu(r — u)Ly<g<ut+1, where the support of 7, is included in [0, 1[ (thus defining the ~,,’s);
we have ||[Vullco < wy. As | ®|2 = 1, there exists some u, with ||v,,||* > 0.
We set fp(z,y) = TAP(Az + N)D(Ay + N).

a) Bounds for Ef?(&,n) and || fpl|p:

We begin by bounding from below the quantity Ef3(&,n).

We have Ef}(&,1) = Exu(BER(AL+N)@(An+ p)? = SA(EQ*(Az + N))?, thus Ef(,1) = Sx(Ev;, (AL +
A—uo)lu,—x,p)% A classical computation gives (Egl, p)*>— (Epgl,.p)* > —2|g], ,D”ooHQIM,D”QPM,D(IIHD(p_

pp)?dx)'/? then Ef3(€,1) > SA(Epvs, (A& + A=) lu,—,0)* = 2wu, (|72, l2/VA)/Ubllp = poll2- As (Ep7s,
(AL + A —uo)lu,—xp)* = pio—)\,D”'YuoH%v we get

AEfEH(&m) = Avpl|ya, I3 — 205 [P — poll2y/Avp and

lim infa—oc AEf} (€ 1) 2 [lp2]*a(®) := [Ip]3]vu,ll2 > 0 (15)

On the other hand,|fp(z,y)| < g(z,y) := Zx|P(Az+A)P(Ay+N)|. Using (H), we have g(x,y) < X w, oWyt AWotr
Lo (2) Ly (y).
Setting Vas = Euwuwu+57 g(x7y) < E)\,s\/ CLSI/\({E)I)\+5 (y), then

9, y) < Beas(ExIn(@) s (y)) - (16)

But Ysas = By p swWuWowutswotrs = M(®)? > By, ywpwowuwy = (Zuw?2)? > 1 because ||®||s = 1. Taking for G
the collection of A:— X + s, we get

1ol < M*(®) and M?*(®) > 1- (17)
We recall the obvious upper bound
Efp <vpM*(@) < []pl[3M*(®)/A - (18)

b) Bounds for || fp|co:
Obviously, || fplle does not depend on D, and is less than M (®):

There exists some b(®) with 0 < b(®) = ||fpllec < M(®P). (19)

d) Bounds for |72 fpll2 and |72 fDl|co:
As for A large, Sup ,pap = o(1/VA) we have |[E®(An + \)| = o(1/vVA). Thus [|Ef(z,n)|e =

Sup ,|Ef(x,n)| — 0. We have w2 fp(x,y) = fp(z,y) — Ef(z,n) — Ef(&,y) + Ef(&,n), and asymptotically we
have

lim A—oo||m2fD|lcc = b(®) (and obviously by (19) |72 fDllec < 4M (D). (20)

We have E(fp)? > Var(mafp) > Za(Var®?(A¢ + N))? = S\ (E(P*(AE + \) — E(®(AE + 1)?)T)2. Using the
fact that AE(®(AE + \)? goes uniformly to 0 and (15), we get

a(®)|p||3 < lim infa oo AVar(mafp) (21)
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AVar(mafp) < |lpl3M>*(®).
e) Proof of Theorem 2
We set now A = 2¢. Using nC/\/n/(n — 1) < 2C, n?vp > 1, || fpllp < M(®) and Avp < ||p||3, Corollary 1
gives the exponential upper bound.

APPENDIX 1: PROOF OF LEMMA 3
In this appendix where partition D is fixed, we use notation

vp =v, pr=PE€L)), nn=E(X)) =npx thus In3 =n’v-

We recall that 7 is some permutation of D, and that A is the current point of D.

We consider two laws on NP x NP | the current point of which is (X, Y). In all cases, X and Y are independent
with the same law.

In the first case, the law of X is M(n,p) (n > 2), the Multinomial where p = (py), with associated
expectation F.

In the second one, the X are independent, with Poisson law, and mean value E,(X) =7, where n = (nx) =
np. The associated expectation is E,,.

We consider the mapping U from N? x NP to R defined by U(X,Y) = YaX2Y5 (). We will first prove that

for every positive integer k E(U*) is less than E, (U*) and then furnish an upper bound for this moment.
1: Reduction to the Poisson case

In what follows, F,, denotes the expectation associated to the Poisson law with parameter p. X (Kis the
Polynomial X (X — 1) --(X — k 4 1), for which E, X = ¥,

Definitions: A mapping ¢ from N to N is strongly positive if
P(X) = Srar X with ai, > 0 for every k. (d1)

A mapping ¥ from NP to N is strongly positive if there exist some enumerable I, a family (¢, | A;i € 1), a
family (a; | ¢ € I), where each 1, ; is strongly positive and each a; is positive, such that

U(X) = Xia;lan: (Xn) - (d2)
Lemma 5. If U is strongly positive, then
E(¥(X)) < Ey(¥(X)). (al)
For every k, X* and {X (X — 1)}* are strongly positive. Moreover for k > 0, we have

E{X(X — 1)} < Max (", p®) x (EN?*)?. (a2)

Remark: The upper bound in (a2) is increasing of k and p (k> 1 and p > 0).

Proof of (al): By d2, it suffices to prove the formula when ¥(X) = HX;I”]. For such a ¥, E¥(X) = 0 if
Eakx > n, and (n!/(n — E)\kA)!)HAp’ff else, obviously less than II, (npy )™ = E,¥(X).

Proof of (a2): The fact that X* is strongly positive (in our sense) is well-known.
Let Ty, be {X(X — 1)}*. Ty is X2 and E, Ty = p?. Assume k > 1; with z = X — 2, T}, = XP{(z + 2)(x +
1)} But {(z+2)(z+1)}*! is polynomial with respect to z, with positive coefficients, thus strongly positive
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with respect to x: {(z+2)(z+1)}*! = Socj<or—27;k2b; finally XPlall = X1+2 and T* is strongly positive.
Moreover, E‘,LT]C = Euzogjggk,Q’Yj’kX[2+j] = ‘LLQEOSjSQk,Q’Yj’kEX[j] = /LQE“{(X + 2)(X + 1)}]“71.

Let gi, be gip(X) = Ti(X)Lx>1. gx is convex, and if X is a Poisson r.v, almost surely gx(X) = Ty. For k =1,
E,91(X) = u?; let k be > 1. We have obtained E,{X (X —1)}* = u?E,gr—1(X +2). Let Y be independent of
X, Poisson with parameter 2; by Jensen, conditionally on X = x, gx—1(z + 2) < Eagip—1(z +Y), thus, as the
law of X + Y is Poisson with parameter 2 + u, we get E,{X (X — 1)}* < p2E,,1295—1(X), thus, recursively

if k>0, then E,{X(X — 1)} <[u(u+2)--(u+2k—2)
The product p(p+2)--- (u+ 2k —2) is bounded by Max (u*, ) x (1-3-5---(2k — 1)) = Max (u*, u) x EN?*
and the proof is achieved for a2.
Now we return to the proof. U* being a sum with positive coefficients of products of powers of the almost

surely positive X’s and the Y’s is obviously strongly positive with respect to the X’s and Y’s; by independence
and (al), we obtain for every k > 0:

EU* < E,U*. (a3)

2: The Poisson case

For every pair z,y of natural integers, we have easily
ey <z(z—1)+yly—1)+ Ly X Ly—y - (ad)
Let us define now

Z=S3X\(Xx—1), Z' =S\Va (V) — 1)
T = E)Jlxle X ]lyr(x):1 (d?’)

Using the fact that 7 is a permutation, by a4 we have U < Z + Z' + T, then, as the laws of Z and Z’ are the
same

E,U* < 3" Max (E,Z", E,T") - (a5)
3: Bound for the first term
As E,Z = n’v, we assume that k > 1. We set
E(k, ) = Max (1, u®)(EN**)2 if k>0 and 1 else-
By a2, we have

EyZF < Sy, 50,5000k {6/ TN HINE (Kx, 1) - (ab)

First case: If for each \, y > 1, then, as IIyEN?*» < EN?¥3Fx we have
E,Z" < (BN Sk, 505,k =k (R Tk 3™ (5)
thus, in the first case, for every k > 0

E,Z% < (n*0)*(EN?F)?. (A1)
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Second case: For each A\, n) < 1:
Let A be a non-void subset of [0, D[NZ, and M (A, k) be the subset of N4 given by (k; | i € A; ki >
0 for each i € A; Sicak; =k) . We set

S(A, k) = Znream 1Y/ Tk L E (ki i)

The general term of S(A, k) is {k!/TL;k;!} ;0?11 E(N2F)2.
Let v; be (EN?7)2/4! (j € N). Elementary computation gives

If1<j<k, then vjuy <vj_1vp41. (a7)

Thus the general term of S(A, k) is bounded by II;n2 E(N2¥)? (obtained outside of M (A, k), when all k; are 0
except one).
On the other hand, it is well-known that [M (A, k)| = (*~1), where a = |A|. Finally

Ey(Z*) < Shon voidS(A k) < (BV)? % {Zax0(21)(Sjaj=allicars;) }-
As B ajzallican? < (n?v)® and Yas0(¥71) = 2571, we get in the second case, for any k > 1
E,ZF <21 Max (n?v, (n*v)*)(EN?F)?. (A2)
General case: We divide [0, D] into two (non void) subsets:
Ay =(A|m <1)and Ay = (A |7y > 1), and set v; = Eyea,n3. Using (Al, A2), we obtain
B(Z5) < (EN?)2(n02)" + S0 (5)2 1 (BN 2(EN21)2 Max (%0, (no1)7) (n%02)~
The latter bound is increasing of v;, each bounded by v. Thus finally, in any case, for k > 1

E,ZF < 2% Max (n?v, (n?v)F)(EN?F)%. (A3)

4: Bound for the second term
We can bound E; 11 x, =1 XLy, , =1 by b%\ = Mnr(n)- We take notations of Second case of previous paragraph.
Setting now
S'(A, k) = Epr(ap) K/ ILE LY, we have E,T* = %
The current term of S’(4, k) is bounded by k!II;b7. Thus we obtain here

A non VOidS,(A’ k).

E,T" < k12" Max (w, w”) where w = $,03.
As by Cauchy-Schwartz w < n?v and k! < (EN?#)? we get again for k > 1
E,TF < 2% Max (n?v, (n®v)F)(EN?*)2. (A4)
Using (a3, ab, A3) and (A4), the proof is finished. O

APPENDIX2: PROOF OF LEMMA 4

For k € N, we set u, = e®EN?*(2k + 1)7%, rpy = wpr1/up = e{(2k + 1)/(2k + 3)}F*! and finally ¢()
=14+ (x+1) Log ((2z+1)/(2x + 3)) for > 0, then ¢(k) = Log (). We have

¢'(z) = Log ((2z 4+ 1)/(2z + 3)) +1/(2z + 1) + 1/(2z + 3).
"x)/2=1/2x+1)—1/2x+3) —1/2z+1)* —1/(2z +3)* <0.
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As ¢’ goes to 0 when x goes to oo, we have ¢’ > 0. As ¢ goes to 0 when z goes to 0o, ¢ < 0. Thus, for k& > 0,
Up+1 < ugp < ug = 1: we have proved that

for every k € N, EN?* < e=%(2k + 1)*. *
Let us assumme that for every k € N, EX2k < (EN?F)4. 1f 2k + 3 > \/x > 2k + 1, via Markov’s inequality and
assertion *, P(|X| > ) <e %k < e~2VZ+6_ Then the result is proved for 2 > 1 and obvious for 0 < z < 1.
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